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RATE OF CONVERGENCE IN BOOTSTRAP
APPROXIMATIONS

By PETER HALL

Australian National University

Let Xi,..., X, be independent and identically distributed random vari-
ables with zero mean and unit variance. It is shown that the random
bootstrap approximation to the distribution of S = n~'/2L X, converges to
normality at precisely the same rate as n=%2|L;X?| + n™2L; X} converges
to 0, up to terms of smaller order than n~'/2, This result is used to explore
properties of the bootstrap approximation under conditions weaker than
existence of finite third moment. In most cases of that type it turns out that
the bootstrap approximation to the distribution of S is asymptotically
equivalent to the normal approximation, so that the numerical expense of
calculating the bootstrap approximation would not be justified. There also
exist circumstances where the third moment is “almost” finite, yet the
bootstrap approximation is asymptotically much worse than the simpler
normal approximation. Necessary and sufficient conditions are given for a
one-term Edgeworth expansion of the bootstrap approximation. :

1. Introduction. In sufficiently regular cases, the resampling or “bootstrap”
approximation to an unknown distribution function has been established as an
improvement over the simpler normal approximation [e.g., Efron (1981), Beran
(1984) and Efron and Tibshirani (1986)]. In particular, it is known that if third
moments are finite, then the bootstrap approximation to the distribution of a
sum of independent random variables corrects for the skewness term of order
n~1/2 in an Edgeworth expansion [Bickel and Freedman (1980) and Singh
(1981)], and thus betters the normal approximation. In the present paper we
show that if third moments are infinite, very different behaviour is evident. Far
from improving on the normal approximation, the bootstrap approximation can
actually do worse than the normal approximation when third moments are
infinite. In a great many cases with infinite third moment, the bootstrap
approximation is asymptotically equivalent to the normal approximation, and
there the numerical expense of computing the bootstrap approximation would
not be justified.

We derive our results by studying the rate of convergence of the bootstrap
approximation. Before giving more details, it is necessary to introduce notation.
Let X, X,, X,,... be independent and identically distributed random variables
with finite variance, and assume for the sake of definiteness that E(X?) = 1 and
E(X) = 0. This standardization is not strictly necessary when studying the
bootstrap, which is scale and location invariant, but it is nevertheless convenient.
Write & for the collection {X,..., X,} and let {X*,..., X,*} be a collection
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drawn at random from &, sampling with replacement. Put
n n n
X=n'YX, Xt=n'YXr ’=n! E(Xj—)?)z,
j=1 j=1 J=1

S = n'/2X, S* = n/}(X* - X)/8,
F(x)=P(S<x), and Ex*(x)= P(S* <x|¥).

Let ® and ¢ denote standard normal distribution and density functions, respec-
tively.

The aim of much statistical theory is to approximate the unknown distribu-
tion function F). The normal approximation declares that when n is moderate to
large, F, may be approximated by ®. The bootstrap approximation argues that
F, should be close to F*. An important question to be resolved is: “When is F,
closer to F* than to ®?” We shall show that for all practical purposes the
answer to this question is, “When X has finite third moment.” Athreya (1985,
1987) has shown that, roughly speaking, finite second moments are required for
consistency of the bootstrap approximation. See also Bickel and Freedman
(1981).

Our statement that finiteness of the third moment is required for the bootstrap
approximation to improve on the normal approximation, is an oversimplification.
Nevertheless it is quite close to the truth. To delve a little deeper into the
problem, let us consider the case

(1.1) P(X] > x) = x"°K(x),

where 2 < a < 3 and K is slowly varying at infinity. Assume that the tails of X
are balanced, in the sense that P(X > x)/P(]X| > x) converges as x — co.
When 2 < a < 3, the normal approximation and bootstrap approximation are
asymptotically equivalent. In fact for all but at most a finite number of values
of x,

(12) Tim |Fy(x) — BA(@)/1F%) - ®(x)] = 1

almost surely. (See Examples 3.1 and 3.2 in Section 3.) The case a = 3 is more
tricky and depends very much on the choice of K. On some occasions [e.g., when
X is symmetric and K(x) = exp{(log x)?}, some 0 < 8 < 1], result (1.2) con-
tinues to hold. On others [e.g., X symmetric and K(x) = (log x)?, some 8 > 0],
we have instead
(1.3) limsup|F,(x) — F*(x)/|1F(x) — ®(x)| = + o0

n—oo
almost surely, for all but at most a finite number of values of x. In this
circumstance, the bootstrap approximation is asymptotically worse, along a
subsequence, than the normal approximation. (See Example 3.3 for details.) In
still other cases [e.g., when K is chosen so that E(|X|®) < co and when X is
nonlattice and E(X?) # 0],

Tim |Fy(x) = FA@)/1F%) ~ ®(x)] = 0
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almost surely for all x # +1. Here the bootstrap is asymptotically better than
the normal approximation. (See Example 3.5 in Section 3.) Thus, the case a = 3
(corresponding to the third moment being either “just finite” or “just infinite”)
forms the boundary between circumstances where the bootstrap performs better
than the simple normal approximation and circumstances where it does not.

In this simplified discussion we have assessed quality of the bootstrap ap-
proximation in “strong” terms, using almost sure convergence throughout. Our
conclusions do sometimes change when quality is measured “weakly”, using
convergence in probability. Examples 3.4 and 3.5 in Section 3 will discuss this
phenomenon.

Next we say a little about techniques used to derive our conclusions. We begin
in Section 2 by studying the general problem of the rate of convergence of 7,* to
®. It turns out that with probability 1 and up to terms of smaller order than
n~1/2, the rate of convergence is precisely that of

n n

Y X}” +n72Y) X!

Jj=1 Jj=1

to 0. [The only regularity condition needed for this result is E(X ?) < o0.

However, a continuity correction is required in the lattice case in order to
remove the rounding-error term of order n~'/2.] Now, § is a particularly simple
function of sums of independent random variables and may be studied quite
easily using standard results about such sums. That development is undertaken
in Section 3. We obtain the limit theorem (1.2) when §, is of smaller order than
the difference between F, and ®; that is, when F,* converges to ® more rapidly
than does F,. Proofs of main theorems are given in Section 4.

This approach to studying the bootstrap is different from those traditionally
employed in problems of the same type, in that it does not require higher-order
moment assumptions at the outset; compare Singh (1981) and Babu and Singh
(1983, 1984). Our technique permits a detailed analysis of the bootstrap ap-
proximation in cases which have not been treated before. It also allows us to give
extra detail in cases which have already been studied. In particular, Example 3.5
in Section 3 shows that if approximations are assessed using strong convergence,
then a necessary and sufficient condition for the bootstrap to correct for the
skewness term of order n~'/2 in an Edgeworth expansion is that the third
moment be finite. Singh (1981) showed that finite third moment is sufficient. We
also produce a condition weaker than the existence of finite third moment, which
is necessary and sufficient for Edgeworth correction if approximations are as-
sessed using convergence in probability rather than almost sure convergence.

& _— ,-3/2
, =1

2. Leading term for random approximation. The leading term in an
expansion of the “normal error” P(S < x) — ®(x) is

L,(x) = nE{®(x — n"2X)} — n®(x) — 1¢'(x)
(2.1) = nE{¢I>(x - n"12X) — ®(x) + n"?X¢(x)

~$(n7X) ¢/(x)}
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See Hall [(1982), Chapter 2, Section 2.3]. By analogy, the leading term in an
expansion of P(S* < x|¥) — ®(x) is

L(x)= éld){x - n“1/26‘1(Xj - f)} - n®(x) — 1¢/(x).

We shall show in Section 4 during our proof of Theorem 2.2 that L, is
asymptotically equivalent to

~. ~.
It Tpd

L.(x)
(2.2)

®(x — n72X;) — n®(x) + n¥/?Xp(x) — %(n‘1 }'i XJ?)(p’(x)

{<I>(x - n‘1/2Xj) - ®(x) + n %X ¢(x) — é(n‘l/sz)2¢’(x)}.

Since L does not involve ¢ and so is superficially a little simpler than L, we
shall state our results for L rather than L .
The order of magnitude of L, is that of

(2.3) 8, = E{X2I(|X| > n1/2)} + n_l/zlE{X3I(|X| < n1/2)}|
+nTIE(XI(X] < n2)),

irrespective of whether distance is measured in integral or supremum metrics.
For example, defining I, = sup|L,| we have

(2.4) Cs,<!l,<Cy,

n— "n—

for constants C, > C, > 0, the constant C, being absolute. See Hall [(1982),
Chapter 2, Section 2. 4] The order of magnitude of L and of L is that of

Y X3+

Jj=1

(2.5) §, =n-32

n
n% Y X},
j=1
in a wide variety of different metrics. For example, we have

THEOREM 2.1. (i) There exists an absolute constant C, > 0 such that for all
samples %,

sup |L(x) < CP,.

— 00 <x<o00
(ii) Let x, be any element of the set {—1,1} and x, any real number not in
that set. If E(X?%) < oo then there exists a constant C; = Cy(x,) > 0 such that
P{ sup |L,(x) = C8, foralln > m} -1

xe{xl)x2)

as m — 0.
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Define [, = sup|L,|. An immediate corollary of Theorem 2.1 is that with
probability 1,

(2-6) C, < liminf(f,/8,) < limsup(£,/8,) < C,
n— oo n— oo
[compare (2.4)], where C, = sup,Cy(x).

It is worth making the trite remark that if E(X?) < co, then §, > 0 and
8 — 0 almost surely. In the case of §,, this fact is trivial and well known For 8
it follows indirectly from Bickel and Freedman (1981), but may be proved
directly as follows. Observe that for any 0 < < 1 and with probability 1, the
event &, = {|X;| < 7n'/% 1 <j < n} holds for all sufficiently large n. On &, we
have 8 <2qn7 'L X} 2 - 27 almost surely, and n may be chosen arbltranly
small.

We are now in a position to describe the size of P(S* < x|Z) — ®(x) — n(x)
We wish to go as far as terms which are of smaller order than both §, and n~ /2.
However, if the underlying distribution of X is lattice, then roundlng-error terms
of order n~'/2 appear in expansions of P(S* < x|%), and we should remove
them first. Suppose X is lattice and takes only values of the form a + jb
(7j=0,4+1, +2,...), where b > 0 is the maximal span of the lattice. Let R(x) =
(x) — x + 3, where (x) denotes the integer part of x, and put

R,(x) = R(n'%x/b)¢(x)b/(n"/%).
Define R, = 0 if the distribution of X is nonlattice. Let
A,= sup |P(S*<x%)—®(x) - L,(x) - R(x).

— 00 <Xx<00

THEOREM 2.2. If E(X?) < oo, then A, /(6, + n~12) - 0 almost surely as
n - oo.

In the case where X has a lattice distribution, we actually prove a good deal
more than Theorem 2.2. We show that if L is replaced by I, in the definition of
A then A,,/(8 52 + n~1) is almost surely bounded asn — co. See formula (4.8) in
Sectlon 4. This result may also be obtained in the nonlattice case, provided we
assume that the characteristic function a of X satisfies Cramér’s condition

limsup|a(t)| < 1.
|t| = o0

It is necessary only to modify an argument toward the end of our proof of
Theorem 2.2.

It is of interest to compare Theorem 2.2 with its analogue for S. There we
define the rounding-error correction to be

R,(x) = R{(n"?*x — na)/b}¢(x)b/n'/?
in the lattice case, assuming E(X2?)=1 and E(X)=0; and R, =0 in the
nonlattice case. Recall that L, is given by (2.1) and put

A,= sup |P(S<x)-0(x) = Ly(x) - R,(x)I.

—o0<x<o0
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The following result is taken from Hall [(1982), Theorems 4.2 and 4.3, pages 162
and 164].

THEOREM 23. If E(X?) =1 and E(X) =0, then A, /(8, + n"/2) > 0 as
n — oo.

Comparing Theorems 2.2 and 2.3 we see that, provided we correct for round-
ing errors in the lattice case, the distance between the distribution functions
P(S* < -|) and ® is of precise order §, + o(n~'/2), whereas the distance
between P(S < -) and ® is of precise order 8 + o(n~1?).

3. Accuracy of the bodtstrap approximation. Let us assume for the sake
of simplicity that E(X?) =1, E(X) =0 and X has a nonlattice distribution.
Then the error in the normal approximation to the distribution of S is

(3.1) P(S <x)— ®(x) = L,(x) + r,(x),

where sup|r,| = o(§, + n~'/2). See Theorem 2.3. The error in the bootstrap
approximation to the distribution of S is

P(S <x) — P(S* < %|%) = P(S < x) — ®(x) — {P(S* < x1%) — ®(x)}

= L,(x) = L,(x) + #u(x),

where sup|?,| = o(8, + §, + n~'/?) almost surely. See Theorems 2.2 and 2.3,
and remember that L, L,,§,, 8 were defined in (2.1)-(2. 3) and (2 5). We
showed in (2.4) and (2. 6) that L is of precise order §, and L is of precise order
8 as measured by the supremum metric. Therefore, 1f 8,,/8 — 0 almost surely,
then

(3.2) P(S<x)— P(S* <x|Z) = L,(x) + f5(x),

where sup|#,,| = 0(8, + n~'/2) almost surely. In this circumstance the bootstrap
approximation is asymptotically equivalent to the normal approximation up to
terms of order n~'/2, as may be seen by comparing (3.1) and (3.2).

In the present section we argue that in a great many circumstances where | X|
has infinite third moment, the bootstrap approximation is asymptotically equiv-
alent to the normal approximation in the sense just described. Indeed, this result
is true if P(|X| > x) = x~*K(x), where 2 < « < 3 and the function K is slowly
varying at infinity. [Under this condition, E(|X|**¢) = o0 and E(|X|*7%) < o0
for 0 < ¢ < a.] However, in the case a = 3 it is possible for the bootstrap
approximation to be asymptotically worse than the normal approximation, in
the sense that lim sup(8,,/8 ) = +o0 and

. IP(S < x) — P(S* < )|
(3)  lmswp— T BE ) —o()

almost surely.
These results will be obtained in a sequence of five examples, of which the first
four treat the circumstance where P(|X| > x)=x"°K(x) and K is slowly

sup _

00 <x <00
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varying. Examples 3.1 and 3.2 deal with cases @ = 2 and 2 < a < 3, respectively;
Examples 3.3 and 3.4 treat a = 3; and Example 3.5 gives necessary and sufficient
conditions for one-term Edgeworth corrections discussed by Singh (1981).

The following lemma on strong convergence is needed for the examples and
will be proved in Section 4. Let Y,Y,,Y;,... be independent and identically
distributed random variables and put T, =%, _;_,Y;. A sequence of positive
constants {b,} will be said to be approximately increasing if {nb,} is nonde-
creasing and if for some C > 0,

(34) b, < anf b, foralln>1.

LEMMA 3.1. Assume either E(|Y|) = o0 or E(|Y|) < o0 and E(Y)=0. If
{n"lc,} is approximately increasing, then
lim sup |7, /cn{ almost surely according as Z P(Y]| > ¢ ){ :

n— oo n=1

The symbols C, C,, C,, ... will denote positive generic constants. In Examples
3.1-3.4, we shall assume for simplicity that X has a nonlattice distribution.

ExAMPLE 3.1. Suppose P(|X| > x) = x~2K(x), where K is slowly varying at
infinity. We shall prove that S,,/ 8, — 0 almost surely, implying that the bootstrap
approximation is asymptotically equivalent to the simpler normal approximation
up to terms of order n~1/2

Integration by parts and application of Theorems 2.6 and 2.7 of Seneta
(1976) show that each of E{X2%I(|X| > n'/?)}, n”'2E{|X|*I(|X| < n'/?)} and
n~'E{X*I(|X| < n'/?)} is asymptotic to a (different) constant multiple of

® -1
/ x K (x) dx.

n

Therefore, with

8 = E{Xmin(1, n"X?)} ~ €, [ xR (x) d,
nl

we have §, < 8, < C,5,. The sequence {n'/25,} is approximately increasing; see
Seneta [(1976), page 20]. Furthermore,

Y = X P(X?>n*%;)

n=1

C, E —1{/ x7 K (x) dx} 2/31([ 1/2{/n x 1K (x) dx} 3]

K [ y{ fy ) dx}l/a] dy.

<c.f °°y-1{ fy ”x-IK(x)dx}

IA

-2/3
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It follows from Lemma 3.2 that for any £ > 0,

K[y{ ffx-lK(x)dx}l/?']<C5(£)K(y){ [7x K ) ae)

for y > 1. Taking £ < 5 we conclude that
2/3)—¢

L <0G [y KO [T K@ a) <.
From this result and Lemma 3.1 we see that

n
(n*%8,) " L IX1* >0
j=1
almost surely. It then follows that (n‘2Z X 4) /6, = 0 almost surely, for under
the condition E(X?) < oo the event &, = {|X| < n'% 1 < j < n} holds for all

sufficiently large n, with probablhty 1, and on &, we have n 22 X 4 <
n~%?% |X,|°. Therefore, §,/5, — 0 almost surely, as had to be proved.

The following lemma is easily proved via Karamata’s representation theorem
[Seneta (1976), Theorem 1.2, page 2].

LeEmMA 3.2. If K is slowly varying at infinity and if ¢ = e(x) = 0 as x > ©
in such a manner that xe(x) — oo, then for each & > 0, ¢éK(ex)/K(x) = 0.

It may be shown that in the case of Example 3.1,
L(x) = —3¢'(x) E{X"I(X] > n'/?)} + 5,(x),
where
supls,| = o[ E{X?I(1X| > n'/?)}] = 0(8,);

see Hoglund (1970) and Hall [(1982), Theorem 4.10(ii), page 196]. Therefore,
result (1.2) holds for all x except possibly x = 0.

ExaMPLE 3.2. Suppose Cx# < P(|X| > x) < C,x~" for all x > 1, where
0<y<PB< o and (6 — B)y > 6. These specifications include the case where
P(|X| > x)=x""K(x), 2 <a <3 and K is slowly varying, for there we may
select B € («,3) and y € (2, a) such that (5 — B)y > 6. We shall prove that
8,/8 — 0 almost surely, implying that the bootstrap approximation is asymp-
totically equivalent to the normal approximation up to terms of order n~/2,

Notice that §, > nP(|X| > n'/?) > C,n*~#/? and

o0 0 .
Z P(|X|3 > n3/2n1—(/3/2)) = Z p(le > n(5—p)/s) <G, Z n-G-PV/6 < o
n=1 n=1 n=1

Therefore, by Lemma 3.1, (n~%?2% |X|*)/8, — 0 almost surely, which implies
(as in Example 3.1) that (n~?%;X})/8, — 0 almost surely. Hence 8,/8,-0
almost surely, as had to be shown.
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If P(|X| > x) = x *K(x) where 2 < a < 3 and K is slowly varying at infin-
ity, and if the tails of X are balanced in the sense that P(X > x)/P(|X]| > x)
converges as x — oo, then

L,(x) = A(x)nP(X| > n'2) + 5,(x),

where sup|s,| = 0(8,). The function A does not depend on n, has at most four
zeros and is given by Hoglund (1970) and Hall [(1982), Theorem 4.10(i), page
196]. Result (1.2) holds if x is not a zero of A.

ExaMPLE 3.3. Suppose P(|X| > x) = x 3K (x), where K is slowly varying at
infinity, that E(|X|?) = oo and that X is symmetric. [The case E(|X|?) < oo will
be treated in Example 3. 5] We shall show that, depending on choice of K, it is
possible to have either 8,,/8 — 0 almost surely or limsup 8,,/8 + o0 almost
surely. Therefore, the bootstrap approximation can be equivalent to the normal
approximation up to terms of order n~ /%, or worse than the normal approxima-
tion along a subsequence.

Notice that C;n~2K(n'/?) < 8, = E{X?min(1, n"'X?)} < C, n ~12K(nl/?).
We first prove that

(3.5) (n-2 > x;) / 5,0

almost surely. For any ¢ > 0,

Z P(X*>n%,) < C, Z (n¥2K (nV2)) 3/4K[{n3/2K(n1/2)}1/4]

n=1

< C,(e) Z n-@/8+e

n=1
which converges if ¢ is sufficiently small. The sequence {rd,} is approximately
increasing and so (3.5) follows from Lemma 3.1.

In view of (3.5), the efficacy of the bootstrap approximation depends on
behaviour of (n~3?|Z;X?|)/8, as n - co. If K(x) = (log x)* for @ > —1, then it
follows from result (4. 18) of Kesten (1972) that lim sup(n~3/%|Z ;X |)/8 = 400
and so limsup 8,,/8 + 0. When a > 0 this means that hm sup 8,,/(8

n~1/2) = + w0, so that the bootstrap approximation is worse (along a subse-
quence) than the normal approximation. On the other hand, if K(x)=
exp{(log x)*} for some a € (0,1), then 8,,/8 — 0 almost surely. To see why,
notice that for any ¢ > 0,

T P(X[® > n3/3s,) < C, [ 1K ) K (K (2)7) ds
< Ce(s)/wx"exp[— {1-(2/3) — €} (log x)°] dx,

which converges if ¢ is sufficiently small. It now follows via Lemma 3.1 that
(n*2£X?))/8, > 0 and so §,/8, — 0, almost surely. Therefore, the bootstrap
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approximation is equivalent to the normal approximation up to terms of order
-1/2
n~1/%

ExaMPLE 34. In Examples 3.1-3.3 we assessed quality of the bootstrap
approximation in “strong” terms, basing our arguments on almost sure conver-
gence. We could have looked instead at convergence in probability. In the
majority of cases (e.g., Examples 3.1 and 3.2) this would have made no difference,
since the most common occurrence was §,/8, — 0 almost surely, in which case
the bootstrap approximation was asymptotically equivalent to the normal ap-
proximation (up to terms of order n~'/?) both weakly and strongly. However
there do exist circumstances where lim sup 8,,/8 + oo almost surely (meamng
that in a strong sense, the bootstrap is much worse than the normal approxima-
tion along a subsequence), but 8,,/8 = O(1) in probability (so that in a weak
sense, bootstrap and normal approximations are roughly equivalent). Thus we
can draw quite different conclusions if we assess the bootstrap approximation in
weak and strong terms.

A case in point is given by Example 3.3 with K(x) = (log x)%, any a > 0;
there we have limsup §,/(8, + n~'/2) = + oo almost surely, but §,/8, = O(1) in
probability. In this circumstance, result (1.3) follows via Theorem 1 of Hoglund
(1970). We shall give a more curious example, where the random approximation
supplied by the bootstrap is asymptotically equivalent (in a weak sense) to a
nonrandom approximation but not to the normal approximation, and where
limsup §,/(8, + n~/2) = + oo almost surely yet §,/8, = O )(1).

Take X = Y — E(Y), where Y is nonnegative and P(Y > y) = y~2 for large y.
Then §, ~ Cn~'%log n and result (3.5) follows as before. The senes T P(X3 >
An log n) diverges for each A > 0 and so by Feller [(1946), Theorem 2] or Stout
[(1974), Theorem 3.2.5, page 132], limsup(n~3/%|L X ?|) /8, = + oo almost surely.
Therefore, lim sup 8,,/8 + 00. By Klass and Telcher [(1977), Theorem 1],

(n*2%,)"" é [x? - E(X%I(X| < n'?)}] > 0

in probability. Now,

L(x) - %(—n‘l/2)3( )y X?)W’(x) < % (suple” )n~? X XJ,
Jj=1 Jj=1

and the right-hand side equals 0(§,) almost surely. Therefore, with
Li(x) = —in 2E{X°I(1X| < n'/?)}¢"(x),

we have
sup |L,(x) — Li(x) = o(8,)

— 00 <x<o00

in probability. Consequently, in a weak sense the bootstrap approximation is
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asymptotically equivalent to nonrandom approximation by ® + Lf:
P(S* < x|Z) = ®(x) + Li(x) + o,(n""?logn).
The normal approximation declares that
P(S <x)=®(x) + L,(x) + o(n"'2log n).

Both L, and L!, are O(n~'/2log n), but these functions are not particularly
close. Indeed for any x,

Li(x) - L,(x)
= in"V2E{X3(n'/? < |X| < n'/%)}¢"(x) + O(n~1/2)

and E{X°%I(n'/? < |X| < n'?)} ~ llogn as n — oo. [Result (3.6) follows from
the facts

(3.6)

[L(x) + 4 EXI(X) < 07) }o(2)]
< G[E(X1(X| > ')} + n E{XI(X] < n*/?)}]
= C,E{X’min(1, n"'X?)},
true for all x, and

E{X2min(1, n'1X2)} < C2/°°x‘2min(1, n~%?) dx = O(n"2).]
1

ExAaMPLE 3.5. Here we use Theorem 2.2 to deduce necessary and sufficient
conditions for a one-term Edgeworth expansion. Let 8 be any given constant; it
might be E(X?) if that moment were finite. Define p(x) = —(8/6)(x2 — 1) and

sup |P(S* <x|¥) — {®(x) + n"V2p(x)e(x) + R (x)}].

—o00 <x<o0

[We include Rn(x) just in case X has a lattice distribution. In this example we
do not exclude the lattice case.] We shall prove

1

THEOREM 3.1. (i) 9, = o(n~ %) almost surely if and only if E(|X|?) < o
and E(X®) = B.

(i) 9, = o(n~'/?) in probability if and only if, as x - o0, xP(|X|> > x) - 0
and E{X*I(X| < x)} - B.

The conditions on X in (ii) are of course satisfied if E(]X|®) < oo and
E(X?3) = B. They also hold in other cases; for example, they hold with g = 0 if
X is symmetric with P(|X|® > x) ~ x~Y(logx)~%, for a > 0. Only in the case
a > 1 does the latter example satisfy E(|X|?) < oo.
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To interpret statements (i) and (ii) it is helpful to define
Y.= sup |P(S<x) - {®(x)+n"’p(x)e(x) + R,(x)}]
—o00<x<00

and notice that necessary and sufficient conditions for vy, = o(n~'/2) are
xE{X?I(|X| > x)} » 0 and E{X°[(|X| < x)} - B. [See, for example, Hall
(1982), page 186.] These conditions are strictly stronger than those given in
statement (ii), but strictly weaker than E(|X|®) < oo and E(X3) = B. They are
satisfied (with 8 = 0) in the case of the example in the previous paragraph.

PrROOF OF THEOREM 3.1. Define

n

Z (ng_ﬂ)

Jj=1

A = ,,—3/2
§g,=n

n
-1 4
+nt Y X;
=1

and
ko= sup_ 1L (x) — p(x)(x).

The argument used to derive Theorem 2.1 may be trivially modified to prove the
existence of constants C, > C; > 0 such that with probability 1,

C < Hminf(l%,,/é‘” < limsup (%,/%,) < Cy;

compare (2.6). Therefore, by Theorem 2.2, 9, = o(n~'/2) almost surely if and
only if n'/2¢, — 0 almost surely. The latter condition implies

(3.7) n! i (x3-8)-0

almost surely, for which it is necessary and sufficient that E(|X|®) < co and
E(X®%® = B [see Chung (1974), page 126]. And if E(|X|?) < oo, then
n~3/2% . X} — 0 almost surely, since for any 1 > 0 and all sufficiently large n,

n n
n¥2 Y X4=n"%2 Y XH(X| <an'?) <n"'n ¥ |X,)° - nE(X)?).

n
=1 Jj=1

Jj=1 J
This proves statement (i).
To derive (ii), note that by Theorem 2.2, §, = o(n~'/?) in probability if and
only if n'/2§, — 0 in probability. This condition implies that (3.7) holds with
convergence in probability, for which the conditions in statement (ii) are neces-
sary and sufficient [see Gnedenko and Kolmogorov (1968), page 134]. From those
conditions it follows that E(|X|>~*) < co whenever 0 < ¢ < 3, and thence that
n~32L X} — 0 in probability, since for any 7 > 0,

n n
P(n‘3/2 Y X¢> n) < nP(X| > n'%) + P|n=%2n512 ¥ |X|*~6/D > g
J=1 Jj=1

< nP(X)* > n) + (nn*/2) "RE(X|'"*) = 0(1). O
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4. Proofs. The symbols C, C,, C,,... will denote positive generic constants.
It is convenient to prove Theorem 2.2 before Theorem 2.1. For convenience we
assume throughout that E(X) = 0 and E(X2) = 1.

PrROOF OF THEOREM 2.2. Let &, denote the empirical characteristic function
of the “sample” {(X; — X)/6,1 <j < n}. That is,

n
G, (t)y=n"1Y) exp{it(Xj - )_()/6}.
j=1
We begin with a lemma.
LEMMA 4.1. Assume E(X) =0 and E(X?)= 1. Given ¢ > 0, there exists
8 > 0 such that with probability 1,
limsup sup ¢ 2|a,(¢) — 1+ 32 <e.

n—oo O0<|t<d

PROOF. Since [e”* — 1 — ix + 3x?| < C min(x?, |x|®) uniformly in x, then for
0<np<land0<t<§,

t7%a,(t) — 1+ i}

= t—2n—l

5 fxplito-*(x, - X)) -1 - (3, )

J

+1%72( X, - X)'|

n
<Ctn' Y 674X, - XPI(t671X; - X| <)
j=1

n
+Cn™t ¥ 67%(X; - X)'1(t671X; - X| > )

j=1
n
< c{n +n7t Y 67X, - X)1(67YX, - X| > n/a)}.
j=1
The right-hand side does not depend on ¢ and converges almost surely to

C[n + E{X?I(X| > n/8)}]

as n — oo. The latter may be made arbitrarily small by choosing n small and
then § small. This proves the lemma if the inner supremum is taken over
0 <t <§; thecase —8§ < t < 01is similar. O

Observe that
8,(t)" = exp[nlog{l + &,(t) ~ 1}] = exp[r{&,(¢) — 1} + nfy(2)],
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where, arguing as in Hall [(1982), page 14], |F,(¢)| < §|&,(¢) — 112/{1 —
|&@,(t) — 1]}. Also, since |e** — 1 — is| < 1s? for all real s, then |&,(¢) — 1| < 3t2
uniformly in ¢ [so that |&,(¢) — 1| < 1 for |¢| < 1] and

8,(t)" = exp[n{a,(t) — 1+ 3t%} + nfy(t)]e " 7/2

(4.1)
= [1+ n{&,(t) — 1+ 12} ]e "2 1 7 4(¢),
where, if |f| < 1,
Fua(8)] < Co{n%18,(8) = 1 + 38217 + nl@,(2) — 1 + n?|&,(2) — 1%}
xexp{n|a,(t) — 1+ 3% + n|a,(t) — 11> — nt?/2}.
[Here we have used the fact that
le*** = 1 — 2| < Cy(j2]* + |w|® + |w|)exp(z| + |w]).]
In view of Lemma 4.1, we may choose 8 € (0, 1) so small that

limsup sup £ 2|&,(¢) — 1+ 12 <1/10

n—o 0<|t|<d
almost surely. For |f| < & and large n,
|&,(2) = 1+ 3¢% + |a,(¢) — 1]* — ¢2/2
<3+ i (1) -z s -
In this case,
(4.2) IPa(E)] < Co %18, () — 1 + §£%2 + nt* + n2tS)e~n0'/4,

Let F’n denote the distribution function corresponding to characteristic func-
tion &,. Then

a,(t) -1+ 2= f{ei"" — 1 - itx — 1(itx)*} dF(x)
= 4(it)’ [«* dE (%) + Fua(2),
where |7, ()| < t¥x*dF (x). Therefore,

n
lan(t) = 1+ 3¢ < |4Pn~Y| ¥ 67%(X, - X)°
j=1

ot Y 64X, - X
j=1

We may simplify the two series on the right-hand side by arguing as follows.
Since E(X?) =1 and E(X) =0, then by the law of the iterated logarithm,
|X| < 2(n"'loglog n)'/? for all sufficiently large n (f.a.sln). Also, £, X? < 2n
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and 67! < 2 f.a.sl.n. Therefore,

L o7(x,- X)°
Jj=1

<8

n n
EIXJ? - 38X Y X7+ 2nX°
=

j=1

(4.3)

n
<8 Y X} +8-3-2-2(nloglogn)?

J=1

+8-2-2%1(n"oglog n)3/2,

i §4(X; - X)4

Jj=1

(4.4) <16

J
Jj=1 Jj=1 Jj=1
n

n

Y X}

Jj=1

g X! -4X Y X} + 6X*? g X? - 3n)?4)
4
J

<16) X!+ +16-2-22-2(n"'loglogn)n
j=1

f.a.s.l.n. Combining (4.2) with the results in this paragraph, we deduce that

£ x|

J=1

|Fq(8) < C3{t6(1 + t2)( f X;’*) + 8

Jj=1

(4.5)
+t*n + t®nloglog n + t8n2}e‘”‘2/4.

The distribution of S*, conditional on %, has characteristic function
&,(t/n'/%)", which in view of (4.1) and (4.5) satisfies

&,(t/n/2)" = [1+ n{&,(t/n1?) = 1 + }(¢2/n)}] 47|

n 2
< C4{t6(1 +t%)|n"32 ) X;")
=1

J

(4.6)

n 2
+t8(n'2 Yy X}‘) + 141 + tYn e /4
j=1
for |¢| < 8n'/? and all sufficiently large n. It is easy to verify that the function

L(x) = ¥ 0fe - (X~ X)(w/%) ) = nd(x) - #(x)
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has Fourier—Stieltjes transform n{a,(t/n*?) — 1 + 1(t*/n)}e”*/2 In the non-
lattice case we use inequality (4.6) and the smoothing lemma [Petrov (1975),
Theorem 2, page 109] to deduce that for any A > 6,

sup |P(S* < x|%) — ®(x) — L(x)|

— 00 <x<o00

<G

n 2 n 2
o £+ o B e

Jj=1 Jj=1

(030 WS TPN 1/2\|n —1/2y -1
+j;;1/2s t~Y&,(t/n'/2)|"dt + n~'/2\
f.a.s.l.n. Arguing as in Singh [(1981), page 1190] or as in the proof of result (4.3)
of Hall [(1982), page 162], we deduce the existence of a random variable A, > &
such that A, —» oo almost surely and
n/2 ("N g (t/n ) dt > 0
)

n/2

almost surely. (This result follows from the fact that |&, — a| = 0 almost surely,
uniformly on compacts, and |a| < C < 1, uniformly on compact intervals not
including the origin.) Thus for any ¢ > 0,
sup |P(S* < z|%) — ®(x) - L,(x)]
— 00 <Xx<00
(4.7) n 2 n 2
<c, (n/ 5 X,a) R (n 5 x;) } b en

Jj=1 j=1

f.a.s.ln.
In the lattice case, it follows as in Hall [(1982), page 170] that the function ﬁn
has Fourier—Stieltjes transform

pu(t) = —(@on%) bt Y jlexp[—1{t + 2nm(j/b)}Y.
—0<j<oo
j#0

Arguing as in Singh [(1981), page 1181] or using the argument leading to result
(4.23) of Hall [(1982), page 172], we may prove that

" e (0)de = O(n7),
nl/%8

f?/26t“|&n(t/n‘/2)" — [1 + n{a,(t/n2) — 1 + &(¢2/n)}| e 272 — b, (¢) dt

=0(n"?)
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almost surely. It then follows from (4.6) via the smoothing lemma that
sup |P(S* <x) — ®(x) — L(x) - R(x)|

—o0<x<o00

(4.8) n 2 . 2
< Ce{(n_3/2 Z X}o’) + (n'2 Z X;‘) + n'l}

fa.sln.
The theorem follows from (4.7) and (4.8), provided we show that

n
X+

— 00 <x<00 Jj=1

(4.9) sup . |ff,,(x) L(x) = O(n_3/2

n
-

Jj=1

almost surely. Now,
L(x) = —(65%)" n/{ £ (%, X))o
+(66%) 'n2 é [( )4/:4>’”{x —t(X; - X)(n'/%) ")

x(1-¢)® dt],

n

L(x)= —gn-w( 3 X}’)«#"(x)

Jj=1
n
+1in72 '21 {X}‘fohb"'(x - thn‘l/z)(l —t)° dt}.
j=

Expanding ¥ (X — X)and ¥ AX; - X)* and noting that ¢ — 1 almost surely,
we see that

n n
D, =672 Y (X,-X)’-n2 ¥ X}
j=1 j=1
n
=o|n 32 Y X3 +n"2|,
j=1
= =14
Dy=n"? 2 64(x,- X)* - x|

=o(1)n2 Z X} +o0@)n? Z |(X X) - X7

J=1 j=1

Since E(X?) < oo, then P(|X,| > n'/? i.0.) = 0, and from this it follows that
with probability 1, the event &, = {|X)| < n'/? for 1 <j < n} occurs f.as.ln. If
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&, occurs, then

-ty I(x,- X)" - x4
j=1
n

<n7? Y (4XX} + 6X2X? + 4X°X,| + X*)

j=1
< (4n"V%X| +6n7'X%)n"t Y X? + 4X°n"% ) |X)| + n7'X*
j=1 j=1
=o(n"1/2)
almost surely. Therefore,
n
D, = o(n‘2 Y X+ n'l/z).
j=1
Also, if &, occurs then n™%?% |X|° < n™?% X/, so that
n
D;=n"2Y) [Xf sup f1|<1>”’ {x - t(Xj - .Y)(nl/zé‘)_l}
j=1 — 00 <x<00 0

—¢" (x — tX;n"12)|(1 - t)° dt]

<Cpn? i XH{ (X1 + 1X))1671 = 1n~V2 + | X|n~ V)

Jj=1

n n
=Cyl67 = 1n"2 Y} X+ o(n‘2 Z X;)

j=1 J=1
n
= -2 4
=o|n"? Y X}|.
j=1

Combining these results, and noting that
6 sup |L(x)-Ly(x) <D sup |¢"(x)|+ D, sup |9 () + Dy

— 00 <x<00 —o00 <x<o00 —00<x<00

we obtain (4.9). O

PRrROOF OF THEOREM 2.1. Part (i) of the theorem is trivial, since

n
< 5(supl¢p”)n"% Y X}
Jj=1

(4.10) |L,(x) - %(*n“/2)3( > X?)W'(x)

J=1

To obtain part (ii), notice that the function f(u)= ®Q1 + u) — ®(1) —
ud(l) — Lu’p'(1) is positive for u # 0 and satisfies f(u) > Cymin(u?, u*) for
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— 00 < u < o0. Therefore,
n n
IL,(1)] = C3{n-1 Y. X2(X,| > n'2) + n~? 2 XA(X, < n1/2)}.
j=1 ;
As shown during the proof of Theorem 2.2, we have {|X | < n2forl <j< n)

f.asln, so that ¥;X?I(|X)| > n'/?) = 0 fasln. Therefore, IL1)] > Csn=2E ;X!
f.a.sln. An 1dent1cal lower bound applies to |L (—1)|. Also, by (4.10),

3 X} - Cn? ¥ X!

Jj=1 Jj=1

|L(25)] > 319" ()0 =22

n

where C, = 5;(sup|¢
sup |L,(x)| = Ci8, whereC,= C3min{1,(C3 + C4)_lé|¢”(x2)|}. m

x € {x;, X5}

|). Hence f.a.s.l.n,

Proor or LEmMmA 3.1. That T,/c, = 0 implies XP(|Y| > ¢,) < oo follows
from Petrov [(1975), Lemma 14, page 273]. Suppose LP(|Y| > ¢,) < co. Since
b, = n"'c, satisfies (3.4), then either n~'c, is bounded away from zero and
infinity or n™'c, = + 0. In the former case, LP(|Y| > ¢,) < oo is equivalent to
E(|Y|) < oo, which implies T,/c, = 0 [since by assumption, E(Y) = 0]. In the
latter case, the result 7,,/c, — 0 will follow via Petrov [(1975), Theorem 16, page
274] if we prove that

[o¢]
Y ¢ 2E{Y (Y| <¢c,)} <o and nc;'E{|Y|I(Y| <c,)} - 0.
n=1
The first of these results may be established as in Petrov [(1975), page 275], while
the second follows from the fact that for all n > m,
ne, E{IY|I(Y| < c,)} < neyle, +ne;t ¥ j(i7%)P(e;y < Y] < ¢))

J=m+1

<o(l)+C Y JjP(c;y<|Y|<c))

Jj=m+1

—o(1) + mP(Y] > ¢,)) + C ¥ P(Y] > c,),

j=m

where C is as in (3.4). O

Acknowledgment. I am grateful to a referee for a carefully and thoroughly
compiled list of places where presentation could be improved. The paper has
benefited from those points.
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