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A NONUNIFORM BOUND ON THE RATE OF CONVERGENCE
IN THE MARTINGALE CENTRAL LIMIT THEOREM

BY EricH HAEUSLER AND KONRAD JOOS

University of Munich

The main result of the present paper is a sharp nonuniform bound on the
rate of convergence to normality in the central limit theorem for martingales
having finite moments of order 2 + 28 for some 0 < § < c0. A nonuniform
bound on the rate for convergence to mixtures of normal distributions is
obtained as a consequence.

1. Introduction and results. Uniform bounds on the rate of convergence in
martingale central limit theorems have been obtained by many authors, but
nonuniform bounds seem to be available only through the work of Hall and
Heyde (1980, 1981) and Bose (1986a, 1986b). The results of Hall and Heyde
provide rates under basic conditions of the martingale central limit theorem, as
the conditional form of Lindeberg’s or Liapounov’s condition," for instance,
presupposing only that the convergence in probability normally appearing in
these conditions is strengthened to convergence in an L,norm. Bose works
under more stringent assumptions about the conditional moments of the un-
derlying martingale difference array, but he establishes also moderate deviation
results, which are of added interest. In the present paper the general setup as
studied by Hall and Heyde (1980) in their Theorem 3.9 is considered, and we will
concentrate on optimal nonuniform bounds without examining the problem of
moderate deviations.

Throughout this paper let the real-valued random variables Xj,..., X, form a
square integrable martingale difference sequence (mds for short) w.r.t. the
o-fields #, Cc #, C .-+ C 4, ie, suppose that X, is measurable w.r.t. %, with
E(X?) < o0 and E(X,|%,_,)=0as.fori=1,...,n.Set S, = X" ,X;, and for
0 <8 < oo set

n
L, o= L E(IX**)
i=1

and

n

Y E(XA#i,) -1

=1

I%L28==1;

1+6)

Then one has the following uniform bound on the distance between the distribu-
tion function of S, and the distribution function ® of the standard normal
distribution. For each 0 < § < oo there exists a finite constant C; depending only
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1700 E. HAEUSLER AND K. JOOS

on § such that for each mds X,,..., X,,,
(11) D, = sup|P(S, <x) — ®(x)| < Cy(Ly 25 + Ny 20) 7™

x€R

Of course, this inequality is nontrivial only if L, ,, and N, ,, are finite, and it
provides a rate of weak convergence of S, to normality if L, 55 + N, 55 — 0 as
n — oo. Inequality (1.1) has been shown for 0 < § < 1 by Heyde and Brown
(1970) by an application of the martingale version of the Skorohod embedding
scheme and for 0 < § < 1/2 by Erickson, Quine and Weber (1979) who used the
classical characteristic function technique. In Haeusler (1988) a version of
Bolthausen’s (1982) iterative method is developed to establish (1.1) for every
8 > 0, and an example is constructed demonstrating that it is asymptotically
exact for every § > 0 if L, 55 + N, 55 > 0 as n - co. The main result of the
present paper is the following nonuniform version of (1.1).

THEOREM 1. For any 8 > O there exists a finite constant C; depending only
on 8 such that for each mds X, ..., X, whenever L, 55 + N, 55 <1,

(12) |P(S, < x) — 8(x)| < Cs(1 + [2272) Ly ps + N, 25)7*",

forallx € R.

Since (1.1) is asymptotically exact w.r.t. L, 55 + N, 55, the same holds true for
(1.2). From the theory of nonuniform rates of convergence in the case of
independent X,,..., X, it is well known that the (1 + |x|2*2%)~1-factor is sharp
for large |x| if X|,..., X,, have finite moments of order 2 + 2§; see, e.g., Remark
1 in Michel (1976).

Theorem 1 improves the x-factor inequality (3.75) of Theorem 3.9 of Hall and
Heyde (1980), whereas in terms of L, ,5 + N, 55 the two bounds are the same.
Observe, however, that Hall and Heyde assume 0 < § < 1, whereas (1.2) is valid
for all 0 <8 < oo. Hall and Heyde (1980) replace L, 55 + N, 55 in inequality
(8.75) of their Theorem 3.9 by L, 55 + M, ,; with M, ,5 = E(IX,:;IX2 11**%)
in order to obtain their estimate (3.76). For 0<é6<1 such a replacement is also
possible in (1.2) as a consequence of Burkholder’s square function inequality, cf.
(3.87) in Hall and Heyde (1980), but for § > 1 this argument does no longer work,
and it is presently unclear whether this replacement is possible in (1.2) for § > 1,
too. For the same reason Theorem 1 only improves the x-factor and for 6 > 1
also the L, -term in inequality (3.91) of Theorem 3.10 in Hall and Heyde (1980),
but not inequality (3.92) of the same theorem. The bound in (1.2) contains the
same optimal x-factor as the bound in Theorem 3 of Bose (1986b) for all
0 <8< 0. For 0 <8 <1/2 Theoram 1 also gives Bose’s n-factor under his
conditions, and for 8§ > 1/2 it yields a better one (notice that Bose writes &
where we use 24).

The proof of Theorem 1 will be given in Section 3, after some technical
lemmas have been established in Section 2. Our method of proof is the “nonuni-
form” modification of the proof of (1.1) given in Haeusler (1988) and is therefore
entirely different from the techniques of Hall and Heyde (1980, 1981), who
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employ the martingale version of the Skorohod embedding scheme, and of Bose
(1986a, 1986b), who uses a conditional version of the classical exponential
centering after truncation approach.

A nonuniform bound like (1.2) immediately entails bounds on the rate of
convergence of moments and L -norms in the central limit theorem, whereas
such results do not follow from uniform bounds like (1.1). For general informa-
tion on the convergence of moments in the martingale central limit theorem the
reader is referred to Hall (1978), and for results on rates in L ,-norms to Nakata
(1976).

In Haeusler (1988) it was shown that a discretization procedure can be used to
derive from (1.1) the corresponding uniform bound on the rate of convergence in
the central limit theorem for locally square integrable martingales with continu-
ous time. From the formulation and proof of Theorem 2 of that paper it is clear
how by the same argument the nonuniform estimate (1.2) carries over to the
continuous time case so that the details can be skipped here. Instead, we want to
show how one can obtain from Theorem 1 a nonuniform bound for the rate of
weak convergence of discrete time martingales to mixtures of normal distribu-
tions. For this, we have to introduce some notation. Let 7 be a random variable

with 0 < 5 < o0, and for m = 0,1,..., n set
m 1+5 "
Qu2s(m) = E|| ¥ X? ) + X E(xp)
i=1 i=m+1
n 1+8
+E|| ¥ E(XA9,.,) | |+ E(n? - n3|@*202)
i=m+1
and

@n2a(m) = E(Vi™) + L, 55+ E(V2 = v*) + E(jn? — n2|+2972),

where ¥, = o(X,,..., X), with &, being the trivial o-field, 72, = E(7?%¥,,) and
V2 =X!_|E(X29,_,) for l = m, n. Then we have

THEOREM 2. Let 0 <8 < oo be fixed, and assume that E(n**?%) < o0 and
E(n~%72%) < 0. There exists a finite constant Cy depending only on 8 such that
for each mds X,,...,X,, all x€ R and m=0,1,...,n — 1, whenever
Q,,25(m) < 1,

13 |P(S, < x) - E(®(n %))

< CCy(n)(1 + [x2+2)7'Q,, 55(m) /42D,

where
Cs("?) = (E(.n3+28) + E(n—a—zs))(2+28)/(3+28) > 9(2+28)/(3+28)

The result is also true if Q, ,,(m) is replaced by Q,, ,5(m).
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The proof of Theorem 2 will be given in Section 4. The result is similar to a
part of Theorem 1 of Hall and Heyde (1981), but not directly comparable, since
their L,,-terms and our @, ,5(m)-terms are different. Observe that the com-
plicated structure of these terms is due to the fact that weak convergence of
martingales to mixtures of normal distributions requires either a measurability
assumption on 7 or nested o-fields for the underlying triangular array. Neverthe-
less, the bound (1.3) provides a proper rate of convergence, since under the
corresponding conditions for weak convergence of martingales to mixtures of
normal distributions one has @, ,5(m) — 0 and @, ,,(m) = 0 as n — oo for an
appropriate choice of m = m(n); cf. Hall and Heyde’s (1981) discussion concern-
ing their L, -terms.

2. Notation and technical lemmas. Throughout Sections 2-4, the follow-
ing conventions will be used to simplify the notation. The symbol C always

denotes a generic finite absolute constant, whereas C;, C,, C; ,, and C, x are

always generic finite constants depending only on their indices. ¢ denotes the
standard normal density. Equations, inequalities, etc., between random variables
are always assumed to hold almost surely without explicit mention, especially
when conditional expectations are involved.

For a random variable X and 0 < x < oo we set

D(X) = sup{|P(X <y) - ®(y)|: y € R}
and
d(X,x) =sup{|P(X < y) — ®(¥)|: y = x}.

LEMMA 1. For any p > 0 there exists a ﬁriite constant C, such that for all
x > 0 and random variables X and Y with E(|X — Y|P) <1,

|P(X < x) — P(Y <x)| < C,x PE(X — YPP)“"P 4+ 2d(X, x/2).

ProoF. For x > 0and 0 < a < x/2 we have
P(X<x)-P(Y<x)<P(X<x)-P(X<x-a)+P(X-Y >a)
<®(x)+d(X,x) — ®(x—a)
+d(X,x—a)+P(|X-Y| >a)
<¢(x—a)a+2d(X,x/2) + a PE(|X - YI?)
and a similar bound for P(Y < x) — P(X < x) so that
|P(X <x) — P(Y < x)| < exp(—x%/8)a + 2d(X, x/2) + a PE(| X — Y?).

For a = xE(|X — Y|P)/*P)/2 we have a < x/2 by assumption, and we may
assume a > 0 since otherwise there is nothing to prove. Substituting a into the
preceding inequality completes the proof of the lemma. O
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The first part of the next lemma is a small extension of a part of Lemma 1 of
Bolthausen (1982), and the second part is the corresponding “nonuniform”
statement.

LEMMA 2. (i) For every p > 1 there exists a finite constant C, such that for
all random variables X and Y,

D(X) < G(D(X + Y) +| E(YPIX)[[").

(i) For everyp > 1 and 0 < K < oo there exists a finite constant C, y such
that for all x > 0 and random variables X and Y with |[E(|Y?| X)), < K,

d(X,x) <d(X+Y,x/2)

(2.1) +Cp,Kx—p("E(|YIP|X)"Zp +|E(YPIX)|,, + D(X))
and

d(X +Y,x) < d(X,x/2)
(2.2)

+C,, xx ?(| EQYPIX) IS + | E(Y1P1X)],, + D(X)).

Proor. We may assume 0 < y = || E(]Y|?|X)||,, < o0, since otherwise there
is nothing to prove. By Bolthausen’s (1982) arguments in the proof of his
inequalities (2.1) and (2.2) with (¢ — X)~2 replaced by (¢ — X) ? one obtains for
every t € R and a > 0,

P(X+Y<t)2P(X<t-a)

23) v (@)t - u)? du - 2yD(X)a~?
and

P(X+Y<t)<P(X<t+a)
(2.4)

+yf:a<p(u)(u —t) P du + 2yD(X)a"".

Observing that the integrals in (2.3) and (2.4) are less than or equal to
a P*!/(p — 1) and following Bolthausen’s (1982) reasoning again, one gets for
all a > 0,

D(X)<D(X+Y)+a+ya?"'/(p—1)+2yD(X)a">.
Taking a = (4y)'/? yields the inequality in part (i) of the lemma. For the proof
of part (ii) we replace ¢ by ¢ + a in (2.3) and for ¢, a > 0 use the estimate
ft e(u)(t+a—-u)"duc< exp(—t2/8)ft (t+a—-u)"du

t/2

- 00

+2Pt7P ft/zq)(u) du

— 00

< exp(—t?/8)aP*'/(p — 1) + 2P¢t7P
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to deduce
P(X<t)-0(t)<P(X+Y<t+a)-0(2)
+yexp(~t?/8)a™*1/(p - 1)
+2Pyt™P + 2yD(X)a P
<d(X+Y,t+a)+exp(—t*/2)a

+yexp(—t?/8)a™?*1/(p — 1)
+2Pyt™? 4+ 2yD(X)a"P.

Replacing ¢ by ¢ — a in (2.4) and using the estimate

ftwtp(u)(u —t+a)Pdu< exp(—t2/2)ft°°(u —t+a)Pdu

= exp(—t?/2)a™?*!/(p - 1),
we obtain for £ > 0and 0 < a < /2,
O(t) - P(X<t)<®(t-a)-P(X+Y<t—a)+o(t—a)a
+yexp(—t?/2)a™*'/(p — 1) + 2yD(X)a"?
<d(X +Y,t/2) + aexp(—t*/8)
+yexp(—¢?/2)a™"*!/(p — 1)
+2yD(X)a"P.
Thus for ¢ > 0 and 0 < a < t/2 we have
|P(X <t)— ®(t)| <d(X + Y,t/2) + exp(—t%/8)a + 2Pyt P
+yexp(—t%/8)a?*'/(p — 1) + 2yD(X)a">.
Taking a = y/Pt/(2K'/?), we have 0 < a < t/2 by assumption and get
|P(X <t) - @(t)| <d(X+Y,t/2) + C, (t P(v/? + y + D(X))
<d(X+Y,x/2) + C, xx?(vV/? + v + D(X)),

for all ¢ > x > 0 since the right side is nonincreasing in ¢. This completes the
proof of (2.1). Inequality (2.2) is proven by a similar argument. O

LEMMA 3. For every p > 1 there exists a finite constant C, such that for all
x>2 and 0 < a <1 and all random variables X,

E(min(1, |(x - X)/a| ")) < G,(d(X, x/2) + x7(D(X) + a)).
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PROOF. On accountof x >2and0<a <1,
E(min(1,](x - X)/a| "))
< E(|(x - X)/a| "I(x - X|/a 2 x/2)) + P(|(x — X)/a| < x/2)

SpfooP(|x —X| <au)uP 'du+ O(x + ax/2)
(2.5) x/2
—®(x — ax/2) + 2d(X, x/2)

<p[ (®(x+au) - ®(x - au))u> " du + 2P D(X)xP
x/2
+C,xPa + 2d( X, x/2).

Using the definition of ® and Fubini’s theorem, we can rewrite the integral as

Pfx—“x/zfoo uP ldug(v)do+ Pfx+ax/2fwu_p_l dup(0) do

- (x—v)/a x—ax/2 Yx/2
+pf0o foo u P ldug(v)d
x+ax/2Y (v—x)/a
=1+ II+ III.
Then we have
ax /2

L= [7 (= o)) a(o)do+ [ ((x = 0)/2) To(v) do
< (2a)"x7P fijo(v) dv + a”exp(—x2/8)f;;ax/2(x —v) Pdv

< 2PaPx™P 4+ 2P lqPx P*lexp(—x2/8)/(p — 1),

IT = 2Px~7 fx+ax/2<p(u) du < 2Px P+ laexp(—x2/8),
x—ax/2
III = foo (v —x)/a) Pp(v) dv < 2P lax~P*'exp(—22/2)/(p — 1).
x+ax/2

Thus we can bound all the summands on the right side of (2.5) by the right side
of the inequality stated in the lemma. O

3. Proof of Theorem 1. Throughout the proof we shall be using the same
notation as in the proof of Theorem 1 in Haeusler (1988). We shall have to
extend the given sequence #,C # C --- C%, to an infinite sequence %,
i > 0, of o-fields. For i > 1 and a square integrable random variable X we shall
use the abbreviation ¢%(X) = E(X?|%,_)).

First, we shall prove the assertion under the additional assumption that

n

(3.1) Y oi(X) =1

i=1
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holds. For any 0 < 8 < 1 we defineamds Y,,..., Y, by
Y, = XI( X, < p%/2) - E(XI( X < B/2/2)|#,_,)
and set S; = X7_,Y,. Then

E(S, - S;?) < ¥ E(X2(X, > B?/2)) < 4B°L,, 45,
i=1

so that by Lemma 1 for all x > 0 provided that 4%87°L, 5, < 1,
|P(S, <x) — ®(x)| <|P(S, < x) — P(S, < x)|
(3.2) +|P(S, < x) — ®(x)]
< Cy(x™2B79LY3, + d(S;, x/2)).
Let Y,,,,Y,,,,... be independent random variables with P(Y, = gY/2) =
1/2 = P(Y; = —B'/?) for all i, which are independent of .%,. For i > n + 1 set

Fi=0(%,Y,41,---,Y). Then Y, i > 1, is a mds w.r.t. %, i > 0. Observe that
the random variable :

1
T= max{l >1: Y oX(Y) < 1}

i=1

is a stopping time w.r.t. %;, i > 0, for which we have n < 7 < n + [y], where [-]
denotes the integer part and y = 87! for notational convenience. For i =
1,...,k=n+[y] +1weset

. 1/2
Z,=YI(i<7)+ ((1 -X 0,2(15.))/;3) YI(i=1+1)

j=1

and obtain a mds w.r.t. %, C %, C .-+ C %,. Writing from now on

k
0i2 = 0i2(Zi)’ fOl'i= 1,..., k, and S];,= EZi’
i=1

we have

k
(3.3) E o'i2 = 1,

i=1

(3.4) 1Z, < B2, i=1,...,k,
and, on account of Z, = Y, for i = 1,..., n,

3
(3.5) E(S; - S¢1?) = X E(2?) <2-487L,,.

i=n+1

Thus by Lemma 1 for all x > 0 provided that 2 - 487°L, ,, < 1,
|P(S; < x) — ®(x)| < (2B %2LY3, + d(SY, x/2)).



NONUNIFORM BOUND IN MARTINGALE CLT 1707

Since the right side is nonincreasing in x, this inequality implies
(36) d(S;, %) < C(x~B~°LY3, + d(Sy', x/2)).

Combining (3.2) and (3.6), we obtain for all x > 0 provided that 2 - 487°L, ,5 <
1,

(3.7) |P(S, < x) — ®(x)| < Cy(x~B~%3LY/35 + d(SY, x/4)).

Let N,,..., N, be standard normal random variables and let ¢ be a normal
random variable with mean 0 and variance 38 such that %,, N,,..., N, and ¢
are independent. Then Ny’ = X*_,o;N; is a standard normal random variable
because of (3.3). Fix any p > 1. Independence of 4= o(%,, N,,..., N;) and ¢
implies E(|£[P|9) = (38)P/?E(|N,|") so that ~

(3.8) IE(&P19)],, = C,B”* < C,B* < C, < oo,

where the inequalities hold since 0 < 8 < 1. On account of (3.8) we obtain from
inequality (2.1) in Lemma 2 for all x > 0, .

d(Sy,x/4) < d(Sy' + £,x/8) + C,x (B2 + BP/2 + D(Sy’))
(3.9) <sup{|P(Sy +£<t) - P(Ny +£<t)|: t>x/8)
+d(Ny’ + £, x/8) + C,x~P(BY2 + D(SY)).
From (3.4) and the inequality in (3.5) we infer

k n k
Y E(Z)**) < G X E(X)*) + B° ¥ E(Z2) < GyL, 5,

i=1 i=1 i=n+1
hence by Theorem 1 in Haeusler (1988), taking (3.3) into account,
(3.10) D(Sy) < CsL}{’ Gr2o,

From (3.8) and inequality (2.2) in Lemma 2 we conclude for all x > 0,
d(Ny + &,x/8) < d(N{’, x/16) + C,x (B2 + BP/2 + D(Ny))

3.11

(311) < Cx"BBY?,

since d(N}’,x/16) =0 = D(N}’) in view of the fact that Ny’ is standard
normal.

To derive a bound for the supremum on the right side of (3.9), we shall show
for all x > 2 that

|P(Sy + £ <x) — P(Ny + £ <x)|
(3'12) < Cs pL}L/%”s){d(S,;', x/4)(1+28)/(2+28)B—1/2 + x—P(1+28)/(2+28)

X (Lﬁ},;,%'s)/«“”)@*”»/?'1/2 + B—l/(4+48))}_



1708 E. HAEUSLER AND K. JOOS

For the proof of (3.12) we fix x > 2 and set U,, = X'Z,, A, =Xk . 6%+ 38
and T,, = A,,'(x — U,). Since null sets do not affect distributional properties, we
may and do assume w.lo.g. that %, contains all P-null sets. Then A%, is
%,,_,-measurable because of (3.3), and together with the mds property of
Z,,...,Z, this fact enables one to obtain the crucial estimate

|P(Sy" + £ <x) — P(Ny + ¢ < x)|

k
(3.13) <t LE (19"(Tn = 0uA212) N312,012)
k
+1 ¥ E(|0"(T, - 6,0700,N,) N S5B2IN,[2) =41 + 411,
m=1

where 0 < 6,,, 4 < 1; cf. the arguments leading from (4.2)-(4.4) in Bolthausen
(1982).

To apply Bolthausen’s (1982) method for deriving bounds on I and II, we
introduce stopping times 0 = 7, < 7 < -+ < 7. < 7,74, = k defined by

l
7:]=1nf{l21 Eoi22]B}’ j=1""’[7]'
i=1

Then for j=1,...,[y]+ 1and m =1,..., k on the event {1 <m<m),

(3.14) X,<1-(j-1)B+38=2),
and
(3.15) R,>1-(j+1)B+38=A>8>0.

Setting R,, = Z;’;‘,j‘_IHZi and A4, = {|R,| < |x — U, _,+11/2}, we use the stop-
ping times 7, (3.15) and ||¢"||,, < 1 to write

[y]+1 Wi

I= Y E[ ¥ |¢(T,-6,r.2,)N\22Z,0°
Jj=1 m=17_,;+1
[y]l+1 ]

< X NREl X 9T, - 6.0.%,)]1Z,°1(4,,)
Jj=1 m=17_;+1

(3.16)
+E| Y 1Z,I(Ag)
m=‘rj_1+1

[y]+1

Y AL+ 1)

J=1
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The following estimate is crucial for producing a bound on I,;+1;, For
each j=1,...,[y] + 1 and all x > 2 we have

Emin{1, [\7(x - U,.)| "))

< Cs,p(d(S,;', x/4) + x_p(Lh/,(zss”s) + 7\,-)).

(3.17)

For the proof of (3.17) notice from (3.14) that A% < 1 + 38 < 4, hence
B{min(1, (= - U, )| 7))

< 2"E(min(1,|(7\j/2)_l(x - U, .1 _p)),
which for all x > 2 by Lemma 3 is less than or equal to
Cp(d(U,_lH,x/2) +x77(D(U, .,) +7\,./2)).
Let #(7;_,) denote the o-field of all events known at time 7;_,. Applying the

condltlonal form of a convex function inequality for martmgales cf., e.g., Theo-
rem 2.11 in Hall and Heyde (1980), we obtain

4

E Z; |~9z-(”'j—1))

max Y

joa<isklior 41

b p/2
<CE ( )y °i2) + max |Zi|p|-9‘~("'j—1) ,

P 1<
t=7_,+1 Tt

which by (3.3), (3.4) and the definition of 7;_, is less than or equal to
C((1 = (- 1)B)™* + BP?) < CA2.
Thus

P

(3.18) i| U, 41

[>2]

Consequently, we conclude from Lemma 2(i) and (3.10)
D(U, .,) < D(S{) + CA,; < Gy (LG +1))
and from this result and (2.1) in Lemma 2(ii) for all x > 0 (observe that A i< 2)
d(U, .1, %/2) < d(S, x/4) + Gy ,xP(X; + LYE),

This completes the proof of (3.17).
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Now we consider I ; , for fixed j. Let the function y: R — [0, oo) be defined by
Y(x) = sup{|¢”(y)|: |y| > (|x|/2) — 1}. Then we have as in the proof of Theo-
rem 1 in Haeusler (1988) (notice that y*29/0+29) < y since ||¢”||,, < 1)

Ij’l = C'SBE(‘P(XJTI("C - Ufj-1+1)))(1+28)/(2+28)

1/(2+28)
XE( max |Zm|2+28) .

T-1<M=T;

Obviously, y(x) < C,min(l, |x| 7?) for all x € R so that by (3.17)

B — \\(1+28)/(2+25)
I, < G ,B(d(Sf, x/4) + x7P(LYE + 1))

(3.19) 1/(2+28)
XE( max |Zm|2+28) .
-1 <M<

For I, , we have as in the proof of Theorem 1 in Haeusler (1988)

. 1/(2+28)
(1+28)/2+28) 5
1,2 < CBP(B)) E| Y |Z,)**? ,
m=17_;+1
where
B;={ max E Z,|>|x - 1+1|/4
Ti1<i=T| e Ti_1+1
Therefore

l D

Y z,

m=1;_,+1

1,(|;1c - U,j_1+1 |/4)_p max

T <l<7;

P(B) < E{min

I

l
E Z |U‘rj_1+l

m=1;_,+1

max

<C E{mln 1, Ix 1+1| e
1

-

)

which in view of (3.18) and (3.17) is less than or equal to
- -p
CPE(min(l, l)\;l(x - U,HH)’ ))
< G, (d(Sy', x/4) + x7P(LYG ™ + 1))

Consequently, we have

B — \\(1+28)/(2+28)
15 < Gy ,B(d(Sy, x/4) + x P(LYG™ + A i)

)1/(2+28)

7

E |Z |2+28

m=7;_;+1

Substituting (3.19) and (3.20) into the right side of (3.16) and employing the

(3.20)
XE
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reasoning leading from (2.26) to (2.27) in Haeusler (1988), we obtain
[y]1+1

_ _ - (1+28)/(2+28)
1<G B ¥ A¥d(Sy,x/4) + x7P(LYS™ + 1)}
J=1
7 1/(2+28)
XE Z IZm|2+28
m=7,_,+1

1+28)/(2+28) p— _
< Cs,,,BLL/,%*”’{d(Sé',x/4)( )/( )B 3/2 4 o —P(1+28)/(2+28)
x (Lg,;§8)/((2+26)(3+28))ﬁ—3/2 + B(—5—48)/(4+48)) } ,

and this bound equals the terms on the right side of (3.12). Therefore, on account
of (3.13), the proof of (3.12) will be complete if we establish the same bound for
II. This can be done exactly as in Haeusler (1988) by the same reduction to the
already solved problem of bounding I, and I ,. One only has to note that for
the function h(x) = E(|N,|’I(8|Ny| > |x|)), x € R, used to bound the term II; ;
in Haeusler (1988) one has .

h(x)(2+28)/(1+28) < Cs,pmin(l’ |x|—p)’

for all x € R so that (3.17) can be applied to produce the appropriate bound for
I1; ; also in the present situation of nonuniform estimates. We omit the details of
these straightforward modifications of Haeusler (1988) here, which complete the
proof of (3.12).

Since the right side of (3.12) is nonincreasing in x we conclude from (3.9)—(3.12)
that for all x > 16,

(S, x/4) < G { LYGd(Sy, x/32)" T2/ 20p172
(3.21) +x—p(1+28)/(2+28)(Li{%+26)ﬁ—1/2 + LL/,(228+28)B—1/(4+48))
+x P2 + x~PLY! (238"28)} .
Arguments similar to those that established (3.7) can be used to prove
d(Sy, x) < Cs(x72B~*PLY3s + d(S,, x/4)),

for all x > 0 provided that 2 - 4%87°L, ,, < 1. Applying this inequality to the
right side of (3.21) and substituting the resulting bound for d(S;’, x/4) into (3.7),
we obtain for all x > 16 provided that 2 - 487°L, ,; < 1,

|P(S, < x) — ®(x)]
=< Cs» P{d(sm x/128)(1+28)/(2+28)L};/,(223+28)B_1/2
-2p— (1+28)/(2+28) B
(3.22) + ( x 2B 8/3L}'/’:;8) L};/,(228+28)/3 1/2

_ 8p — _
+x p(1+26)/(2+26)(Li{%+2 B 1/2+L}z/,(228+28)ﬁ 1/(4+48))

+x7PBY/% 4+ x LY + 2B LL
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Now we consider an x > x; = max(16, (2 - 4%)1/69) and assume that 0 < 8 =

x8LY/§3"* < 1. Then we have 2 - 4%87°L, ,5 <1 (recall 0 < L, ,; <1 by as-

sumptlon) so that we can substitute B8 into the right side of (3. 22) Choosing at
the same time a large enough, but fixed p = p; > 1, this gives

|P(S, < x) — ®(x)|

(3.23)
< Cs(d(S,,,x/128)(1+2s)/(2+28)x_3Li,/,(2(§+28)(3+28» + x'2'2sL},{(238+26)).

Next we consider the second case 1 < x°L%/3*29, Setting
X! = XI(X| <1) - E(XI(X| <1)%_,) and X=X, - X/,

fori=1,..., n, we have

T (X/ +X/)
i=1

|P(S,,5x)—<I>(x)|sP( >x) +1— ®(x)

(3.24) i X/

i=1

Z X//

i=1

<7

>x/2) + P

> x/2)

+x texp(—x%/2).
Applying the convex function inequality in Theorem 2.11 of Hall and Heyde
(1980) to the mds X/,..., X/, we get

4+

3 02(X7)

i=1

P( 3 x;
i=1

so that on account of |X/| < 2, 6}(X/) < 02(X;) and assumption (3.1)

(3.25) p( Y X/

1<i<n

> x/2) < Csx‘s‘”{E + E( max |X/ |8+25)},

i=1

> x/2) < Cox 872 < Cux 2T BLY/GH),

where the last inequality follows from 1 < x®L%/{3*29. Moreover, by an applica-
tion of Theorem 2.11 in Hall and Heyde (1980) to the mds X/, ..., X,

A

Observe that ¢?(X;") < E(X2I(|X,| > 1)|%;_,) < 6%(X;) so that £ ,63(X/’) <
1 by assumption (3.1). Hence

n
P( Z Xi”

i=1
(3.26)

n 1+8

Z Xi"

n

E °i2( X!")

i=1

> x/2) < Csx_2'28{E + E( max |X,~”|2+28)} .
1<i<n

n

. x/2) < Csx‘2‘28{E( > of(x,.")) ¥ iéE(IXi”i“”)}

i=1

n
< Csx_2_28{ L E(X(X) > 1)) + Ln,28}

—2—-28 —2—-2871/(3+28
< Cyx L, o5 < Csx L/ G529,
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From 1 < x®L%/§3*29 it follows that
x " lexp(—x2/2) < x%exp(—x2/2)LY/§2 < Cox =2~ 2BLY/ G2,
and combining this result with (3.24)-(3.26), we arrive at
|P(S, < x) — ®(x)| < Cyx 27 2LY/GHD,

Thus we see that inequality (3.23) is true for all x > x;. The right side of (3.23) is
nonincreasing in x so that (3.23) implies for x > x;,

(3.27) d(S,,x) < Cs{d(s,,, x,/128) 1+ 2D/@+20) L 57 1/@+28)3+28)
3.27 ,

+x—2—28L}L/’(238+28)} .
If d(S,, x/128) < x~272LY/§+?%), then utilizing this inequality in (3.27) yields

d(S,, x) < Cox 2" BLYG+2_ If d(S,, x/128) > x~27PL)/G+?®, then we have
xTILY/@ T < (S, x/128)'/%*2D), and (3.27) now implies

d(Sn,x) < Cs(x_2d(Sn, x/128) + x_2_28L1;/,(23s+28))- .
Hence for all x > xg,
(3.28) d(S,, x) < G (x7%d(S,, x/128) + x "2 MLY/G™),

where Cg* is some finite constant depending only on 8. For x > x5 =
max(x;, 128'*32Cs*)!/?) we have x~2 < 1287272%2Cy*) ™, and (3.28) yields for
all x > x§,

(3.29) d(S,,x) < (1/2)12872-2d(S,, x/128) + Cgx~ 2~ 2L}/ G20,
For fixed x > x§ we set
h=min{m € {0,1,2,...}: d(S,, x/128™) > 1287272%(S,, x/128™*")
orx/128™ < x}}
so that
(3.30) d(8,,x) < 1287 72+2q(S, x/128").
If x/128" < x}, then we have by (3.30) and (1.1)
d(S,, x) < (x#/%)"""'D(8,) < Cox > LG,

If s = x/128" > x ¥, then (3.29) holds with x replaced by s, and by definition of
h we must have d(S,, s) > 1287 272%4(S,, s/128) so that

d(S,,s) < 1d(S,,s) + Cgrs™ 2 BLYGH,
ie.,
d(Sn, x/128h) < 208*128h(2+28)x—2—28L1L/’(238+28).
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Combined with (3.30), the last inequality gives d(S,, x) < 2Cg*x~220LL/+29),
and we have shown that (1.2) is true for all x > x}. For 0 < x < x it follows
trivially from (1.1), and for — o0 < x < 0 it is easily obtained by an application
of the just proven result to the mds —X,,..., —X,,. This completes the proof of
(1.2) under the additional assumption (3.1). To remove this assumption, one
proceeds similarly as in the proof of the main result in Haeusler (1984), using
Theorem 2.11 in Hall and Heyde (1980) and Lemma 1. We skip the details of
these considerations, but remark that for x € R and L, ;5 + N, 55 > 1 this
reasoning also yields the inequality

(3°31) |P(Sn < x) - d)(x)l < 08(1 + 'x|2+28)_1(Ln,26 + Nn,26)‘ a

4. Proof of Theorem 2. Let m € {0,1,...,n — 1} be fixed such that
@, 25(m) < 1. Set S, = L2, X,, and observe that n2, > 0 a.s. The first steps in
the proof are borrowed from the proof of Theorem 1 of Hall and Heyde (1981).
From their inequality (10) we deduce for m =0,1,...,n— 1, all x € R and
a >0,

|P(Sn <zx)- E(Q(n_lx))|

< max {|P(S,, — 8, <x+ Ba) — E(®(n, (x + Ba))) |}
(1) + max {|E(@(n,'(x + Ba))) — E(2(n"}(x + Ba))) |}

+ Jnax {|E((I>(11‘1(x + Ba))) - E(‘D(n'lx))” + P(|S,,| > a)
I+ 11+ III+1IV.

Burkholder’s inequality implies

(4.2) IV < Cya 2" %E

m
2 X7
i=1

148
) < Csa~?77Q, 55(m),

and with m(a, x) = min{|u|: x —a < u < x + a} one has for x € R and 8 =
ily

|(I>(n_1'(x + Ba)) — (I>(11'1x)| <na exp(—n_2m(a,x)2/2)
< Cs(l + (n7'm(a, x))3+28)_111‘1a
< Cyan®*?(1 + m(a, x)3+28)_11(1, > 1)

+Csa11'1(1 + m(a, x)3+28)_11(0 <n<1),
hence

-1

(4.3) III < CCy(n)a(1 + m(a, x)°*"™)
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To produce a bound for II, we consider first a fixed ¢ € R and write
|@(n,'t) — @(n7't)]
< (exp(—n,%%/2) + exp(~n"°t*/2)) 1t In~" — u,"|
= [ = (M0 + 1)) T+ (242)

x (1t + |t|3+28)(exp(—n,;2t2/2) + exp(—n'2t2/2))

and use exp(—At?/2) < (a/A)*%xp(—a/2) for t€ R and 0 < a, A < 0 to
obtain

|@(n,'¢) — ®(n )]
< Cs(l + |t|2+28)—1|n2 _ nfnl(,n—2 + "7;;2 + ,,,—1,'ﬁn+28 + ,'];!1,,,1+28).
Hence by Hélder’s inequality, with A,, = {|n* — 7%, < 1},
E(|@(n,'t) — ®(n~1)|I(A,))

-1
< Cy(1 + [¢2+2) T E(n* — 2> ¥I(A,,)

C

)1/(3+2s)

XE((n72 +n52 + n7lnly 2 + n;.‘ﬂlm)(3+28)/(2+26))(2+28)/(3+28).
Notice that the first expectation on the right side is smaller than @, ,5(m). The
function x(~3729/2 js convex for 0 <x < co so that by Jensen’s inequality
07372 = E(P|,) 302 < E(q~2"|%,), hence E(n,* 2) < E(y-°"%).
Using this result, Holder’s inequality, E(n°*%%) + E(n~37%%) > 2 and the ele-
mentary estimate xy <p~x?+q yYforx,y>0and p '+ ¢ '=1itisa
matter of straightforward computations to verify that the last factor on the
right side of the preceding inequality is smaller than Cy(n). Consequently,

) E(|®(n;'t) — @(n7')|I(A,))

< Cscs("'l)(l + |t|2+28)_1Qn,2s(m)l/(3+2s)-

For 0 < t < 1 we have

(45) |@(n,t) — ®(n~"¢) [1(AL)

< 2(1 + |t|2+28)—1(n2+2s + 77?"+28)I(Afn),
since 7%*2% + 727%% > 1 on the event A¢,. For ¢ > 1 we write
|@(n,1t) — @(n7) [I(AS) < (|1 - @(nz')| +]1 - ®(n~'t)|)I(AS,)

and consider the two cases 7,,'t < 1 and 1 < 7,,'t separately, which easily leads
to the same bound as before. The same reasoning applies with 7 instead of 7, so
that inequality (4.5), with the factor 2 replaced by Cj, holds for all ¢ > 0 and
therefore, by symmetry of ®, for all ¢ € R. Integrating and applying Holder’s
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inequality, we obtain
E(|2(n,'t) - @(a7'0)|1(45))
< G1 + 17+2) T (E(n3 )
+E(n3+28))(2+23)/(3+28)P(|n2 _ nfnl > 1)1/(3+28)

< GC(n)(1 + [H2720) 7'Q,, o5(m) /2,

Combining this estimate with (4.4), we arrive at

|E(2(n7t)) — E(@(n7'))| < CCy(n)(1 + [£228) 7'Q,, 55(m)"/C*2,

hence for all x € R and a > 0,
(4.6) II < Cscs(ﬂ)(gixl (1 + x4 Ba|2+28)_I)Qn’%(m)l/@”s).

It remains to estimate the term I on the right side of (4.1). For this, we
consider again a fixed ¢ € R first and write

|P(S, = S, < t) = E(0(n't))]
(4.7)
< E(|P(S, - S, < #|G,,) — @(n;'t)]).

Let the random variables Y, ,,...,Y, have the distribution of X, ,,..., X,
conditional on ¥,, and set %, = o(Y,,;,...,Y;) for i=m+1,...,n,
with 5, being the trivial o-field. The conditional probability measure and
expectation operator will be denoted by P, and E,, respectively. Since
X,+15-++» X, is a mds and 7, is measurable w.r.t. ¢,, the random variables
N (@)Y, 1, .., , ()Y, constitute a mds under P, wr.t. #, CH#,,, C -
C #, for P-almost all fixed w in the basic probability space (2, #, P). Thus we

can apply Theorem 1 together with inequality (3.31) to obtain P-a.s.,
|P(S, - S, < t19,) — ®(n,t)]|

Pm( Y 'Y< n;lt) - ®(n,'t)

(4.8) i=m+1
<G(1+ |n;,1t|2+23)'1
1/(3+28)
X((Ln aa(m) + Ny aa(m))/C* 4 L, po(m) + N, 55(m)),
where

Ln,28(m)= E Em(ln;lYil“”)

i=m+1
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1+8)

We shall exploit inequality (4.8) for all ¢ € R with |¢| > 1. Observe that 7, is a
constant w.r.t. E,, so that fori=m + 1,...,n, P-as.

E,(In,'Y**?) = 0,2 2E, (| YI**?) = 0,2 2E(1X,***|%,,).
Therefore, we have
(1 + I 2528) 'Ly, pp(m) /2D

2+28 2+28) "1 2+25-(2+2 )
— Cs(ﬂm+ + |t| + ) ,qm+ (2+28)/(3+28)

and

Z Em(n;zzlz%—l) -1

i=m+1

Nn,28(m) = Em

(4.9)
n 1/(3+28)
><( )y E(I&-l“”l%))

i=m+1

Integration and application of Holder’s inequality yield
B0+ ) L) )

< Gy(1 + |#2+28) "' E(max(1, n% %

m

(4.10) n 1/(3+298)
d |

))(2+2s)/(3+2s)

> B(xp)
i=m+1
< Cscs('ﬂ)(l + Itl2+28)_lQn,zs(m)l/(3+28)'
From

(1+ 8+ %) L, s(m) < G(L+ [67*2) 1 ¥ E(1X**29,,),

i=m+1

we obtain [recall @, ,5(m) < 1 by assumption]

E((1+ ng22) 'L, g(m))

< Go(1 + [#272)7'Q,, 25(m) /.

To deal with the remaining two summands on the right side of (4.8), we fix a
version fi(xy,...,x;_;) of E(X2(X,..., X;_,) =(x},...,%;_,)). Employing
standard measure theoretic arguments, it can be shown that fori=m + 1,...,n
and P-almost all & the random variable f( X(w),..., X,(®), Y, 1,...,Y;_;)isa
version of E,(Y?25#,_,), and this entails P-a.s.
1+s)
n

Z E(Xizlgi—l) - ﬂ?n

i=m+1

(4.11)

Y E, (Y ,) -,

i=m+1

E,

(4.12)

-E

1+8
)
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Similarly, as in (4.9) we have
1s2+28) 1 3+28
(1 + 1187+ ) "N, o5(m) /2
< Cs(l + |t|2+2s)—1n?n+2s—(2+2s)/(3+28)

E Em(Yiz%—l) - n?n

i=m+1

XE,,

b

1Jrs)l/(3+2m

hence by integration and application of Hélder’s inequality together with (4.12)

E((l + |1’;L1t|2+28) _an’zs(m)l/(3+28))

<G+ |t|2+28)_lE(n2+2s)(2+23)/(3+28)

m
n

2 E(Xizlgi—l) - T’?n

i=m+1

< CCs(m)(1 + |t|2+28)_lQn,zs(m)l/(3+28)-

Finally, analogously to (4.11),

E((1 + 8% %) 7N, p5(m))

(4.13)

1+8)\ 1/3+28)

(4.14)
< G+ [877%) 7' Q 0(m) 2.

Combining the estimates (4.7), (4.8), (4.10), (4.11), (4.13) and (4.14), we obtain for
te R with |t| > 1,

15) |P(S, - S, < t) — E(®(n,'t))]

< CLCs(n)(1 + |t|2+28)_lQn,zs(m)l/(?’”s).
The uniform estimate (1.1) implies for all ¢ € R,
|P(S, = Sp < 19,,) = @(17't)| < Gy( Ly, 08(m) + N, 55(m))"/C ™,

and integrating this inequality combined with arguments similar to those used
previously leads to

|P(S,l -S,<t)- E(q’(ﬂ,;lt)” < CaCs(n)Qn,zs(m)‘/‘?’*”’,

which means that (4.15) holds for all ¢ € R. Consequently, for all x € R and
a>0,

(416)  I< Cscs(ﬂ)( max (1 + |x + Bal“”)_I)Qn,zs(m)‘/(?’*”’.
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Substituting (4.2), (4.3), (4.6) and (4.16) into the right side of (4.1), we obtain
forall x € R and a > 0,

|P(S, < x) - E(®(n7'%))|
(4.17) < Cscs(n)(a—2—28Qn’28(m) + a(1 + m(a,x)3+28)—1

+ max (1+ | + Ba** ™) lQn,zs(m)l/(3+28))~
For x € R with |x| > 1 we set @ = @, ,,(m)"/®*?®|x| /2 so that 0 < a < |x|/2
on account of @, ,5(m) <1, hence |x + a| > |x|/2 and m(a, x) > |x|/2, and
substituting a into (4.17) yields (1.3). To finish the proof, it suffices again to
derive a uniform bound. Observe that (4.17) implies

|P(S, < x) — E(®(n7))]

< CCy(n)(a7272Q, pa(m) + @ + @, 35(m)**?),

for all x € R and a > 0. Taking a = @, ,5(m)"®*2® completes the proof of
(1.3). To see that @, ,(m) can be replaced by Qn os(m), notice that
E(|E,_=1X 2|1+8) enters the bound only through inequality (4.2). Applying Theo-
rem 2.11 in Hall and Heyde (1980) yields

IVS Csa—2—28(E(V’3+28) + ZE(IXi|2+28)) < Csa—2—28Qn,28(m),
i=1

instead of (4.2). Similarly, @, ,5(m) can be replaced by Qn,zs(m) on the right side
of (4.6) and (4.16). This is clear for (4.6), and for (4.16) observe

1+8)

< G(E(V22) + E(V2 — 01"*?) + E(In* — n2)"*?)) < CoQ,,25(m),

if Qn 25(m) < 1. Consequently, (4.17) holds for all x € R and a > 0 with Qn 26(m)
instead of Q. 25(m), and this implies the statement about Qn 9s(m) in Theorem 2
as (4.17) 1mp11es (1.3).0

Z E(Xi2|gi—1) - Tﬁn

i=m+1
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