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MATRIX NORMALIZED SUMS OF INDEPENDENT
IDENTICALLY DISTRIBUTED
RANDOM VECTORS!

BY PHILIP S. GRIFFIN?

University of Washington

Let X, X,,... be a sequence of independent identically distributed ran-
dom vectors and S, = X; + - -+ +X,,. Necessary and sufficient conditions are
given for there to exist matrices B, and vectors v, such that {B,(S, — v,)} is
stochastically compact, i.e., { B,(S, — v,)} is tight and no subsequential limit
is degenerate. When this condition holds we are able to obtain precise
estimates on the distribution of S,. These results are then specialized to the
case where X, isin the generalized domain of attraction of an operator stable
law and a local limit theorem is proved which generalizes the classical local
limit theorem where the normalization is done by scalars.

1. Introduction. The motivation for this paper came originally from two
different sources. The first was to try to obtain a suitable analogue of the
one-dimensional results in Griffin, Jain, and Pruitt 1984 (GJP), for random
variables taking values in R?%. We will now take this opportunity to briefly
describe one of the main results in GJP.

Let X, X,, X,, ... be a sequence of independent identically distributed ran-
dom variables taking values in R%. We will always assume that X is full, i.e., the
distribution of X is not supported on a d — 1-dimensional hyperplane. For r > 0
define

(1.1) G(r)=P{|X|>r}, K(r)= r‘2f|X|sr|X|2dP,
(1.2) Q(r) = G(r) + K(r) = E(r 4X| A 1)°.

One easily checks that @ is continuous, strictly decreasing for large r, and
Q(r) » 0 as r - co. Thus for large n we can define an increasing sequence a, by

1

n

(1.3) Q(a,) =

To describe the main probability estimate in GJP we will assume for simplic-
ity that X is lattice valued and that the correct lattice is the integers Z.
Furthermore we will assume that S, is strongly aperiodic (Spitzer, p. 42). (None
of these assumptions are needed.)
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THEOREM (GJP). Assume that
(A) liminf K(r)/G(r) > 0.

Then for all € > 0 there exist positive constants ¢, = c,(¢), M = M(¢), c, inde-
pendent of ¢, and centering terms 8, = 8, (¢) such that for sufficiently large n,

(1.4) P{|S,—-8, <Ma,} >1—c¢,
(1.5) P{S,=x} <cy/a, forallxeZ,
(1.6) P{S,=x}>¢/a, ifx€Zand|x -8, < Ma,.

Thus one obtains a very good description of the distribution of S, under the
assumption (A,). Several other interesting probabilistic equivalences of (A,;) can

be found in GJP. A

In earlier work (Griffin (1983)) some d-dimensional results had been obtained.
In particular under (A,), radial symmetry of X and a geometric condition on the
distribution of X, it was shown that there exist positive constants, c;, ¢,, and A,
such that for all A > A; and all n

(1.7) e;(Aa, A 1)* < P(S, € C(0,7\)} < cy(A/a, A 1)%,
where C(x, A) is the cube of side length 2\ centered at x € R

The geometric condition essentially ensured that the distribution of S, spread
out at the same rate in all directions. If this is not the case then the scalar
sequence a, does not contain enough information about the distribution of S,,.
For example if X has independent, symmetric stable components of indices a and
B, respectively, where a < B, then for each A > 0

ch?
P{S,e C(0,\)} ~ S i/B

while a, ~ cn'/* (Example 3.7 in Griffin, 1983). In this example it is clear that to
avoid losing information, one should normalize S, by

_ n—-l/a 0
A,,_( ) n_w).

Then since A,S, has the same distribution as X,
P{S, € C(0,A)} = P{X € A,C(0,\)} ~ cX|det A,|.

This idea leads to our second motivation; if X is in the generalized domain of
attraction of a full operator stable law Y, i.e., there exist matrices B, and vectors
Y, such that B,(S, — v,) — Y, does a local limit theorem hold? For example is it
true that ‘

‘ P{S, - v,<€ C(0,\)} ~ cXdet B,|?
This would generalize the classical local limit theorem for random variables in

the domain of attraction of a stable law, i.e., where the normalization is done by
scalars (Stone, 1965). For further information on operator stable laws see Sharpe
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(1969) and for a complete characterization of their generalized domain of attrac-
tion (GDOA) see Hahn and Klass (1985).

To describe our results we must first introduce some further notation. Let
S9! be the unit sphere in R? and ( , ) be the usual inner product on R<. For
r> 0and 6 € S% ! define

(18) G(6,r)=P{|(X,0)>r}, K(8,r)= r~2fl<x 0>|<T<X,0>édP,

(19) Q(8,r)=G(8,r)+K(8,r) = E(r~'|(X, 0)| A 1).

As before for n sufficiently large we can define for each § € S?~!, an increasing
sequence a,(6) by

(1.10) Qb a,(0) =

For each n we will show how to construct a particular orthonormal basis
{8,,...,0,4) for R which we will call the minimal orthonormal basis (MONB).
We then define A,: R? > R by

(1.11) Ab,.=a,0,)0,, 1<i<d.

The matrix sequence {A,} will be our replacement for the scalar sequence {a,,}.
(To be precise, it is actually A ;' that will play the role of a,.) In particular we
can prove the following analogue of Theorem 1 in GJP. Again for convenience we
will assume that X is lattice-valued, the correct lattice for X being the integer
lattice Z¢ in RY and that S, is strongly aperiodic. We then have the following
case of Theorem 5.3.

THEOREM. Assume that

.. .. K(8,r)
(A) liminf inf > 0.

r-o gegi-! G(0, r)

Then for all € > 0, there exist positive constants ¢, = ¢,(&) and c,, and regions
R, = R,(¢) such that for all n sufficiently large

(1.12) P{S,€R,} >1—c¢,
(1.13) P{S,=x} < cy|det A,| forallx € Z¢
(1.14) P{S,=x}>c/|detA,|] ifxeZNR,.

In general, unlike the one-dimensional case, we have been unable to give a
direct construction of the regions R, from knowing just the distribution of X. In
some special cases, however, this can be done; for example if X is radially
symmetric then one can take R;, = A, ! C(0, M) where M is chosen sufficiently
large depending only on e.

The method of proof of the probability estimates involves us in proving some
results which are of independent interest. In particular we show that (A) is
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equivalent to the following probabilistic statement:
There exist B, and vy, such that {B,(S, — v,)} is stochastically
(C) compact, i.e. every subsequence contains a further subsequence
which converges weakly to a full limit.

In the case that (C) holds we also show that the normalizing matrix may be taken
tobe A,. :

The techniques developed in proving these results enable us to prove rather
easily the local limit theorem for random variables in the GDOA of a full
operator stable law; see Theorem 6.4 for a precise statement of the result.

In concluding the introduction, we should point out that the equivalence of (A)
and a condition similar to (C) has been established independently by Hahn and
Klass (1985). In the introduction of their paper, they point out that their interest
(and ours) in matrix normalization arises from trying to approximate the distri-
bution of S,. Theorems 5.3 and 6.4 mentioned above are our attempts at doing
this.

2. Properties of G, K, and Q. In this section we describe some of the
properties of the functions G, K, and @ that will be needed. In addition the
MONB will be defined and a crucial inequality between a,(8) and |4, 0| will be
proved.

We begin by recalling the definition of @ as given by (1.2). By Lemma 2.1 of
Pruitt (1981)

(2.1) Q(r) = r—2f0’2uG(u)du.

Set r, = suP{r: P{0 < |X| < r} =0}. From (2.1) or (1.2) it follows that @ is
positive, continuous, Q(r) = Q(r,) < 1 for 0 < r < r,, @ is strictly decreasing for
r>r, and Q(r)l0 as r1co. Observe that analogous statements also hold for
Q(0, r) defined by (1.9).

LEMMA 2.1.
(1) lim, ,  supgegi— @8, 1) = 0.
(ii) Q(8, r) is jointly continuous on S%~* X (0, 00).
(iii) If 6, — 6 and r, > 0, then
liminfQ(4,, r,) > lim Q(6,r,) = G(6,0).

(iv) There exists r, such that for all r > r, and all § € S, Q(0, r) is strictly
decreasing.

Proor. (i) By Lemma 2.1 of Pruitt (1981), for any 0‘ e §4-1
(2.2) Q(8,r)= r‘2/r2uG(0,u) du
) 0

< r‘2fr2uG(u) du
0

=Q(r)—>0 asr— oo.
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(ii) Assume that 6, » 6 and r,, - r > 0. Then
1{0<uc<r,)G(0,u)>1{0<u<r}G(6,u)
for all but countably many values of u. Thus by (2.2) and bounded convergence,
Q(0,,r,) > Q(0,r).
(iii) Assume that 8, — 6 and r, — 0. Then
liminfG(6,, r,) > G(6,0).
n—o )

Hence, by (2.2)
liminfQ(4,, r,) = liminfrn_zfrn2uG(0n, u)du
n— oo n— oo 0

> liminfrn‘zfr"2uG(0n, r,) du
0

> G(0,0).
Also by (2.2), since G(4, ) is right continuous,
lim Q(4, r,) = G(6,0).

(iv) Let ry(8) =suP{r: P{0 < |[(X,8)| <r}=0}. Then Q(6, r) is strictly
decreasing for r > ry(6) and Q(8, r) = Q(8, ry) for 0 < r < ry(9). If ry(8) is not a
bounded function of 6, then there exists a sequence 8, - o € S?~! such that
ry(8,) = oo. Now by (ii)

Q(6,, 1o(0) +1) - Q(o, rp(0) +1).
Also, if n is large enough that r(8,) = ry(o) + 1, then
Q(0,, (o) +1) = Q(6,, r,(c)) » Q(a, r(0)).
Hence Q(a, ry(0)) = Q(o, ry(o) + 1), which is a contradiction. Thus r,(9) is a
bounded function of 8 and so we may let r, = sup{r,(8): § € S¢°1}.

Since Q(+, r,) is a positive, continuous function, g, = min{Q(4, r,): § € S¢~1}
> 0. Thus letting [x] = greatest integer < x, we see by Lemma 2.1(iv) that for
all n>n,=[g;']+1 and all § € S¥"! there is an increasing sequence a,(6)
defined by

(23) Q0. 0,(0)) =~

LEmMA 2.2. (i) lim,_,  infyc gi-1 @,(0) = oo.
(ii) There exists n, such that for all n > n,, a,(0) is a continuous function
of 6.

PrOOF. If (i) fails then there exist §, € S?~! and a subsequence n, such that
0,,— 0 and a,(6,) — a for some 0 € S9-! and some a € [0, ). By Lemma
2.1(ii), (iii)

likmian(ﬂk, a,(0,) = Q(6,a) >0,
-0

which is a contradiction since Q(8,, a,(0,)) = n;' — 0.
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Now choose n, > n, such that inf{a,(8): 6 € S*'} > 0. Fix n>n, and
assume that 6, — 6. Observe that a,(f,) cannot be unbounded, for if it were
then

1
; = Q(0k1 an(ak)) -0

as k — oo by Lemma 2.1(i). Assume that a,(8,) — a along some subsequence as
k — o0. Then, since a > 0,

= Q(8, 0,(0,) > @6, 0)

by Lemma 2.1(ii). However, a,(#) is the unique solution of @(#, a) = n~! and so
a,(0,) — a,(0).

DEFINITION. For n > n, define the sequence {0,,,...,8,,} by
a,(0,;) = min{a,(): 6 € S*7'},
a,(0,,) = min{a,(0): § € S* ' and (4,6,,) = O0for1 <i<Ek}.

The choice of 6,,,..., 8,4, whilst it may not be unique,’l is possible by Lemma
2.2(ii). We will refer to 0n1, ., 8,, as the minimal orthonormal basis (MONB) at
time n. This orthonormal basis has appeared earlier in the work of Hahn and
Klass in their study of the GDOA of operator stable laws.

DEFINITION. For n > n, the linear transformation A,: R? > R¢ is defined
by
- (24) Af,.=a,% 0,0, 1<i<d.

The basic assumption that we will be making about the underlying distribu-
tion is

(A) fminf inf 0")
iminf in
r-ow gesi-! G(o I‘)
By Lemma 2.4 of Pruitt (1981) it follows that there exist p > 0 and r, > 0
such that

(2.5) rrQ(9, r) decreases

for all § € S9! and all r > r,. From now on r, will always refer to this fixed
constant and n, will always be max{nl,[(mln{Q(ﬂ r): 6 €S 1H71]+1}). In
particular this choice of r, works in Lemma 2.1(iv) and with this choice of n,,
(2.3) and Lemma 2.2(ii) hold for all n > n,. One consequence of (2.5) is that there
exists a positive constant ¢ such that for all § € S9~! and all n > n,

(2.6) a,(0) = ca,,(9).
A second consequence is that for n > n,
(2.7) max a,(0) < ryn'/P.

fesi!
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DEFINITION. For r > 0 and @, ay,...,a, € S%7!, set
R(a,r) = {x e R%: |{x,a)| > r}
k
V(ag,...,a;,) = { Y Aa: N ER,i= 1,...,k} nSsa-1,

i=1
LEMMA 2.3. Assume that a, B € S®~! are such that {a, B) = 0 and

(2.8) a,(a) = min{a,(0): 0 € V(a, B)},

where n > n,. If (A) holds, then there exists a constant ¢ > 1, independent of n,
such that for all vy € V(a, B)

(2.9) caZ(y) = a2(a){a, y)* + aZ(B)(B, v)*.

Proor. We first observe that (2.9) is trivial if y = a or y = 8. Thus we
assume that y # a and vy # B. By elementary geometry one can check that for all
r>0,

R(B,7) < B(v, 5¢B,v)) U R[w (B

Thus G(B, r) < G(v,(r/2){B, v)) + G(a,(r/2){B, v)). It then follows from (2.2)
by a change of variables that

r r
(2.10) Q8. 1) < Q1. 5B 1) + @0 5B 1)),
Setting r = 2a,(y)/{B, v) and using Lemma 2.1(iv) and (2.8) we have
2a,(v)| 2
Q(B’ By ) “w
Thus
2a,(v)

a,,(B) < Bory

Hence by (2.6) there is a positive constant ¢, independent of a, 8, v, and n, such
that a,(B){B,v) < ca,(y). Finally by (2.8) we trivially have a,(a)(a, v) < a,(y)
and so (2.9) holds.

LEMMA 24. Assume that (A) holds and for1 <k <dletl <m(l)< --- <
m(k) < d. Then foralln > ny, all1 <k <d, andall 0 € V(6,,,1y,- > Opy)s

(2'11) ck—la'zl(a) = arzt(anm(i))<0’ onn;(i)>2’

M~

1

l

where c is the constant appearing in (2.9).

Proor. The proof is by induction on k. If 2 = 1 then it is immediate. Now
assume (2.11) is true for k< d and let 1 <m(1)< -+ <m(k+1)<d. For
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0€ V(6,,ay > Opmr+1)) €t

k+1 k+1 -1/2
o= Z <0’0nm(i)>0nm(i))( Z <0’0nm(i)>2) .

i=2 i=2
Then by the induction hypothesis
k+1

(2'12) ck_la?z(o) 2 Z ar%(onm(i))<0’ 0nm(i)>2‘

i=2

By Lemma 2.3 and the definition of {6,,,...,0,,}
(2‘13) car21(0) 2 a?z(onm(l))<0’ 0nm(1)>2 + arzl(a)<0’ 0>2.

A simple computation shows that for2 <i <k + 1,
(214) <0’0><0’0nm(i)> = <0’0nm(i)>;
(2.11) then follows from (2.12), (2.13), and (2.14).

COROLLARY 2.5. Assume that (A) holds; then there exists a positive constant
¢, such that for alln > n, and all § € S9!
(2.15) coa,(0) = |A10].

Proor. This follows immediately from (2.4) and (2.11).

3. Bounds on the characteristic function of X. The characteristic func-
tion of X will be denoted by ¢, i.e., for t € R¢,

¢(t) = Eexp(i(t, X)).
For u € R and 0 € S?7!, the characteristic function of (X, 8) is given by
#(0, u) = Eexp(iu(X, 0)).

Observe that if ¢ = |¢|0 then
(3.1) o(2) = o(8,]¢).

In order to get the necessary bound on ¢, we need to consider the symmetrized
random variable ( X?, ) = (X, — X,, ). This gives rise to the functions G°(4, r),
K*(0, r), and Q°(0, r) where for example G°(8, r) = P{|{ X%, 8)| <r}.

The following result follows from the proof of Lemma 2.7 in Griffin (1983); one
only needs to observe that the proof can be made uniform in § € S9-1,

LEMMA 3.1. Assume that X is full, then
(i) there exists r, such that for all r > r; and all § € S1

(32) 1G%(0,2r) < G(0,r) < 2G*(0, r/2);
(ii) there exist positive constants ¢, and c, such that for all 6 € S~ and all
r>0

(3.3) ‘ c,Q%(0,r)<Q(0,r) < c,@(0,r).
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One further result, which is a uniform version of Lemma 2.5 in Griffin (1983),
will also prove useful.

LEMMA 3.2. Assume that X is full and (A) holds, then
Ks(0,r)

_——GS(H, r) > 0.

(3.4) liminf inf
r-o 68!
REMARK. By increasing r, if necessary, we may assume that
(8.5) inf  inf K0, r)
. inf inf ——>
rzry fegé! Gs(a, r)

where r, is defined as in (2.5).

0,

LEMMA 3.3. Assume that X is full and (A) holds. Then there exists a positive
constant ¢ such that for alln > n,, all § € S, and all 1 < |u| < ry 'a,(9),

(3.6) l9"(8, ua;(8))| < exp(—clul’),
where p is given by (2.5).

ProoOF.
1- lp(8,0)% = [ [1 = cos(v(X?,8))] dP
(X%, 8)|<]o]™}
> ¢|ov)? (X*,0)*dP
(X, 8y <|o|7}
= 01K8(0,|U|_1)

2 C2Qs(07 IDI_I)
if |o| ™! > r, by (3.5). Thus by (3.3) for 0] ™' > r,,
1- Jo(6,0) 2 3(1 - lo(6,0))

> cQ(0,[v]7Y).
Next using the inequality 1 — x < e™* we obtain for |v| ' > r,,
(3.7) Ip(8, 0)|" < exp(—cn@(8, v ).

For 1 < |u| < ry'a(0) let v = ua,’(0). Then by (25) we have that
Q(8, a,(0)|u|™") > |ulPn ' and so by (3.7)

o (6, ua, ()" < exp(—cluf’).

In order to obtain our final estimate on the characteristic function of X we
need the following simple lemma which we state without proof.
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LEMMA 3.4. Assume that the matrix A: R > R? is invertible. Define S, T:
S4-1 > §9-1 py So = Ac|Ao| ' and TO = A"'0|A~"0|"". Then Se T =T~S =
id and furthermore if So = 0 then |Ao| = |A~10]~".

DEFINITION. E, = {x € R% x € A 'B(r; ')} where B()) is the ball of radius
A centered at the origin in R

Recalling the definition of c, from (2.15) we now prove

LEMMA 3.5. Assume that X is full and (A) holds; then there exists a positive
constant ¢ such that for alln > ny, and all s € E,\ B(c,)
(3.8) lp"(A,s)| < exp(—c|s|”).
Proor. Fix s € E,\ B(c,) and let 6,6 € S?"! be such that s = |s|o and
A,s = |A,s|0. Then by (3.6)
[¢"(A,s)l = 19"(|A,510)]
= |¢"(0,]4,s!)
< exp(—c,)4,s[Pak(0)),

provided a;'(0) < |A,s| <1 "
First observe that by definition of E, we have that |A,s| < r;'. Further by
(2.15) and Lemma 3.4

1A,sla,(8) = [s| |A,0la,(6)
= |s] |4, 0] ""a,(0)
> ¢y lls|.
Thus for s & B(c,), |A,s| = a,'(8) and further, for s € E,\ B(c,),
lp"(A,s)| < exp(—cls|”).
4. Equivalence of (A) and (C). In this section we will prove the equivalence
of the statements (A) and (C) as defined in the introduction. The proofs are based
on the one-dimensional proofs given in GJP and a result of Hahn and Klass

(1979) which characterizes the feasibility of matrix normalizing a sequence of
random vectors to obtain a full limit distribution.

THEOREM 4.1. Assume that X is full and (A) holds; then there exists a
centering sequence 8, such that {A (S, — 8,,)} is stochastically compact.

ProOOF. For § € S?~! and n > 0 define

U0,1) = 3 (Xp, 01{ 1 X, 03] < na,(8)}.

k=1
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Set 8,(6) = EU,(6,2'/P). Then for all § € S?~! and all n > 217,

|EUL(8,7) ~8,(0) < n[ (X, 8)| dP
{21/Pa,(8) < (X, 0)| <ma,(9)}

< nna,(0)G(6,2"7a,(8))
< nna,(0)Q(8,2V7a,(0))

< 5a,(0)
for all n sufficiently large independent of § by Lemma 2.2(i) and (2.5). Thus
P{[(S,,0) — 8,(0)] = na,(0)}
< P{(8,,0) # U, (8,n)} + P{|U,(6,7) — 8,(0)] = na,(0)}
< nG(8,7a,(0)) + P{|U,(8,1) — EU,(6,n)| = na,(8)/2}
< nG(8,7na,(0)) + 4nK(08,7a,(0))
< 4nQ(8,71a,(9))

4
R
for n sufficiently large as before. Now set
d
(4.1) 8,= X 8,(6,)8
i=1

Then since A, is self-adjoint, ie A, = A},

P{1A(S, - 8,) = M)} < EP{ I{AL(S, = 8,), 6,5 = Md~'7)

i=1
f P{(S,, A,8,;) — (8,, A0,)| = Md~'/?}
o
= Y P{(S,, 0,:) — 8,(6,,) = Md~"?a,(8,,)}
= d1/2 P

<aaf %Y

which proves that {A,(S, — §,)} is tight. Thus given any subsequence there is a
further subsequence n, such that 4, (S, — 6, ) converges weakly to some limit,
say V. We must show that V is full “Let Y be the charactenstlc function of V;

then by (3.8) for |s| > ¢,
(4.2) W (s)l < exp(—cls|).
Thus not only is V full, it has'a C*® density.

In order to prove that (C) implies (A) we will need some preliminary results.
First we state for convenience the polar decomposition of an invertible linear
transformation on R? (Halmos, 1958, p. 169).
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Polar decomposition. Let B be an invertible linear transformation of R<.
Then there exists an orthonormal basis {6,,..., §,}, a transformation D which is
diagonal with respect to this basis, and a unitary transformation U such that
B=U-°D.1If

Do, = b;'e,,
then we set
d
(4.3) b*(8) = X (8,6,)°bF = |D'6)".
i=1

Observe that if {B,(S, — §,)} is stochastically compact then for large n, B,
must be invertible and hence has such a polar decomposition.

Let p be the Prohorov metric defined on the space of all d-dimensional random
variables by

p(X,Y) =inf{e > 0: P(X € A) < P(Y € A®) + e forall A € &)
= inf{e >0: P(YE A) < P(X € A®) + eforall A € B),

where A® = {x € R% |x — y| < ¢ for some y € A} and % = Borel sets in R<.

LEMMA 4.2. Assume that {B,S,} is stochastically compact; then for any
sequence 0, € S, ((S,,8,)/b,0,)} is stochastically compact.

ProoF. Let B,= U,° D, be the polar decomposition of B,. Given any
subsequence, choose a further subsequence along which B, S, converges weakly to
some limit V. By Theorem 2 of Hahn and Klass (1979), along this subsequence

(4.4) lim sup p[(S,,8)/5,(0),(V,U,D;'/\D; )] = 0.

n—oo e8!

Now choose a further subsequence along which
U,D, '8,
1D,
Then by (4.4) and (4.5) along this subsequence

p[(Sa 8,)/8:(8,), (V> 0)] < p[(5,, 6,/8(6,), (V. U, D '6,/1D;'6,)]

+0[(V,U,D;'6,/1D; 8,3, (V, )]
- 0.

Further since V is full, (V, o) is nondegenerate and so {(S,,¥6,)/b.6,)} is
stochastically compact. )

(4.5) Soe st

The next Lemma is not needed in this section, but since it is an easy
consequence of Lemma 4.2, we shall prove it now.

LEmMMA 43. Let {B,} and {C,} be sequences of matrices and {{,} and {§,}
be centering terms such that both {B(S, — §,)} and {C(S, — £,)} are stochasti-
cally compact. Then there exist positive constants c,, c,, and n, such that for all
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n>n,andall § € S
(4.6) ¢, <b,(0)/c,(0) < c,.

ProoF. We begin by observing that under the hypotheses, both {B,S;} and
{C,S;} are stochastically compact. Now assume that (4.6) is false, so we may

assume without loss of generality that there exist 6, € S?~! and n,, — o such
that

(4.7) b,(8:)/¢,,(6;) = 0.
By Lemma 4.2, there exists a further subsequence and nondegenerate random
variables Z, and Z, such that
<Srf,,, 0k>/5n,,(0k) - Zy,
<Srf,,’ 9k>/5n,,(0k) = Z,.
However, by the convergence of types theorem this contradicts (4.7).

One final result that we need is the following version of Lemma 1 in GJP.
Since the proof is similar it will not be given here.

LEMMA 4.4. Assume that liminf, . inf,. g1 K(8, r)/G(8, )= 0; then
there exist 6; € S*"! and integers m;, n; > oo with m ;< n; such that
) a, (6
™, an(9) o
a,(6;)
Furthermore if x; € [amj(0j), anj(0j)] then
K(6;, x;)

-7 —~ 0.

G(aj’ xj)

THEOREM 4.5. Assume that X is full; then the statements (A) and (C) are
equivalent.

PrROOF. We have already seen in Theorem 4.1 that (A) = (C).

(C) = (A). First observe that since {B,(S, — v,)} is stochastically compact, so
is B,S;. Now assume that (A) fails and apply Lemma 4.4. Define v; = min{k:
by(0,) > an( 6,)} and suppose that along some subsequence v,/m; > £ € [0, 0]

CAsE 1. £>0.Set k; = », — 1 and observe that by Lemmas 3.1 and 4.4 for
any M > 1/2 and all j sufficiently large
6,))

24,66, MB,,(6)) 2 24,6°(0, Ma (8
> k,G(6,,2Ma,, (6,))
(4.8) | > k,G(6;, a, (6))
~ ka(aj’ anj(aj)
=k;/n; > §.

(
)
)
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Now

2P( [(S},, )1 = M5, (8)) > P{ max (5,61 = Mb,,(6))

>1- P{ max. |(X¢,6)] < 2M5kl(0j)}

1<i< )
— k;
=1~ [1-6%(6,2M5,(6))]
> 1 - exp{ —k,G*(6,2M8,(9)))).
Thus by (4.8), { S,ﬁj, 0, /b k( 6,)} is not tight which contradicts Lemma 4.2.

CasE 2. £ =0. Set k; = »; and observe that for any £ > 0, by truncating at
iam/( 0,), we obtain :

P{ 1¢S5, 81 = b, (6)} < P{I(S},0)] = ea, (6))}
k,aZ (6,)K%(6;, a,,(6)))
<
ekay, (6)
< k(1 +e72)@(6), 4, (8))
<c(l+e?)ky/m;—0,

where we have used (3.3) in obtaining the last inequality. Thus {{S; , 6;)/ b k,(0))}
is not stochastically compact, which again contradicts Lemma 4.2.

+ kG0, a,,(6))

J

5. Probability estimates under (A). We will begin this section by con-
structing the regions R, alluded to in the introduction. From (A), it follows by
Theorem 4.1 that A (S, — 8, is stochastically compact. Set

@ = {V: V is a subsequential limit of {A,(S, — 8,)} }.
Since {A,(S, — 8,)} is stochastically compact, it immediately follows that
(5.1) inf p[A,(S,—8,),V] >0
vVey
as n — oo. Further one can easily check that (¥, p) is a compact metric space
and so there exists V,, € ¢ such that
(52) p[An(Sn - 8n)’ Vn] = é,nfgp[An(Sn - 8n)’ V]
e
Let ¢, be the characteristic function of V,. By (3.8) (see also (4.2)) for any n and
all [s| > ¢,
(5.3) ()l < exp(—clsf”).
Thus by the inversion formula, V, has a density f, given by

(5.4) fulx) = (@) [ o7 0,(8) de.
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From (5.3) and (5.4), one can easily check that
(5.,5)  there exists a constant ¢, such that for all x, y € R? and all n
Ifn(x) - fn(y)l =< cllx - yl,

(5.6) there exists a constant 8 such that for all x € R¢ and all n
Ifa(x) < B,
(5.7) if V, — Vthen f, — f uniformlyin x € R“.

From (5.1) and (5.2) we see that if A, (S,, — 4, )~ V, thenV, — V. Thusit
follows that {V,} is stochastically compact and in particular, {V,} is tight.
Given ¢ € (0,1) choose M large enough that for all n

(5.8) P{|V,|>=M-1} <¢g/6.
Next choose n, so that for all n > n,
€
9 A -8 =
(5 ) p[ n(Sn n)a Vn] < 6(1 + 20])v(M) a,

where V(M) is the volume of the ball of radius M in R? and ¢, is given by (5.5).
Set
P, = {x €eR% |x| < Mand f,(x) > a}.

n

Finally let

(5.10) R,=8,+A,'P,={xeR%: A (x—-8,)€P,}.
LEmMA 5.1. With e, a, R,, and V, as above,

(5.11) P{S,€R,)}>1—c¢,

(5.12) ifx, € R, then liminff,(A,(x, — 8,)) > a.

Proor. (5.12) is immediate from the construction of R,. To prove (5.11)
observe that P{S, € R,} = P{A,(S, — 8,) € P,} and by (5.9)
P{Vn € Pn} _P{An(sn - 8n) € Pn} = P{An(Sn - 8n) = Pr‘:\Pn} +a
_ < P{V, € (P:\P,)°} + 2a.
Let 9P, be the boundary of P,. Then (P*\ P,)*C {x € R% |x — y| < 2a for

some y € dP,}. By continuity f,(y) = aif y € dP, and |y| # M. Since a < 3, if
x € (PY\ P,)* N B(M — 1) it follows from (5.5) that

(5.14) f(x) < a+ c2a.
Hence by (5.8) and (5.14)
PlV P\ P)°} < dx + dx
(eE\p)) <[ h@das] )

n

lx|<M-1

] €
<a(l +2¢)V(M-1)+ s

(5.13)

<

w| m
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Thus by (5.13)
2
P{A”(S"' - 8'1) € Pn} = P{Vn € Pn} - _35.
Finally

P{VneP,,}zl—f

fulx)de— [ fi(x)dz
B(M)\P, x| >M

e €
>1—-aV(M)— 21— .

V(M) -5 3
We will now assume that the distribution of X is normalized in the following

sense (Stone, 1965): There exists an integer k, 0 < k < d and real numbers
aj,...,a; such that

(515)  @(27n,,...,27n,,0,...,0) = exp{27i(n,a; + -+ +n40;))

for integral values of n,,..., n, and |p(¢)| < 1 for all other values of ¢ € R If
(5.15) failed then we could find an invertible transformation U of R such that
the characteristic function of Y, = UX, satisfied (5.15), and we would then work
with the random variables {Y;}. The condition |¢(¢)| < 1 means that the random
walk is strongly aperiodic (Spitzer, p. 42) in the lattice directions. This merely
avoids further technical details concerned with periodicity. This aspect is dis-
cussed in the one-dimensional case in GJP Section 2.
Observe that the distribution of S, is supported by

(5.16) D, = {x € R% x; — na;isaninteger 1 < i < k},
where x = (x,,...,%,). It will be convenient to write x = (X, X) where % =
(%1,...,%,) € R¥and X = (x4, ..., xy) € R? 7% Define

Clx,A\)={yeR%Z=5and |rx,— y| <Afork <i<d}
R(m,a)={teR%: |t <mforl<is<k,|t]<afork<i<d}.
We will need the following inversion formula (Stone, 1965): For x € D,, A >0
and a > 0,
@)Y P(S, € C((%,% - 5),)))a* "H(ay) dy
(5.17) "
= (27) ¢ /R . a)exp(—i(t, x))o"(t)k(At)h(a™'t) dt,

where

d
k()= T (sint)/z

i=k+1

d
r#)= 11 Q=18
d
H(y)= [I (1 - cosy)/my?.

i=k+1
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LEMMA 5.2. Assume (A) and set
I(x,\, a) = (%)“”f exp(—i(t, x))@"(¢)k(At)h(a"t) dt.
R(7, a)

Then for each ¢ > 0, A > 0, and a > 0,
I(x,\, a) I(x,\,a)
—_— <

5.18) a <liminf inf —— <limsup su
( ) n—o0 x€R,(¢) |detA,,| n—'oopxeﬂI:d |detAn|

where a and B are defined by (5.9) and (5.6), respectively.

b

ProOOF. Fix A > 0 and a > 0 and set

q = max{|p(¢)|: t € R(7, a)\ B(r5 ")},
where r, is defined in (2.5). Then g < 1 since X is assumed to be normalized.
Thus

(27 "’f exp(—i(t, x))g"(t)k(At)h(a"'t) dt| |det A,| "
(5.19) R(m, a\B(r5 ")

< (27)* “2a)* *q"det A, > 0
by (2.4) and (2.7).
By a change of variable and observing that A, is self-adjoint, we see that

(2m) _d/;g(r_l)exp( —i(t, x))¢"(t)k(Nt)h(a™'t) dt

= |det 4,1(27) [ s X8 A = 8))"(4,8)
n o

-exp(—i(s, A,8,))k(AA,s)h(a 'A,s) ds
= |det A, |J,(x, A, a).

Now given any subsequence, choose a further subsequence along which A (S,
— §,) converges weakly to some limit, say V. As mentioned earlier V,, — V along
this same subsequence. Hence along this subsequence for any x, € R?,

IJn(xn’ A, a) - fn(An(xn - 8n))|

=< (27)_d_£_13(r_1)exp(_i<s’ An(xn - 8n)>)
. [tp"(Ans)exp(—i(s, An8n>)k(AAns)h(a_l‘4ns) - ‘Pn(s)] dsl
tlemf exp(=i(s, 4, (7, = 0)¥a) |

RAA, 'B(rgH
By Lemma (2.2)(i) and (2.4), A, 'B(r;}) » R? as n — oo; thus by (3.8), (5.3),
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and dominated convergence
(5'20) |Jn(xn’}\’a) _fn(An(xn_ 8n))|_> 0.

The upper bound in (5.18) now follows immediately from (5.6), (5.19), and
(5.20) while the lower bound follows from (5.12), (5.19), and (5.20).

THEOREM 5.3. Assume that X is full, normalized, and (A) holds. Then for
all ¢ > 0 there exist regions R, = R (&) and positive constants ¢, = c,(¢) and c,,
¢, independent of ¢, such that for all A > 0

() P(S,€R,)>1—¢
(ii) hmsupn_,wsupxeD(}\d ki det A,))"'P{S, € C(x M) < ey
(iii) liminf, , inf, . 5 nD(}\"’ k|det A,|)"P{S, € C(x,\)} = ¢,

where D, is defined by (5.16) and k by (5.15).

ProOF. Given ¢ > 0, let R, = R,(¢) be the region described in (5.10); thus (i)
follows immediately from (5.11). With the bounds from Lemma 5.2 the proofs of
(ii) and (iii) are somewhat standard so we will only outline the arguments;
essentially the same arguments are given in Feller (1965), Stone (1965), and
Griffin (1983).

Given A > 0 choose a large enough that

24—k o

-‘n;d"*\cd-’*(o, A/2) 16 - 3°% B’

where C?~*%(0, \) is the cube of side length 2\ centered at the origin in R~ %,
Observe that if ¢ € (0, A) and y € C¢*(0, £) then

(5.21) ad_kH(ay) dy =

(5.22) C((%, —5),\ +¢) 2 C((%,%), M),
(5.23) C((%,x—%),A—¢) c C((%, x), ).
Thus by (5.17), (5.18), (5.21), and (5.22), for x € D, and n sufficiently large
2B|det A, | > (3>\)”“”[ P(S, e C((%,% — 5),3\/2) }a? *H(ay) dy
C4k0,7/2)
> (3\)*7?P{S, € C(x, A a? *H(ay) dy
@VIP(S, € C N} [, o atHH(ay) dy

> (1/2)(30)*“P{S, € C(x, M)},

which proves the upper bound with ¢, = 4 - 3¢=*8. For the lower bound, we have
by (5.17), (5.18), (5.21), (5.23), and the upper bound just derived, for x € D, NR,
and n sufficiently large

Yidet A, < Ne-d f P{S,e C((%,x - ¥),A/2)}a’ *H(ay) dy
2 C4 k0, 7\/2)
+Ne=de (A /2)? Hdet A, a’"*H(ay) dy

REE\CI*(0, \/2)
< M=4P(S, € C(x,\)} + (a/4)|det A4,,
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which proves the lower bound with ¢; = a/4.

REMARK. If there exist sequences {B,} and {y,} such that {B, (S, — v,)} is
stochastically compact, then by Theorem 4.5, (A) holds and so we can apply
Theorem 5.3. One might expect that in this case, |det A ,| could be replaced with
|det B,| in (ii) and (iii). This is indeed the case. A proof can be based on Lemma
4.3 or alternatively one can modify the proof of Theorem 5.3 ((6.4) would be
needed in this case).

As mentioned earlier if X is not normalized, then there exists an invertible
linear transformation U of R? such that the characteristic function of Y = UX
satisfies (5.15). Let T, = UX, + --- +UX, = US,. Again assume for convenience
that T, is strongly aperiodic. Observe that if (A) holds for X, by Theorem 4.1,
{A(S, — 8,)} is stochastically compact. Thus {B,(T, — v,)} is stochastically
compact where B, = A,U"! and vy, = U§,. Hence by the above remark, since
|det B,| = |det U~'| |det A,| we can prove

THEOREM 5.4. Assume that X is full and (A) holds. Then for all ¢ > 0 there
exist regions R, = R (&) and positive constants ¢, = ¢,(¢) and c,, ¢, indepen-
dent of &, such that for all A > 0

(i) P{(S,€R,}=1-¢
(i) limsup, _, ,sup, c H(A* *|det A,)"'P{S, € U~ 'C(x, )} < cy;
(i) liminf, , inf, ¢ p_ nD(A" k|det A,,|)"P{S, € U"'C(x, \)} = ¢,,

where R, = U"'R,, D, = U"'D;, and R’,, D, are defined by (5.10) and (5.16)
for Y.

REMARKS. As mentioned in the introduction, one would ideally like to
construct the regions R, knowing just the distribution of X, as was done in the
one-dimensional case in GJP. However, we have been unable to do this, although
in the special case where X is radially symmetric, we can show that R (&) may
be taken to be the region A,'C(0, M) where M is chosen sufficiently large
depending only on . In general we suspect that R (&) may be taken to be a cone
with vertex at some point v, € R, intersected with A 'C(y,, M) where M is
chosen large enough depending only on «.

Hall (1983) considered the behavior of the concentration function under (A) in
d = 1 dimension. In particular if we let

Q(S,, ) = sup P{|S, — x| <A},

x€R
then he showed that for any A > 0
0 < liminfa,Q(S,, A) < limsupa,Q(S,,\) < «,
n—oo

n—oo

where a, is defined by (1.3). The generalization of this result to R¢ is an
immediate consequence of Theorem 5.4.



MATRIX NORMALIZATION 243

In GJP Theorem 1 it was shown that in d = 1 dimension, (A) is equivalent to
several different probabilistic statements. It would be interesting to determine
whether the appropriate analogues hold in higher dimensions.

As one final remark we note that if there exist B, and v, such that { B,(S, —
v,)} is tight and the upper bound holds with |det B,| replacing |det A,| then (A)
holds. This is because these two conditions imply (C), which in turn implies (A)
by Theorem 4.5.

6. Generalized domains of attraction. Recall that X is in the GDOA of a
full operator stable law Y if there exist normalizing matrices B, and centering
terms v,, such that

(6.1) B,(S, -7, ~ Y.

As mentioned in the introduction Marjorie Hahn and Michael Klass have now
obtained a complete characterization of the GDOA of a full operator stable law.
It is interesting to note how little information we need to know about the
distribution of X in order to prove the local limit theorem.

Observe that by (6.1) and Theorem 4.5, (A) holds, and thus all of the results in
the previous sections, which were proved under assumption (A), are valid for X.

We will assume as before that X is normalized (see Section 5). The proof of
the local limit theorem is very similar to the proof of Theorem 5.3. We will state
separately the following two lemmas which enable us to apply dominated
convergence as before.

LEMMA 6.1. Let B be an invertible linear transformation of R® with polar
decomposition B = U D. If B*o = |B*c|0 where 0, 6 € S*”, then
(6.2) |B*s| [D710] = 1.

Proor. If B*s = |B*o|0, then
(6.3) |B*o| |B* 10| = 1.
Now since U is unitary and D is self-adjoint

|B*~19| = |U*_1D*_10|
= D4,

which proves (6.2).

LEMMA 6.2. There exist positive constants ¢, and c, such that if s €
(BX*)™'B(ry )\ B(c,) and n is sufficiently large,
(6.4) lg*(Bs)| < exp(—cylsi), -
where p is given by (2.5).

;PROOF. Since (A) holds, by Lemma 4.3 there exists a constant c such that for
all § € S9! and all n sufficiently large
(6.5) b,(0) < ca,(8) = clA; 0]
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Set ¢; = cc, where ¢, is given by (2.15). Fix s € (B*) 'B(r; )\ B(c,) and let 0,
o € S9! be such that s = |s|o and B*s = |B*s|f. Then by (3.6)

lp”(Bs)| =|9™(8,|Bys|)]

< exp(—c|B}slPa,(8)")
provided a,'(0) < |B¥*s| < ry'. The upper bound is immediate sin¢e B*s €
B(r; Y. By Lemma 6.1
|BYs| = Is| |BYo| = |s| 1D, 6| " = Is|/b,(6)
and by (6.5) and (2.15)

(6.6)

b,(0) < c|lA7'9| < ccya,(0).
Thus
(8.7) |Byslan(6) > crlisl,
which proves the lower bound for s & B(c;). Finally (6.4) follows from (6.6) and
6.7).

Let ¢y be the characteristic function of Y. Then by (6.4), for |s| > ¢,
(6.8) W (s)l < exp(—cyls/?).
Thus in particular Y has a C* density, call it g.
LEMMA 6.3. Set
I(x,\, a)= (27r)*"’j exp(—i(t, x))o"(£)k(At)h(a"t) dt.
R(m, a)

Then for eacha > 0, A > 0
(6.9) lim sup |I,(x, A, a)/|det B,| — g(B,(x — v,))| = 0.

n-o xeR?

Proor. First observe that by (2.7), (2.15), (4.3), and (4.6), for any ¢ € (0,1),
q"|det B,| "' = 0 as n > oo. Thus proceeding as in Lemma 5.2 we see that

exp(—i(t, x))9"(¢t)k(At)h(a't) dt| = o(|det B,|)

‘/;?(7', a\B(r; ")
uniformly in x € R Hence by a change of variable
|I.(x, A, a)/|det B,| ~ g(B,(x = v,))]|

<|@m)7[  exp(=i(s, B(x — 1,)))
(BH B

[¢"(Bts)exp(~i(s, B,.Yn>)k(?\B,’,"S)h(;1_lB,’t‘S) ~¥(s)] dsl

+@m) ™[ exp(~i(s, B,(x — ,)))¥(s) ds| + o(1).

RA\(B¥)~'B(rp 1)

By Lemma 2.2(i), (4.3), and (4.6), (B*) 'B(r; ') > R? as n — oo0; thus by (6.4),
(6.8), and dominated convergence (6.9) holds.
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THEOREM 6.4. Assume that X is normalized and B(S, — v,) = Y where Y
is a full operator stable law with density g. Then for each \ > 0

(6.10) P{S, € C(x,1)} = (21)“"|det B,|g(B,(x — v,)) + o(|det B,|)
uniformly in x € D,, i.e.,
lim sup IP{Sn € C(x,\))}
(6.11) " xeD,
—~(21)" "idet B,lg(B,(x - v,))|ldet B, " = 0.

Proor. Fix A > 0. Given ¢ > 0, choose a large enough that
f a® *H(ay)dy =1 —e.
Cé70, ¢)
Then using (5.22) and (6.9) and proceeding as in the proof of Theorem 5.3 we
obtain uniformly in x € D,
(2(A + £))*P(S, € C(x,\)}(1 — €) < g(B,(x — v,))|det B,| + o(/det B,)).
Since g is a bounded function, we can rewrite this as
P{(S, € C(x,)))
< (20)*"idet B,Jg(B,(x — 1,)) + 8,(¢)ldet B,| + o(det B,))

uniformly in x € D,, where §,(¢) is independent of x and n and |§,(¢)| = O,
e — 0. Using (6.12) together with (5.23) and (6.9) we obtain as before, uniformly
inx €D,

(6.12)

&(B,(x — v,))|det B,| + o(|det B,|)
< (22 = €))*?P(S, € C(x,\)} + (2(A — &))" %
-[(2A)* Hdet B,|B + 8,(¢)idet B,| + o(|det B,])],
where B is an upper bound for g. We can rewrite this as
P(S, e C(x,)))
G100 det BJa(B,(x — v,) + 8e)det Byl + oljdet B,)

uniformly in x € D,, where §,(¢) is independent of x and n and |§,(¢)| — O as
e — 0. (6.11) now follows from (6.12) and (6.13).
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