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BOUNDS FOR WEIGHTED EMPIRICAL DISTRIBUTION FUNCTIONS

By Davip M. MasoN

University of Kentucky

Let G, be the empirical distribution based on n independent uniform
random variables. Criteria for bounds on the supremum of weighted discrep-
ancies between G (z) and u of the form: | w, (v) D, (u)|, where D, (u) = Gn(u)
— u, w,(u) = (u(l — u))™™*" and 0 < » < 1, are derived. Also an inequality
closely related to an equality due to Daniels (1945) is given.

1. Introduction and Preliminaries. Let U,, Us,, --- be a sequence of independent
uniform (0, 1) random variables and for each n = 1 let U;, = ... < U,, be the order
statistics of Uy, - -+, U,. G, will denote the empirical distribution based on Uy, -+, U,,
and let D, (u) = G.(u) — ufor 0 < u <1. | D,(u)| is usually called the discrepancy between
G.(u) and u. We will investigate bounds on the supremum of weighted discrepancies
between G, () and u of the form:

(1.1) |w,Dn || = suposu=1| w, () Dn(u)|,

where w, (¢) = (u(1 —u))™** forO<u=<1landO=<v=<1.
When 1 = » > %, Corollary 2 of James (1975) implies that

(1.2) lim sup,—. n*%|w,D, || (2¢nénn)* = 4% as.

When » = 0 or %, criteria for bounds on || w, D, || can be characterized as follows:
Let a, be an increasing sequence of positive constants then

P(n’|w,Dn|| = @nio.) =0o0r1

according to whether Y, n'a,"/"" converges or diverges.

The case when v = % is due to Csdki (1974) and the case when » = 0 can be easily
demonstrated to be equivalent to Theorem 2 of Shorack and Wellner (1978). It will be
shown that the criteria stated above for » = 0 or % are true for all » such that 0 = » < %.

Results of this type have been recently used by Govindarajulu and Mason (1980) to
prove a strong representation theorem for functions of order statistics; and should be
applicable to proving strong limit theorems for other statistics which can be represented
as a functional of D,.

2. The Main Result. We will first prove an inequality which will be an essential
tool in the proof of the main result of this paper. This inequality is closely related to an
equality due to Daniels (1945) and is likely to have uses elsewhere.

THEOREM 1.—AN INEQUALITY. For every v such that 0 < v < ‘% there exists a constant
C, > 0 such that for all a > 1

P(supo=u=a,, n’Gn(w)u™"" = (1 + v)a) = C,a™/*™

and

P(sup;—a <u=1 2°(1 — Go(w))(1 — u)™ = (1 + »)a) = C,a/"™

=
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where aor, = 1 when v = 0 and a,, = n"'(va)"”’A1 when 0 < v < %. [xAy = min(x, y).]
When v = 0, the conclusions hold with equality with Co = 1.

Proor. We will only prove the first inequality. The second inequality follows from the
first by symmetry considerations.

For the case when » = 0, see Daniels (1945).

Now assume 0 < » < %, and set

A, = SUPo=u=a, a0 Gn(u)u™".

Observe that A, < A, + Az,, where
A1n = supi=i=, 2" ia U™ I(0 < Uin < b,n),
A2n = SUP1=<i=<n nv_lia_lU;Iﬂ, I(bvn = Uin = cvn)y
v, —1/(1=p), -1

b,.=r"a n~!and c,, = (va)’n"".

[Forx=y,I(x<u=<y)=1if x<u=<yand 0 otherwise.]
Now P(A,=1+v) =

(2.1) P(A1,=0) + P(A2. =1+ ).

First note that P(A;, >0) = P(Ui, < b,,) =1 — (1 — b,,)" < p?a™ V"™,

We will show that the second term in (2.1) is also bounded by a™*/%™* times a positive
constant depending only on ».

For u = 0 set A, (1) = a 'u " I(b,, < u < c,n), and gn (&) = h,(b,,) if 0 = u < b,, and
equal to A, (u) otherwise. Since g, is nonincreasing on [0, 1] and g, = A,, it is easy to see
that foreachl=<i=<n

n iR (Uin) < 077 Y1 ge(U).
Thus P(Az,=1+7v) <
(2.2) P(n 'Y gn(U) =1+ )

Let Eg, = Eg.(U.). Since g.(u) < a'u™"*" for u = 0,
Eg,=a™ J’ u™du=n""
0

Therefore the expression in (2.2) is <
P(n"' Y i (8:(Uj) — Egn) = v),
which by Chebyshev’s inequality is <

-1, -2

n®"'v~* var g,(U,).

Now
var g, (Uy) < Egr(Uy) = b,nhi(b,n) + a“"j u™** du,
bl‘"
which is easily shown to be = n'"*’a™"/"""K,, where K, is a positive constant depending
only on ». Thus the expression in (2.2) is < ¢ /"™ »7?K,. Letting C, = »"/* + v°’K,
completes the proof. [

We will now show that the criteria for bounds on || w, D, || stated in the introduction are
true for all0 = v < %.
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THEOREM 2.—THE MAIN RESULT. Let a, be an increasing sequence of positive
constants, then for every0 = v <%

P(rn’|w,Dn|| = anio) =0o0r1
according as Y-y n"'a;" "™ converges or diverges.

Proor. For the case when » = 4 see Theorem 3.1 of Csdki (1974). When » = 0, the
statement of the theorem can be shown to be equivalent to Theorem 2 of Shorack and
Wellner (1978). So we will only consider the case when 0 < v < %.

First we will assume (C): Yu_; n'a;""™ < o, and without loss of generality that
ay’n™' ] 0. Let

A= {n’|w,D,| = anio.},
B = {supo<y<c,qin 1’| w, (1) Do (u)| = anio.},
C = {sup;_c,avn<u=<1 " | w. () Do (u)| = @ i0.}, and

D = {sup,, ,irm-<y<i-c,ain- 1’| W, (1) Dr(u)| = an i0.};

where ¢, = 271 (»(4(1 + »)) ).
Observe that P(A) =

(2.3) P(B) + P(C) + P(D).

We will first show that P(B) = 0.
Note that since n’u’ < 4 'a, for 0 < u < ¢,a’’n™!, and ay’*n™' | 0, B C B’; where

B’ = {Supj<y=c,qin- B Gu(@)u™" = 27"a, 1.0.}.
Let n, = 2" for integers r = 1. Note that (C)implies Y2, a;/"™ < . Now

Yrp-1 nyGn(u)u_1+” = 2_1a,,r i.O.),

P (B') = P (maxn,snsnmsup05usc,a,.
which, since a, 1, n™'ay”* |, and nG, (u) is nondecreasing as a function of n, is

-1 -1 .
=< P(SUPy<,<, qirn:t 20741 G, (@)™ = 2700y 10.).

Let an, = ax, (4(1 + »))"". Observe that
(varn )’ nit = e(@n)n;!
Application of Theorem 1 now gives
(24) 71 P(8UPosu=pray)inire1 Gr,, (W u™ = a7, (1 + »)) = C, T2 (@) /07

The series in (2.4) is easily seen to be convergent, so the Borel-Cantelli lemma implies
that P(B) = 0. By an analogous argument P(C) = 0.

We will now show that P(D) = 0.

Observe that (C) and a, increasing implies that

a;' (¢nn)'" > 0.
Therefore we see that D C D’, where
D’ = {sup yp-1<y<i-cin~ 1" | Wy () Dp(u)| = cn i0.},
and ¢, = (¢nn)'"". Notice that
D’ C {lim SUpn»o Cn" SUPyy-1<yz1—cin-t 17 | W1/2(w) D ()| = 1}

but Theorem 3.1 of either Csaki (1974) or (1977) implies that
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lim SUPse SUP,yy-izy=1—ctin-t Cn B2 | w12 (w) Dn(w)| = 0 ass..

Hence P(D) = 0. Thus we have shown that P(A) = 0.
Now assume (D): Yv_; n”'a,"/"™ = «, and without loss of generality that a, = 1 for all
n=1.

Note that
P(A) = P(supy<y<q; o n”|w,(u) Do (1) | = an io0.)
= P(SUPg<y=q it B Gu(W)u™ = 2ay, i.0.)
(2.5) = P(Uin = 2a,) V" 'n 1i0.).

But (D) implies that the expression in (2.5) is equal to 1 (See Theorem 1 of Kiefer
(1972)). Hence P(A) =1. O

The following corollaries are immediate from Theorem 2.

COROLLARY 1. Forall0<v=%and0=B<v

n?|w,D,|| — 0 as..

Proor. Obvious. [

Gregory (1977) showed that the convergence in Corollary 1 is true in probability. See
his Lemma 7.3.
Finally we extend Corollary 3.2 of Csiki (1974).

COROLLARY 2. For all v such that 0 = v < %,

lim sup,—.. (n*||w,D, )" = '~ as..

Proor. Observe that for all e > 0 P(n*||w,D, || = a, i.0) = 1 and P(n’|w,D,| = b
i.0.) = 0, where a, = (¢nn)"” and b, = (¢nn)"™*<. 0O

Acknowledgement. The author would like to thank the referee for pointing out
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