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AN INVARIANCE PRINCIPLE FOR ¢-MIXING SEQUENCES

By MaGpA PELIGRAD!
University of Cincinnati

In this paper it is established that the normalized sample paths of a .
¢-mixing sequence converge to the Brownian motion, under the Lindeberg’s
condition and under some stationarity assumptions. No mixing rate is re-
quired.

1. Introduction and notations. Let {X }, be a sequence of random vari-
ables on a probability space (2, K, P). Let K" =o(X;n<i<m),1<n<m<
oo. We say that { X}, is ¢-mixing if ¢, — 0, where ¢, is defined by

¢(n) = sup sup |P(B|A) — P(B)|.
meN {AeF", P(A)+0, BEEX,,)
Assume EX?2 < o for every i and let S, = X7 | X, and ¢ = ES?. Define the
random element W, in D[0,1] endowed with the Skorokhod topology (see [1],
page 101) by:

W,(t) = S,/0,, t€[0,1],n e N.

where [x] denotes the greatest integer function, and X, = 0. The aim of this
paper is to investigate the weak convergence of W, to the standard Brownian
motion process on [0, 1], for ¢-mixing sequences of random variables having finite
second moments. We shall denote the standard Brownian motion process on [0, 1]
by W, the weak convergence by =, and L, norm by || « || ,. It is known that a
strictly stationary centered ¢-mixing sequence with 6,2 — c0 and E|X |**° < o0
for some 8 > O satisfies the central limit theorem (C.L.T.) (Theorem 18.5.1,
Ibragimov and Linnik, 1971) and invariance principle (Ibragimov, 1975). In
Ibragimov and Linnik (1971), page 393, it is noted the following conjecture:

If a sequence {X,}, is strictly stationary centered ¢-mixing and satisfies
EX? < o0 and 62 — oo does it satisfy C.L.T.?

Tosifescu (1977) noted the following conjecture: If {X,}, .y is a strictly
stationary centered ¢-mixing sequence with EX?2 < oo and o2 — oo, does the
invariance principle hold?

Herrndorf (1983) showed in Remark 4.3 that, if there exists a strictly sta-
tionary ¢-mixing sequence with 02 — oo and liminf(s?/n) = 0, this last conjec-
ture is not true. A natural problem that arises is to study if the conjecture is true
under the assumption liminf(s,2/n) # 0. This paper gives an affirmative answer
to this problem. In fact we shall establish (Theorem 2.1), the weak convergence to
W for centered ¢-mixing sequences with ¢, — oo, satisfying some stationarity
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restrictions, and the Lindeberg condition:

1 n
(L) lim — 3 EX’lx:. 2 =0 foreverye> 0.
n—o 0y g
If ¢, < 1, this condition also appears to be a necessary condition for the weak
convergence to W (Proposition 2.2).
In the strictly stationary case the condition (L) becomes:
n
(L) lim —ZEXEI(X«Z
o, !

n—oo

> 2y = 0 forevery £ > 0.
It is obvious that if liminf(g2/n)+# 0 and EX? < oo the condition (L) is
satisfied and, by Corollary 2.2, the invariance principle holds. A study of the
condition (L) and especially of the behavior of ¢ will bring a definite light on
this conjecture. We raise the following problem. Is it true that liminf(s?/n) > 0
for every strictly stationary centered ¢-mixing sequence with EX?Z < co and
62 — 00? The positive (negative) answer to this problem will imply a positive
(negative) answer to the Ibragimov-Iosifescu (losifescu) conjecture.

In Section 2 we give the results and in Section 3 the proofs.

2. Results. Let us denote lim, _, ¢, by ¢*.

ProrosiTION 2.1.  Let {X,},., be a centered sequence of random variables
with ¢* < L. Then, {max, _;_,(S?/0?)}, is uniformly integrable if and only if
(max, _;_ (X?2/02)}, is uniformly integrable.

This result appears to be an important step in proving W, = W for ¢-mixing
sequences, when using for instance, Theorem 19.2, Billingsley (1968). Philipp
(1980) introduced the notion of L, invariance principle. This proposition can also
be useful to determine a class of ¢-mixing sequences for which L, invariance
principle holds. In the following, we shall make the following stationarity
assumptions:

(A) o2 = nh(n) where h(n) is a slowly varying function defined on R.

(B) sup,, >0,n _>_l[(E(Sm+n - Sm)2)/on2] < oo.

We shall establish:

THEOREM 2.1. Let {X,}, be a centered ¢-mixing sequence of random vari-
ables having finite moments of second order, satisfying (A), (B), and (L). Then
W, = W.

REMARK 2.1. It is easy to see that if
(i) liminf (0,?/n) > 0 and {X?}, is uniformly integrable or
® (ii) The sequence has finite moments of order 2 + & for some 8 > 0 and

52 +8
max E|X;|*"° = o( - )

l<i<n n
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then the condition (L) is satisfied. So this theorem includes the already known
results of: Ibragimov (Theorem 3.2, 1975), McLeish (Theorem 3.8, 1975), Peligrad
(Corollary 2.4, 1982, Theorem, 1983). It is known that a ¢-mixing sequence,
second order stationary, with 0> — oo, satisfies (A) (see Theorem 18.2.3, [5] and
the remark that follows this theorem). So we have the following corollary:

COROLLARY 2.1. Let {X,}, be a centered, second-order stationary ¢-mixing
sequence with EX? < 00,02 - o0, and the condition (L) is satisfied. Then
W, = W.

In a strictly stationary case we obtain:

COROLLARY 2.2. If {X,}, is a strictly stationary centered ¢-mixing sequence
with EX? < o0,lim 02 = oo, and the condition (L') is satisfied. Then W,

n->o0°n
= W.

In Remark 2.3, Herrndorf (1983) noticed that the condition (A) is a necessary
condition for the invariance principle. In some cases the condition (L) also
appears to be a necessary condition. We have:

ProposITION 2.2. If (X}, is such that W, = W, 0? — « and ¢, < 1, then
the condition (L) is satisfied.

REMARK 2.2. In Theorem (2.1) we can assume instead of the ¢-mixing
condition only that ¢* < } and the sequence is strong mixing (i.e., «, — 0, where
@, = SUP,SUP4sc pn perx |[P(A N B)— P(A)P(B)|), Rosenblatt, 1956). How-
ever, this is not a major improvement of the ¢-mixing assumption because, if the
sequence is assumed to be strictly stationary and mixing, from Theorem 1 of
Bradley (1980), it follows that ¢* < 1 implies ¢* = 0.

3. Proofs.

REMARK 3.1. If {X,}, is a sequence of random variables with ¢* < 1, then:
(i) P(max, _;_,|X;| > €0,) = 0 for every ¢ > 0 is equivalent with

Z P(lel > Eon) g O
i=1
for every € > 0 and
(i) (L) is equivalent with
X?
(L") E max ——;- - 0.

l<i<n O,

Proor. One of the implications in (i) is trivial. For the other we shall use the
same type of judgement that leads to the relation (3.28) in Lai (1977). Because
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P(max, _;_ ,|X;| > €s,) -> 0, for every ¢ > 0 we can choose n, and p,, such that:

(3.1) P( max X2 < 302) ~¢,,2a>0 forall n> n,.

. n
1<i<n

Therefore, as in (3.28) [Lai (1977)] for every x > ¢ > 0 and n > n,
a Y P(X.2 ~>xon2)_<_P( max X,-2>xo,;2) forj=0,...,p, — 1.

+
(n—J) ot l<i<n
i< (s
Po

So for every x > ¢ > 0 and n > n,,.

-

; p , )
(3.2) P(X?> xo?) < —-QP( max X? > xa,f).
1 ‘ a 1<j<n

J

From this relation, as a first consequence (i) follows. In order to prove (L)
implies (L), let us notice first that, under (L), (3.1) holds and in the same time
(3.2) holds. Now, we only have to apply the following well-known relation: For
every positive integrable random variable X,

(3.3) EXIix. = aP(X>a)+ [ P(X >x)dx.
The fact (L) implies (L") follows from:
2 2
Elr;)?;(n 0—; <e+ E 'r??;(n ;;—I(Xlz/‘,;z_\?) for every ¢ > 0.

The following lemma has a technical interest and is an extension of some results
for independent random variables implicitly contained in Hoffman-Jergensen
(1974).

LEMMA 3.1. Let {Y,}, be a sequence of random variables. Let T,

=ymY
m =141
and suppose that for some b > 0, p € N, and a, > 0.

b
{3.4) ¢, + max P(I’I‘m - T|> (‘z—)a(,) <n<l.

l<i<m

Then for every a > a, and m > p the following relations hold:

P(|T,| > a)

n

1
P(lTﬁf‘mm' > (1+b)a) < T
(3.5)

1 P( ¥ ba )
+ — max Y| > —
(1“7]) I<i<m 2([)— 1)

and

P(IT,| > (1 + 2b)a) < ———P(IT,,| > a)
(1-m)
(3.6)

1 ’ ba
+ P( max |Y,l>‘*)~
(1 —n) I<i<sm 2])
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Proor. In the case ¢, < 1, the relation (3.5) was proved in Iosifescu and
Theodorescu (1968), Lemma 1.1.6. The proof in the general case of the relation
(3.5) can be deduced from Billingsley (1968, page 175) and is due to Peligrad
(1981).

In order to prove (3.6), let us denote

E, = { max [T} < (1 + b)a < |Tk|}
1<i<k
We have

l<i<sm-—-p

P(|IT,| > (1 + 2b)a) < P(|Tm| > (1 + 2b)a, max |T)|> (1 + b)a,

a
max |Y|<— |+ P

l<i<m 2p

Because [T, — T, , 4| = |T,,| — |T;—1| — pmax, _, . ,,|Y] foralll <j<m-—p it
follows:

ba
max |Y,| > ™

1<i<m p

(|T|>(1+2b)a)<mzpp(E m{l IPR. %a_})

J
ba

+P| max |Y|>—|.
1<i<m 2p

Therefore, by the definition of the ¢-mixing coefficients and by (3.4), for every
a > a, we have

P(IT,| > (1 + 2b)a) < nP( max |T)| > (1 + b)a>

1<i<m
(3.7) ‘ ba
+P| max |Y}] > —)
1<j<n 2p

Now, (3.6) follows from (3.7) and (3.5). O
In the following £, X denotes EXI x . 4

LemMa 3.2. If {Y,)}, is a sequence satisfying (3.4), then for every A > al we
have

E(1+2b)2A m = (1 + 2b) ( )EATn%
2p(1 + 2b) 1
b ) (@) e 2, Y

ProOF. Let A > a?. By (3.3) and a change of variables one obtains
s By apeaT? < (1420 AP(T2 > (1 +2b)°A)
+(1 + 2b) f P(T2> (1+2b)"y)dy
A

Lemma follows by using (3.6) and then (3.3).
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LeEmMaA 3.3. Let {X,}, be a centered sequence of random variables such that
¢* < | and {max,_,;_(EX/0?)}, is bounded. Then

( E(S,- S’
max *——‘—“2““—'

l<i<n o,

n

is bounded.

Proor. Let p be such that ¢, < ;. We have
(3.8) max E(S, - 8,)*< max E(S,-S,)’+ max p’EX2.

1<i<n 1<i<n-p 1<i<n
For every i < n — p we also have

Sl = 1S, + (S, = Sz )l <p max | X[,

By Lemma 17.2.3, Ibragimov and Linnik (1971) we have

1S + (S, = Syl = (1 — 26}%) (o2 + E(S, - SH,,)2)1/2.
From the preceding two inequalities it follows that
1
o < E—W(a + p max | X
for every i < n — p. Whence, from (3.8),
E(S, - 8) 4 ‘ 4 EX?
e SR [T TP (T:‘;q;/—))“

REMARK 3.2. In this lemma ¢* < } can be replaced by limp, <1 where

{0,}, are the coefficients based on the maximal correlations (see Ibragimov, 1975).

Proor or ProrosITION 2.1.  First, because

| X,| IS,|
(3.9) Pl max — > 2x| < P| max — > x
l<i<n O, l<i<n 0,
for every x > 0, one of the implications follows by the relation (3.3).
Let us assume now that {max,_;_,(X?2/0?)}, is uniformly integrable. By
Tchebycheff’s inequality and by Lemma 3.3 for every b > 0

(G2 _2Si)2 > (—g)-zt) = 0.

Opn

(3.10) lim sup max P

tooo , l<i<n

By the fact that ¢* < } and by (3.10), we can find some constants b > 0, n < },
p & N, and a, € R, that do not depend on n and such that

(1+2b)°n

(3.11a) T
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and

S,—S)° 2
(3.11b) ¢, + max P (————}—) > (—2—) a%) <n foreveryn > 1.
o

1<i<n n

From Lemma 3.2 and (3.11) it follows

S? n S? 2p(1 +2b)\2 1
E(1+2b)2A 62 = (1 + 2b) (—_‘T;SEA? ( b (1 — TI)
X2

EA(b/ZP) l<i<n O,

for every A > a2 and every n > 1. Taking in this relation the supremum on n
and taking into account that sup,E,(S?/0?) is decreasing in A, and that
{max, _; . (X?2/0?)}, is uniformly integrable it follows that

2 2
2 M S

lim supE,— < (1 + 2b) ~+——— lim supE,—;

A—oo g Un (1""7 A—o0 g n

whence, by (3.11), it follows {S?/0?}, is uniformly integrable. This implies by

(3.5) and (3.3) that {max,_,_ (S?/0?)}, is uniformly integrable.

REMARK 3.3. If the condition (A) is assumed, by the properties of a slowly
varying function on R (Appendix 1 of [5]) it follows that

(’ (S, — Si)?')

1<i<n o,

is bounded and so we can replace in Proposition 2.1 the condition ¢* < | by the

couple of conditions ¢* < | and (A).

PrOOF OF THEOREM 2.1. In order to prove Theorem 2.1 we shall apply
Theorem 19.2 of Billingsley (1968). It was proved in Billingsley, page 174, that
the strong mixing property implies that W, has asymptotically independent
increments. By Remark 3.1 it follows that under (L), {max, _,_(X?/07)}, is
uniformly integrable, whence by (A) and Proposition 2.1, it follows {W,X(¢)}, is
uniformly integrable for each t. Once again by (A), EW2(¢) — t for each ¢t and
because {X,)}, is centered, EW,(t) = 0 for each ¢. It remains only to verify the
tightness condition. In the strictly stationary case, the uniform integrability of
{max, _, . (S?/0?)}, implies that the tightness criterion contained in Theorem
8.4 [Billingsley (1968)] is verified. In our setthng the tightness will result from the
following:

ProposITION 3.1. Let {X,)}, be a centered sequence, satisfying (A), (B),
and (L), and such that ¢* < ;. Then W, is tight in D.
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ProOF. From the proof of Theorem 8.3 of Billingsley (1968) it is enough to
establish ‘

1/6-1
(3.12) lim  limsup Y P( max |W,(s)— W (i8)| > e) = 0.
5

8-0,1/8eN n i=0 B<s<(i+l)

For every 0 < i < 1/6 — 1 denote

=f(n,8,a)= max P
fi=1fin,8,a) ins<j<(i+ )nd 2

Op

. 2 .
Q/::jnnst) . (g)za)'

By Tchebycheff’s inequality we have

2121 Ty ey )
f,‘ < ( ) — . max E(}/—Z,)'

a inéd<j<(i+1)nd o,

By (A) and (B) and by the properties of slowly varying functions that follow from
Karamata representation (Appendix 1, Ibragimov-Linnik, 1971) it follows that

(3.13) lim limsup max f, =0.
8§—0 n 0<i<1/8--1

Choose p and b such that
b
(1-4,)

and §, and n, such that for every § < §, and n > n,,.

1+2b)°<1

(3.14) ¢, + max f—n(n,ﬁ,a)—n <1.
1/8

l<i<

From (3.14) Lemma 3.2 we obtain for every 0 <i <1/8 — 1

2
(L’;”:ul’)‘)a _[) 2 T” (Zy(l;l:?)ax)
E(1+2b)z —_-‘0: < (1 + 2b) (1 — n,) Ea 0"2

(3.15)

2p(1+2b)\* 1 merb? A
+( n )(1 5 T Buup X1/

J=nid

Let us note at this point that by (A) and (B), for every 8 > 0 we have

limsup ), —F—5—"— =

n—w =0 Op

1/8- IE Zn(z;—[l)b‘X
( o ) O(limsup y ofns}/o,"f)=0(l).

noow i=1/8

Denote

1/6--1 Zn(z+1)8X
I(a) = limsup limsup ), E, ( - m‘; )
50 n i=0 0,
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From (3.15) we obtain by (3.13) and by condition (L):

' 2

(1+2b)°9,
(1-9,)

Because I(a) is a decreasing function in a, and [(1 + 2b)2qbp]/(1 — ¢,) < 1 by the
preceding inequality we obtain lim, _, ,/(a) = 0 and so /(a) = O for every a > 0.
Therefore for every ¢ > 0

I((1 + 2b)2a) < I(a) foreverya > 0.

1/6-1  (|n(i+18
lim limsup ), P > X;| > €0, =0.
8=0 n =0 j=nié

The relation (3.12) follows now by (3.5), (L) and (3.13).

PrRooOF OF PROPOSITION 2.2. Remark (2.3) in Herrndorf (1983) implies
02 = ih(i) where h is a slowly varying function on R*, whence,

E(S,- S)’

( max 5

1<i<n g,

n

is bounded. So we can find ¢, > 0 such that for every n:

¢, + max P(|S,— S| > ¢tw,) <c<1.

1<i<n

Then, by Lemma 1.1.6 in [8], for every x > ¢; and for each n € N, we obtain:

3.16 P S 4 ! PS”2
(3.16) max—2>xs(1_c) 03>x.

l<i<n O,

On the other hand, the weak convergence to W implies, by Theorem 5.4 in
Billingsley (1968), the uniform integrability of {S?/0,2},. This fact together with
(3.16) and (3.3) implies {max, ;. (S?/0?)}, is uniformly integrable. By (3.9) it
follows that {max, _;_,(X?/0?2)}, is uniformly integrable. By Remark (2.3) in
Herrndorf (1983) it follows that P(max, _;_,|X;| > €0,) — 0 for every ¢ > 0, and
(L") follows, because {max,_;.,(X?2/02)}, is uniformly integrable. By the
Remark (3.1) condition (L) is a necessary condition for the weak convergence
to W.
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useful discussions about the problem treated here and to the referee for the
remarks and suggestions that improved the presentation of the paper and
simplified Lemma 3.1.
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