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ON THE WEINER-MASANI ALGORITHM FOR FINDING THE
GENERATING FUNCTION OF MULTIVARIATE
STOCHASTIC PROCESSES!

BY A. G. MIAMEE

Hampton University

It is shown that the algorithms for determining the generating function
and prediction error matrix of multivariate stationary stochastic processes
developed by Weiner and Masani (1957, 1958) and later by Masani (1960) will
work in some more general setting.

1. Introduction. In their papers [3] and [4] Wiener and Masani developed
some algorithms for determining the generating function, the prediction error
matrix and an autoregressive representation for the linear least-squares predictor
of a multivariate stationary stochastic process f,, —o0 < n < oo0. Their al-
gorithms were obtained under the requirement that the spectral distribution
matrix F of the process £, is absolutely continuous with density f and

(1) c<f(e?) <d,

where ¢ and d are two positive numbers. Later Masani [2] showed that their
algorithms for determining the generating function and the prediction error
matrix work under some weaker condition, namely,

2) f'cL, and pA€L,

where p and A are the largest and smallest eigenvalues of f, respectively, and
that the autoregressive series for the predictor converges under the condition

(3) fleL, and feL,,

which is stronger than (2) but still weaker than (1).

In the present paper we show that Wiener and Masani’s algorithms for finding
the generating function and the prediction error matrix can be adjusted to work
when the spectral density f can be factored as

f=P(e”)g(e”)P*(e”),

where g is a new spectral density satisfying Masani’s condition (2) mentioned
previously and P is a certain kind of polynomial (for precise conditions see our
assumption and theorem in Section 3).

2. Preliminaries. Let (2, #, P) be a probability space and H denote the
Hilbert space L%(Q, #, P) of all complex-valued random variables on £ with
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zero expectation and finite variance with the usual inner product ( , ) and
norm || ||.

Following [3] for ¢ > 1, H? denotes the Cartesian product of g copies of H,
i.e., the set of all column vectors f = (f%,..., f?)", with f* & H. For f and g in
HY their Gramian matrix (f,g) is defined to be the ¢ X g matrix [(f*, g7)]. It is
well known [3] that H? is a Hilbert space under the inner product ((f,g)) =
trace(f, g) and norm |if|| = (£, f)), provided their linear combinations are formed
with matrix coefficients. Two elements f and g in HY are said to be orthogonal
(denoted by £ L g) if (f,g) = 0, which is the same as saying f* L g, for all i, j.

Now we introduce a few concepts and state a theorem which is essential for
our study here. For the detail of these and other standard concepts of the
prediction theory of multivariate stochastic processes which are used but not
formally presented here see [2]-[4].

A bisequence {f,, —c0 <n < o0} C HY is said to be a g-variate stationary
stochastic process (SSP) if their Gramian (f,,, f,) depends only on m — n. It can
be shown that for such a process one has a spectral representation of the form

(4) (b t) = (1/27) [ *g-im-mIF(dg),

where F is a countably additive nonnegative matrix-valued measure called the
spectral distribution of f,. o

For the g-variate SSP f,, we define its time domain M(+o0) = SP{f,:
— 0 < k < ), its past M(n) = SP{f,: —o0 <k <n} and its remote past
M(— o) = N, M(n). The process is called nondeterministic or purely nonde-
terministic according as M(— o) # M(+ c0) or M(—o0) = 0. In case F is ab-
solutely continuous with respect to the Lebesgue measure, its spectral density is
given by f(8) = dF/d#. In this case the spectral domain of the process denoted
by L2(f) is defined by L2(f) = {®: @ is a g X ¢ matrix-valued function with
trace[®(6)£(9)®*(8) df < oo}. It is well known [3] that L?(f) is an inner product
space with inner product given by ((¢,V)) = trace(®, ¥), where (®,{) =
J®(6)£(6)¥*(8) db. Now if we consider the map I sending f,to e~ ‘", one can see
by (4) that (f,,£,) = (I(f,),I(f,,)). The well-known Kolmogorov isomorphism
theorem proves that this map I can be extended to an isometric isomorphism
between the time domain M(+ o) and the spectral domain L*(f). Isometric being
in the sense that (g, f) = (I(g), I(f)) and ((g, £)) = ((I(g), I(f))) for every g, { in the
time domain.

The innovation process g, of a multivariate SSP f, is defined by g, = f, —
(£,/M(n — 1)), where (f,|M(n — 1)) denotes the orthogonal projection of f, on
M(n — 1). It is easy to see that (g,,,&,) = 8,,.G, where G = (g,,8,) is called the
prediction error matrix. The process f, is nondeterministic iff G # 0 and it is
called nondeterministic of full rank if G is nonsingular, which is in turn
equivalent to the requirement log Af € L'. If the process f, is nondeterministic
of full rank, then one can see from the Wold decomposition theorem that we
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have the moving average representation

f,= Y Ch, ;, with } |C|% < oo.
Jj=0 Jj=0

Then the function ®(e®) = £%_C;e'” is the so-called generating function of

our process. From the inequality ©%_o|C;|% < oo, it is clear that each entry of ®
belongs to L%, a fact that we express by ® € L,. Furthermore, the negative
frequencies of ® are 0, hence ® € L*. Finally, one can easily see that f admits
the factorization f = ®@*,

We close this section by stating the following uniqueness theorem due to

Wiener and Masani which is needed in the next section.

UNIQUENESS THEOREM ([3], Theorem 8.12). If a matricial spectral density
function £ has a factor ® in LY* of the form

() = @(6)2*(0)
such that @' € L* and ®_,(0) > 0, then ® is unique.

3. Determination of the generating function and the prediction error
matrix. As we mentioned in the Introduction, Masani [2] found a series
representation for the generating function and hence the prediction error matrix
when the spectral density function f of the SSP satisfies condition (2). Thus, he
obtained an algorithm for finding the generating function and the prediction
error matrix. We start with a SSP f, whose spectral density f does not neces-
sarily satisfy condition (2) but can be factored as f = PgP*, where P is a special
kind of polynomial and g is a new spectral density which does satisfy (2). Thus,
one can use Masani’s technique to get the generating function and the predictor
error matrix corresponding to g. Then we will apply our theorem to get the
generating function and the predictor error matrix of the SSP corresponding to f.

To be more precise let us state our assumptions.

AssuMPTION. We assume that f, has an absolutely continuous spectral
distribution with density f such that

f(e”) = P(e”)g(e”)P*(e”),
where

(a) P is an optimal polynomial with P_(0) = I,

(b) g is a new density with g,g"! € L,, and

(¢) if A(e™) and p(e®) are the smallest and largest eigenvalues of g(e*), then
p/A € L,

Note that if f satisfies our assumption, then the conditions on g are exactly
those in (2), which was required by Masani in [2]. Hence, using the algorithm
developed there, one can compute the generating function ¥ and prediction error
matrix K of the process corresponding to g. Using the following theorem, one can
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find the generating function ® and the prediction error matrix G of our process
f

THEOREM. Let the q-variate SSP {, satisfy the previous assumption. Then:

(a) £, is purely nondeterministic of full rank.

(b) If ® and ¥ are the generating functions corresponding to the spectral
densities  and g, and G and K are their prediction error matrices; one has
® =PV¥and K=0G.

PrROOF. (a) From our assumption one can write
log Af = 21log|AP| + log Ag.

Since the spectral density g and its inverse g~ ' are in L, the corresponding SSP
is full rank minimal, and therefore nondeterministic of full rank [2, 2.8 and 2.5].
So, log Ag € L,. Also since AP is a nonzero polynomial log|AP| € L,. Hence
log Af € L,. Therefore f, has full rank and is purely nondeterministic of full
rank. .

(b) On one hand we have g = ¥¥* and on the other hand we can factor g as
(5) g =P UYP* ! =P 190*P* ! = (P7'®)(P'®)*.
In order to show that ® = P¥, or equivalently P~ !® = ¥, we appeal to the
uniqueness theorem presented in Section 2. To do this, we first show that

\I,,\I,—I’P—IQ,(P—lq))-l c Lg+'

Since by our assumption g~',g € L, and ¥ is the generating function of g, we
know that [cf. Lemma 2.1(c) in [2]] functions ¥, ¥~! are in L}*. Now let
P(e?) =1+ E.e? + --- +E,e*’. From our assumption P*f~! belongs to L(f)
so that it has an isomorph x in M(+ o). By the Kolomogorov isomorphism we
have

(6) (x,x) = (1/297)f%P*(ei")f—l(eio)P(eio) dé
0
and
(x.1,) = (1/27) [P (e®)t"Y(e?)t(e?)e™™ df
0
= (1/2W)f2"P*(ei0)ein0 de.
0
Since we have P(e?) = I + E e + E,e?? + --- +Ee™*’, we get

Ex, ifn=1,...,k,
(7) (x.£,) = {1, ifn=0,
0, otherwise.
By (a) our process f,, is of full rank so that the normalized innovationh, = G™'g,,

is well defined. By (7), M(—1) L x. But for a purely nondeterministic SSP f,
which is of full rank, M(n) = SP{h,: k < n}, for every n, which implies that



1858 A. G. MIAMEE

x € SP{h,: —o0 <k < o} and x L SP{h,: k< —1)}. Since the innovation
process h, is orthogonal, we get '

(8) x=LAh, Y|AlL<cw.
j=0 j=0
By the moving average representation of Section 2 we have
(9) f,.= Y Ch, .
j=0

(8) and (9) imply (x,f,) = L}_oA;C,;-;, for each nonnegative integer n. Hence,
by (7) we get

n EX, ifn=1,...,k,
j=0 , otherwise.

Now taking D; to be the jth Taylor coefficient of ®7'(2)P(2) and noting that
Q(e‘”)@“l(eio)(l + Ee? + ... +E ')

=1+ Ee’+ Epe® + ... +E e,

we get
n E, ifn=1,...,k,
(11) 2 C,.D=(1 ifn=0,
j=0 0, otherwise.

By taking adjoint from (11) and comparing the result with (10), we get
n n
Yy ACr = Yy D*Cr forall n > 0.

j=0 j=0 7
Now noting that C; = G is invertible, a simple inductive argument shows that

» = DX for all n > 0. This shows that (P~'®)"! € L3*.

Since P is a polynomial each entry of P! is the quotient of a polynomial to
A(P). Now since ® € L3* each of its entries belongs to L3*. Thus, each entry
(P~'®),; of P~'® has the form
(12) Yij(ew)/A(P(ew)), with Yij € Ly*.

Furthermore, since g belongs to L, from (5) we conclude P~'® € L,, which
implies

(13) v:;(e?)/A(P(e?)) € Ly, i,j=1,...,q.

Since by our assumption P is optimal, one can see that A(P(e%)) is optimal.
Using (12) and (13), one can conclude that (cf. [1], page 75)

(P=(e”)®(e?)),; = v,;(e*)/A(P(e*)) € L3,
which means P~!® is also in L)".
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Now we check the other requirements of the uniqueness theorem: Note that
P~1®),(0) =®.(0) =G > 0. Now ¥_,(0) > 0 follows from [3], 7.5. Thus, the
uniqueness theorem can now be applied to conclude ¥ = P~ '® or ® = PV¥.
The last part, namely K = G, is easy. In fact, VG = ®_,(0) = (P¥),(0) =
¥,0)=VK.O ‘

REMARK. In conjunction with this work and [2]-[4] there is one more
question to be settled, and that is to get an algorithm for finding the best linear
predictor.
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