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BROWNIAN MOTION AND THE EQUILIBRIUM MEASURE
ON THE JULIA SET OF A RATIONAL MAPPING!

By STEVEN P. LALLEY

Purdue University

It is proved that if a rational mapping has » as a fixed point in its Fatou
set, then its Julia set has positive capacity and the equilibrium measure is
invariant. If « is attracting or superattracting, then the equilibrium mea-
sure is strongly mixing, whereas if « is neutral, then the equilibrium
measure is ergodic and has entropy zero. Lower bounds for the entropy are
given in the attracting and superattracting cases. If the Julia set is totally
disconnected, then the equilibrium measure is Gibbs and therefore
Bernoulli. The proofs use an induced action by the rational mapping on the
space of Brownian paths started at c.

1. Introduction. Let Q(z) = P(z)/Py(z) be a rational function of degree
d > 2, and let @"(z), n > 0, be its iterates:

Q%(2) =z, @""(2) = Q(Q"(2)).

The Julia set of # of @ is the set of points z € C = C U {»} for which
{@"}, . is not a normal family in any neighborhood of z. The Fatou set 7 is
the complement of Z#, that is, F = C\ /. The Julia set # is a nonempty,
compact set satisfying #£= Q(#) = @ (_#) (Section 2).

The purpose of this paper is to investigate certain ergodic properties of the
(normalized) equilibrium measure v on # for rational mappings € such that
Q(») = o and » € Z. See [12], Section 3.4 for the classical definition of v. We
shall adopt a probabilistic point of view, regarding v as the distribution of the
point of first entry into # by a Brownian motion started at « (this may be
taken as the definition of v; see [12], Section 3.4). This will allow us to
completely avoid methods and results of classical potential theory. Previous
studies of the equilibrium measure on _#, for example, [3], [9], have not
exploited its probabilistic interpretation.

It has been known since [3] that the equilibrium measure v plays a
distinguished role in the ergodic theory of polynomial mappings . Fix x € C
and consider the set @ "(z) = {¢: @™(¢) = z}. Observe that @ "(z) has cardi-
nality d", provided multiple roots are counted accordingly. Define u? to be the
uniform distribution on @ ~"(2), that is, u? is the probability measure which
puts mass d " at each root of @"(¢) = z.
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TrEOREM (Brolin [3]). If @ is a polynomial of degree d > 2, then £ has
positive (logarithmic) capacity, so v is defined. For all but at most one z € C,

ui D4V asn — o,

Furthermore, v is an invariant measure for @ and the measure-preserving
system (_#,Q,v) is strongly mixing. :

Note. -, indicates weak-convergence (convergence in distribution), that
is, u, =4 w iff for every continuous function f: C — R, ffdu, = [fdu.

It is natural to wonder whether Brolin’s theorem is true for an arbitrary
rational mapping Q. This question has only recently been settled.

TreorEM (Ljubich [8]). For all but at most two points z € C, 2, >, u,
where w is the unique maximum entropy invariant probability measure for
Q: £— F. Moreover, ( Z,Q, 1) is strongly mixing and has entropy log d.

THEOREM (Lopes [9]). If Q(x) = © & £ and if v = u, then Q is a polyno-
mial.

One might now ask: (i) are there any rational mappings other than polyno-
mials for which # has positive capacity; and (ii) if so, what can be said about
the dynamical system (_#, @, »)?

We shall assume henceforth that = is a fixed point of @ (i.e., @() = ») and
that © & £. Let Q(2) = P(2)/Py(2), where Py(z) = aogz? + a;2% 71 + -+ +ay
with @y # 0, and Py(2) = 2% + ;2% "1 + -+ +b, with d, <d, and P(2)
and Py(z) have no nontrivial common factors. If d > d, + 2, say that « is
superattracting; if d = d, + 1 and |ay| > 1, say that « is attracting; and if
d=d, + 1 and |ay| =1, say that « is neutral. (The case d =d, + 1 and
lagl < 1 cannot occur, because in this case « is a repelling fixed point and
therefore « € #—see [1], Section 5.) Observe that if » is attracting or superat-
tracting, then there exists C < « such that lim, _|Q"(2)| = » V¥ |z| > C. If
Q(2) is a polynomial, then = is superattracting.

THEOREM 1. If Q(») = o € %, then the logarithmic capacity of f is
positive, and hence the normalized equilibrium measure v on £ exists.
Furthermore, v is an invariant measure for Q. If » is attracting or superat-
tracting, then the measure-preserving system (#,Q,v) is strongly mixing,
hence ergodic. If » is neutral, then (#,Q,v) is a factor of an irrational
rotation of the circle, hence is ergodic and has entropy zero. Consequently, v
and u are mutually singular unless @ is a polynomial.

A measure-preserving system (Q,, T, u,) is said to be a factor of another
,m.p.s. (O, Ty, u,) if there is a measurable map ¢: Q; > Q, onto Q, \ N with
wolN) =0 such that po=p,°o¢"! and @oT; = Tyop. The entropy of
(Qg, Ty, 1o) is less than or equal to that of (Q, T, py), and if (Q,, T}, u,) is
ergodic, then so is (Q,, Ty, o). Since irrational rotations of the circle are
ergodic and have entropy zero, the same is true of their factors.
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The fact that v is strongly mixing in the attracting and superattracting
cases implies that v is ergodic. By Ljubich’s theorem, u is ergodic and by
Lopes’ theorem, u # v unless @ is a polynomial. Since ergodic invariant
measures are either equal or mutually singular, it follows that w and v are
mutually singular unless € is a polynomial.

Let h(Q) be the entropy of the m.p.s. (%, Q,v). Ljubich’s theorem and
Theorem 1 imply that A(Q) < log d unless @ is a polynomial, in which case
h(Q) =logd.

THEOREM 2. Assume that « is attracting or superattracting. (a) Then
h(Q) > log(d — d ). (b) If all the branch points of @ ! are contained in the
connected component of % containing «, then h(Q) > log(d — d ), provided
d, > 1.

Let 2 ={1,2,...,d}"¥ be the set of all sequences from the alphabet
{1,2,...,d} and let o: 2 — X be the forward shift.

THEOREM 3. Assume that « is attracting or superattracting and that all the
branch points of @ ! are contained in the connected component of % contain-
ing . Then there is a homeomorphism : 3 — £ such that moo = Q o and
such that the induced measure v on 3 defined by vow~ ! = v is a Gibbs state.
Consequently, the measure-preserving system (£,Q,v) is isomorphic to a
Bernoulli shift.

REMARK 1. The existence of the topological conjugacy = under the hy-

" potheses of Theorem 3 is known, at least for polynomial mappings Q. (See [1],

Section 9; however, the proof for the case degree () > 2 has an error.) The

main point (and by far the more difficult) is that v is a Gibbs state. See [2],

Theorem 1.2, for the definition of a Gibbs state. See [2], Theorem 1.25, for the
implication Gibbs => Bernoulli.

REMARK 2. The situation described in the hypothesis of Theorem 3 is very
common. If @,(z) is any rational mapping for which « is a superattracting
fixed point, then @ (2) £ @,(2) + a satisfies the hypothesis of Theorem 3 for
all lal > a, (here a , may depend on Q). See [1], Section 9, for the argument
in the polynomial case (the rational case is essentially the same).

REMARK 3. That v is a Gibbs state implies considerably more than the
Bernoulli property; see [2], [6], [7]. For example, if #— R is a Holder-continu-
ous function not of the form f = (constant) + g — g - @, then the sequence
S f=f+fQ@+fc-Q%+ -+ +foQ" ! obeys the central limit theorem, law
of the iterated logarithm, large deviations theorems, and so on, under v.

REMARK 4. That the maximum entropy measure u is a Gibbs state follows
from the Gibbs variational principle ([2], Theorem 1.22). No such trivial proof
can be given for v.
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ReEMARK 5. I conjecture that the main point of Theorem 3, that v is a
Gibbs state, remains true when the hypothesis concerning the branch points is
weakened to expansivity of @ on _#, but may fail when # contains parabolic
fixed points.

Our approach to all of the results concerning v stated above is by way of a
probabilistic characterization of the measure. Let Z, be a standard Brownian
motion process on C started at « (Section 3 below). Then Z, enters # in finite
time with probability 0 (if _# has capacity 0) or 1 (if _# has positive capacity)
and in the latter case v is the distribution of the first entrance point ([12],
Chapter 3, Theorem 4.12). More important, Q(Z,) is also (after a
reparametrization of time) a Brownian motion process started at . Thus @
acts not only on C, but on the space of Brownian paths in C. This observation
is the key to our results. To further emphasize the usefulness of Brownian
paths, we shall give purely probabilistic proofs of (most of) Brolin’s theorem
(Section 5) and Lopes’ theorem (Section 7); these are shorter, simpler and (we
believe) more appealing to the intuition than the originals.

Some familiarity with the basic properties of Brownian motion—path conti-
nuity, the strong Markov property, rotational symmetry—is assumed; see [4]
and [5], Section 1.1-1.7. The one deep property of Brownian motion that is
needed, Lévy’s conformal invariance theorem, is described in Section 3. For
the convenience of the reader, some basic results of complex analytic dynamics
are given in Section 2. Theorem 1 is proved in Sections 4 and 9, Theorem 2 in
Section 6 and Theorem 3 in Section 8.

NoTE. Since writing this paper the author has learned that Theorem 3 has
also been proved by Makarov and Volberg by a similar method, in an unpub-
lished paper entitled ‘“On the harmonic measure of discontinuous fractals.”

2. Preliminaries: Complex analytic dynamics. The most interesting
cases of Theorem 1 are when « is an attractive or superattracting fixed point
of @. We shall assume in Sections 2-8 that « is an attracting or superattract-
ing fixed point. The alternative case, in which « is a nonattractive (neutral)
fixed point, will be considered separately in Section 9. If « is attracting or
superattracting, then there is a neighborhood .# of ® in C such that @"(z) — «
as n — o uniformly for z € 4.

A normal family in a domain 9 is a set { f,} of functions meromorphic in Z
such that any sequence f, has a subsequence that converges uniformly (with
respect to the spherical metric) on compact subsets of 2. By the Arzela—Ascoli
theorem, this is equivalent to the statement that { f,} is equicontinuous in 2.
If a set of analytic functions in & is uniformly bounded on every compact
subset of 2, then it must be a normal family, because the Cauchy integral
formula implies that the derivatives are uniformly bounded on compact sub-
sets, and hence the set of funétions is equicontinuous. _

A set { f,} of meromorphic functions is said to be normal at a point z € C if
it is normal in some neighborhood of z. The Fatou set ¥ of Q(z) is defined [1]
to be the set of z € C at which {@"},., is normal. The Fatou set is clearly
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open and © € & because Q" — » uniformly in a neighborhood of . The
Julia set / is defined to be the complement of 7; it is evidently compact.
Clearly, @(F) = % and Q(#) = _£.

ProPOSITION 1. £+ O.

Proor. If f#= @, then {Q,},., would be a normal family on C. Now
Q" —  uniformly in a neighborhood of «; consequently, if Q" converges
uniformly on C, then the limit function, being meromorphic, must be identi-
cally . But it is impossible for @"* —  uniformly on C, because each
Q™: C — C is surjective. O

Note. See [1] for an argument that is valid even when « is not an
attracting or superattracting fixed point.

Define &, to be the path-connected component of % that contains o, that
is, the set of z € % such that there is a continuous path from = to z that lies
entirely in %,

ProposiTiON 2. If z € %, then Q(2) € &, and lim, _, Q" (2) = ». Fur-
thermore, this convergence is uniform on compact subsets of ..

Proor. Let y(¢), 0 <t < 1, be a continuous path in & such that y(0) = «
and y(1) = z. Then Q(y(?)) is a continuous path in % (because % and JF are
@-invariant) such that Q(y(0)) = » and Q(y(¢)) = Q(2); hence Q(z) € Z.
Since {@"}, . is normal in %, every subsequence of Q" has a subsequence
which converges uniformly in a neighborhood of ¥([0,1]). But @"({) » =
uniformly for { in a neighborhood of «, hence for ¢ in ([0, £]) for some & > 0.
Thus any subsequence @"* which converges on ([0, 1]) must in fact converge
to =, since the limit function must be meromorphic. It follows that @"(z) — .

For each C < « sufficiently large, if |z| > C, then |Q(z)| > C. For each
z € %, there is an integer n > 1 and a neighborhood % of z such that
Q"(%) c{¢: I¢l > C}. It follows that @™ — « uniformly on compact subsets
of Z. 0O

For each n > 1, the inverse function of Q" is multivalued, with branch
points contained in #,, where

o ={2€C:(dQ/dz) =0} U {z € C: Q(z) = =},
%= U Q"(%).
m=0
Let

f+=’L_JOQ"(%).
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The branches of the inverse function will be denoted by @, ", i = 1,2,...,d".
Each @;" is a (single-valued) analytic function in any simply connected
domain disjoint from Z,.

Consider the set 4. N Z,. If ¢ € &, is such that @™ (¢) € &, for some
m > 0, then lim, _, , @"(¢) = « by Proposition 2; consequently, the only possi-
ble accumulation point of &, N & is «. It follows that each point of %, \ &,
has a simply connected neighborhood disjoint from #,.

ProPoSITION 3. If Q is a polynomial, then @ ((#) = &.

Proor. By Proposition 2, Q(%) c %, so it suffices to show that
Q UF)c Z. Let z € % \ {x}. There is a continuous path y(¢), 0 <t < 1,
from o to z such that y(¢) € &, \ &, for every ¢ € (0,1). This is because
., N #Z, has no accumulation points in %, except .

If deg(®) = d, then » is a d-fold root of Q(¢) = ¢ and locally Q(¢) acts like
(const) X £%. Thus @ (y[0, 1]) consists of d distinct continuous paths, each
beginning at © and ending at one of the d points in @ (z). Each of these
paths lies entirely in % since y[0, 1] ©¢ &. By definition, each of the endpoints
lies in %, O

ProposiTION 4. If 2={Q; "}, ; is a collection of certain branches of @ "
such that each Q" € 2 is single-valued and meromorphic in a domain %
disjoint from a neighborhood of «, then 2 is a normal family in %.

ProoF. Since » is an attracting or superattracting fixed point, there exists
C <« such that if [z| > C, then |Q(z)| > |z|. Since % is disjoint from a
neighborhood of », U% _,Q (%) is disjoint from a neighborhood of «. Hence,
2 is uniformly bounded on %. O

Recall that if z € % \ #,, then z has a simply connected neighborhood
containing no branch points of any @ ". Therefore, by Proposition 4, the
collection {@,*,1 < i < d",n > 1} of all branches is a normal family at z.

ProposITION 5. Let Q; "*, k > 1, be a sequence of branches of @ "*, where
n, — %, each of which is single-valued and meromorphic in %, a connected
open subset of . If Q;,"* converges uniformly on compact subsets of %, then
the limit is a constant function, and the constant is an element of the Julia

set J.

Proor. Let f=lim@;"*; then f is a meromorphic function in %. Sup-
pose that ¢ = f(z) € & for some z € %, z # ». By definition of %, {Q"}
would then be a normal family at ¢ and consequently would be equicontinuous
in a neighborhood of ¢. Sincé @ "*(2) — ¢ as k — <, equicontinuity would
imply that @"*(¢) — z as k — «. But this is impossible, because by Proposi-
tion 2, @™ — « uniformly on compact subsets of %. This proves that
N\ {H) N F=D,s0 f(\{x}) C F.
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Next, suppose that f is not constant on %. Then f(Z \ {}) is an open set,
by the open mapping theorem for analytic functions. We will show that this is
impossible by showing that every point of # is a boundary point of #.

Let { € Z. Then for any open neighborhood .# of {, {Q"}, . , is not normal
in ./, by definition of _#. Thus {@"}, . , is not uniformly bounded in .#. Since
& contains a neighborhood of » it follows that Q"(z) € % for some z € A4
and some n > 0. But @ (%) = Z, so z € #. Thus every neighborhood of ¢
intersects %. O

ProposiTiON 6. Let T' be a simple closed curve in C that completely
encloses £. If vy is a continuous path from « to a point of #, then vy intersects
Q™) for each n > 0.

Proor. Consider the path @” - y. This is a continuous path that starts at
and terminates at a point of _#. Consequently, it must intersect I', since every
continuous path from « to _# must cross I'. It follows that y intersects

Q@ "(M. O »

ProposiTiON 7. Let T' be a simple closed curve in C that completely
encloses /. If y(t), 0 <t <t,, is a continuous path that starts at y(0) =
and intersects Q@ (') for each n > 0, then y(¢) € £ for some t € [0,¢,].

Proor. Let z,€@Q "(I''N & for n>0. Then as n — «, distance
(z,,,#) — 0 because {z € Z,: distance(z, #) > ¢} is a compact subset of %,
on which @" — « uniformly, by Proposition 2.

By hypothesis, y([0,,) N @ ™(I')+ & V n >0, so we can choose z, €
v({0,¢,D N @ ™(T). By the preceding paragraph, distance (z,, #) — O as
n — «. Since £ is compact, there is a subsequence z, of z, such that
2, >z €_F. But v[0,¢,]is closed, so z € ([0, ¢,]). O

If © is a fixed point of @ = P, /P,, then near » the action of @ is close to
that of a monomial with degree = degree(P;) — degree(P,). A useful way of
formulating this statement is as follows.

ProposITION 8. There is a neighborhood % of » in C and a conformal
bijection ¢:{z: |z| > r} - % for some r > 1 such that ¢() = ® and:

(@) if » is superattracting, then Q(¢(2)) = p(az?~%*) for every z € %,
where a #+ 0 is a constant; and

(b) if  is attracting, then Q(¢(2)) = ap(z) for every z € %, where a is a
constant such that |a] > 1.

See [1], Section 3, Theorem 3.3-3.4.
3. Conformal invariance of Brownian motion. Let 2 be an open

subset of C with smooth boundary 2 and let f be an analytic function
defined in a neighborhood of 2. If Z, is a Brownian motion in C started at
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2€ Z and if T =inf{t > 0: Z, € 99), then (f(Z,)y_,_r is, after a time
change, a Brownian motion started at f(z) and run until it exits f(2). This
theorem is due to Lévy (cf. [4] or [5]). Lévy’s theorem is clearly local in nature,
and hence may be generalized to Brownian motion and analytic functions on
an arbitrary Riemann surface.

The extended complex plane C = C U {x} may be identified with the unit
sphere in R? by the operation of stereographic projection. With this identifica-
tion, C inherits a (Riemannian) metric from the Euclidean metric on the unit
sphere in R3, and thus also a Laplace-Beltrami operator A phere- Brownian
motion on the Riemann sphere C is the diffusion process with generator
Agpheres Since A . is a uniformly elliptic operator, the existence of this
diffusion process follows from the results of [10], Sections 4.1-4.3. Thus we
can talk about Brownian motion on C started at .

The relationship between planar Brownian motion and spherical Brownian
motion is as follows. There is a C* function p > 0 on C such that A here = PA,
where A is the usual Laplacian on R? (this follows from the fact that
stereographic projection is a conformal mapping). Consequently, spherical
Brownian motion on C started at any z € C is just a time- changed planar
Brownian motion started at z, the instantaneous time dilation factor being the
current value of p.

Now let f be a (possibly multivalued) function that admits an analytic
continuation along every continuous path in C \ F, where F is a finite set. If
Z, is a (spherical) Brownian motion started at z € C \ F, then f(Z,)is a
(spherlcal) Brownian motion started at f(z), where

(3.1) 7(t) = inf{r: /Orlﬁf(Zs)lzds > t}

and |8 f(¢)| is the factor by which f: C — C expands (spherical) distances
locally at ¢. This follows from the local form of Lévy’s theorem together with
the fact that spherical Brownian motion is time-changed planar Brownian
motion.

These results carry over to arbitrary Riemann surfaces. Let M and N be
compact Riemann surfaces and let f: M — N be analytic. Brownian motion
on M (or N) is the strong Markov process whose infinitesimal generator is the
Laplace-Beltrami operator on M (or N); its existence follows from [10],
Sections 4.1-4.3. If Z, is a Brownian motion on M started at z, then f(Z,,)
is a Brownian motion on N started at f(z), where 7(¢) is given by (3.1) and
|6 f(£) is the factor by which f expands distances locally at &.

4. Brownian motion in .%,. Let Z,, ¢t > 0, be a Brownian motion 1 process
in C started at Zy =z under the probability measures P? z & C. Then
Z, = Q(Z, ), with T(t) given by (3.1) with f= @, is a Brownian motion
started at Q(2). Recall that @(») = .

‘Spherical Brownian motion Z, is recurrent but does not hit individual
points. In other words, (a) for any nonempty, open set U c C, any z € C, and
any t, <o, P¥{Z, €U for some t>t,}=1; and (b) for any z, 2 €C,
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PHZ, = 2’ for some t > 0} = 0. These statements follow from the correspond-
ing facts for planar Brownian motion ([5], Section 1.7).

Now consider the time change (3.1) with f= Q. Since @ is a rational
function, there are only finitely many z C where [5Q(2)| = 0. Also, [5Q| is
bounded since C is compact. Since Brownian motion does not hit individual
points, it follows that [JI8Q(Z,)| ds is strictly increasing in r and converges to
© as r - o as. (P?). Thus, with P? probability 1, ¢t — 7(¢) is a homeomor-

phism of [0, «). This proves:

ProrosIiTION 9. @ induces a measure-preserving transformation on the
space of Brownian paths started at », given by Z, > Q(Z,,)).

In other words, if Q,, is the set of continuous C-valued paths started at o, &
the Borel o-algebra on ), and P* the Wiener measure on ()., &), then the
induced transformation @: (Q,, &) — (Q,, ) is measure-preserving.

Define a stopping time T by

T=inf{t>0:Z € _/}.
On (T = »} the path Z, avoids # forever; on {T < «} it enters _# in finite
time. Since ¢ — 7(¢) is a homeomorphism of [0, ) (with P* probability 1) the
events {T < «} and {r~(T') < =} coincide (a.s. (P*)) and

T Y(T) = inf{t: Q(Z—r(t)) G/},

because & and £ are @-invariant sets. Therefore, the distributions of Z; and
Q(Z;) are the same under P* (we have not yet shown that P*{T < «} = 1, so
these distributions may be defective). Thus:

CoroLLARY 1. If P*{T < «} = 1, then v is a Q-invariant probability mea-
sure on F.

ProposiTION 10. If « is an attracting or superattracting fixed point of Q,
then P*{T < o} = 1.

The proof will use the existence of a local conjugacy with a monomial
(Proposition 8), the recurrence of spherical Brownian motion and the following
simple first-passage probability.

LeEmMA 1. Let Z, be a Brownian motion in R? started at Z, = z under P?,
where |z| = r > 0. Let 75 = inf{¢: |Z,| = R}. If R, <r < R,, then

. _ log(r/R,)"
PArm, <o) = Tog(RyyRy)

See [4], Section 2, or [5], Sectioﬁ 1.7, for the proof.

Proor or ProrosiTIiON 10. Suﬁpose first that F# %, that is, that & is
not connected. Since ¥ is open, there exists a nonempty open set U € F\ Z.
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Let 7, = inf{¢: Z, € U}. By the recurrence of spherical Brownian motion,
P*{ry; <o} = 1. The path Z,, 0 <t < 7, is continuous, starts in %, and
ends in U, so it must pass through d.%, c_#. Consequently T < 7, and so
P*{T < «} = 1.

Next, assume that « is a superattracting fixed point of @. By Proposition 8,
there is a neighborhood U of » in C and a conformal homeomorphism
¢: {lz] > r} > U such that ¢() = o and

Q(¢(2)) = @(az?™*) Vel >r,

where « is a nonzero constant. Choose R; <Ry < R_; <R_, < --- satisfy-
ing R,_; = |a|R¢™? for i < 1and R, > r; define

C,={2:1l =R}, i<1;
Ly = ¢(Cy);
r,=Q™T,) VneZ.

Observe that I'_, = ¢(C_,) V n >0 and ¢(C;) =T, N U, but in general
¢(C,) # I';. By Proposition 7, any continuous path y(¢), 0 <t < t,, which
starts at y(0) = « and intersects each I', must intersect #. Our objective will
be to show that with probability 1, a Brownian path started at « will hit all of
the sets I, n > 0, in a finite time interval.

Let y(¢), 0 <t < ¢, be a continuous path with y(0) € I',,, and y(¢,) €
I,_, for some %k > 1. We will argue that y must hit T,. If n < 0, this is
because I',, = ¢(C,,) V m < 0, ¢ is a homeomorphism and C,, are concentric
circles. If n > 0, then @"(y(¢)) is a continuous path from I'; to I'_,. Since
I, N U =¢(Cy), the sets I}, and I'_, are separated by Iy = ¢(C,); hence
Q"(y(¢)) must hit T, and so y(¢) must hit T',. Thus, for a Brownian path that
reaches I',, n > 1, to return to I'_, it must hit I,_,, then T, _,,..., then T
and finally I'_,.

Now let Z, be a Brownian motion started at z € C under the probability
measure P? Fix z€T,, n>0; let £ =Q"(2) and { = ¢~ '(¢); then by the
conformal invariance of Brownian motion (since @™ and ¢ ! are analytic),

P*(Z, hits T, , | before I, _,}
> P*(Z, hits T, , ; before @ "(T_,)}
= P¥{Z, hits I, before I'_,}
= PY{Z, hits C, before C_,}
log(R,/R,) d-d, 2
“log(Ry/Ry) d-d,+1°3
[That (d —d,)/(d —d, + 1) = 2/3 follows from the fact that « is superat-
tracting. In the attracting case, (d —d,)/(d —d, + 1) =1/2 and so the
proof breaks down.]

Consider Brownian motion started at «. Since I'y bounds two nonempty
open disks in C, the recurrence of Brownian motion implies that it will reach
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I'y in finite time. The same argument shows that it will then return to I'_; in
finite time. But there is positive probability that, after reaching I'; for the first
time, the path will visit all of the sets I',, n > 1, before returning to I'_;. This
is because upon reaching any I, the path has chance at least 2 /3 of moving up
to I,,; before returning to I',_,. For a formal proof, let X,,, m > 0, be the
indices of successive sets I', visited by the path after the first visit to I'y. Then
27%m m > 0 is a supermartingale with 27%0 = 2° = 1, so by the maximal
inequality for positive supermartingales,

P*{Z, returns to I' _; before visiting all T,,, n > 0}
= P*{27%» = 2 for some m > 0}
<1/2.

But if Z, visits all of the sets I, n > 0, before returning to I' _;, then it must
do so in a finite time interval, because Z, will return to I'_; in finite time. This
proves that P*{T < o} > 0. Now for any compact set K c C, it is either the
case that PH{ry <o} =1V z e C or PHrpy <o} =0V ze C \ K ([12], Sec-
tion 2.2), where 7 = inf{s: Z, K}. Therefore,

Pe{T < »} =1.
Finally, assume that » is an attracting fixed point of @ and ¥ = .. By

Proposition 8, there is a neighborhood U of « in C and a conformal homeomor-
phism ¢: {|z| > r} - U such that ¢() = » and for some a, |a| > 1,

Q(¢(2)) = ¢(az) Viz| >r.
Choose R > r and define
C_,={z:lzl =leI""'R}, n=>-1;
Io = ¢(Co);
I,=Q (I, VnelZ.

As in the superattracting case, I'_, = ¢(C_,) V n > 0 and ¢(C,) =T; N U.
Also, ¢(C,) # I';, because z — az is a 1-to-1 mapping of C; onto C, but
z = Q(z) is a d-to-1 mapping of I'; onto Iy and we have assumed that d > 2.
By Proposition 7 applied to @* for any % > 1, any continuous path (),
0 <t <t,, which starts at y(0) = «» and intersects each I,,, n > 1, must
intersect 2.

We claim that there is an integer 2 > 1 and a constant p > 1/2 such that

P#Z, hits T, before I'}} >p VzeT,.

Here is the proof. The function @ maps I'y onto I'_; bijectively, but maps
Q I'_,) d-to-1 onto I';; hence @ X(I'_;) \ Ty contains a closed curve A.
Since @ (I'_) c @ *XI_,) forall k> 1, A c @ *(T_,). Since &= &, there
isapath B in & from I'y to A. Since the sets I', accumulate at # as & — o,
for all & sufficiently large, I', will not intersect 8. Now from any point z € T,
there is a continuous path from 2z to Iy that does not intersect I',,; conse-
quently, for each z € I',, there is a continuous path from z to A that does not
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intersect Ty U Ty, (ust follow a path from z almost to T, then move to B
without hitting T, or T, then follow B8 to A). It follows by routine arguments
that

P*{Z, hits A before Ty UT,,} >0 Vzel;
P¥Z, hits T, before [,} >0 VzeA;
= P*{Z, hits Ty, before Ty} >0 VzeA.

The conformal invariance of Brownian motion implies that for any z € [,

£=Q%™(2), { = o7 1(&),
P*{Z, hits T, before @ %*(Q%*(T,))}
= P¥{Z, hits T, before I'_,,}
= P¥{Z, hits C, before C_,,}
- 1/2.
Hence,
1/2 = P*{Z, hits @ 2*(Q®*(T,))) before T}
> P?*{Z, hits Iy before I'y,} + P*{Z, hits A before I',, and Iy, before I'y}
> P*(Z, hits Iy before I,,}.

Since P*{Z, hits Iy before I'y,} is continuous in z (in fact, it is harmonic) and
since I', is compact, this proves the claim.
It now follows that for any n > 1, z € T, ¢ = @~ V*(2),

P*Z, hits I,, , ;, before T,,_,,,}
> P¥{Z, hits T,, before T} >p > 1/2.

The same argument that was used in the superattracting case now shows that
P{T < »} > 0 and therefore

P*{T < »} =1. |

COROLLARY 2. If » is an attracting or superattracting fixed point of @, then

PT <x} =1 VzeC.

Proor. If K is any compact subset of C and 7y = inf{¢: Z, € K}, then
either P{ry <} =1V z€ C or PH{riy <x} =0V z &K ([12], Chapter 2,
Proposition 2.10). Since Brownian motion started at « cannot reach # with-
out going through some intermediate points of % and since P*{T < «} = 1, it
foll(l)ﬁvs that P*T < «} = 1 for some, and therefore all, z € C. O

ProrosiTiON 11. If « is superattracting or attracting, then the measure-
preserving system (_Z, Q,v) is strongly mixing.
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REmARK. If @ is a polynomial or if # is totally disconnected then (7, @, v)
is Bernoulli, which is considerably stronger than strong mixing. See Theorem
3 and Section 1, Remark 4.

Proor. Let Z, be a Brownian motion started at < under P”. Define
processes Z{™), n > 0, by '

zZM=Q"(Z, ), t=0,
where 7,(¢) is given by (3.1) with f= Q". Let
T, = inf{t: Z{W € £}.

To prove the proposition it suffices to show that for all continuous functions
r.8: f— R,
(4.1) lim Bf(Z§)g(2f) = Ef(27) E"¢(Z1).
We may assume that f, g: C — R are continuous on all of C.

Let I' be a simple, closed curve in C that completely encloses _# and define
I,=Q ™I If o, =inf{t: Z, T,}, then lim,, ,, 0, =T (see Proposition

6). Consequently, lim,, ,, g(Z, ) = g(Z;); since f and g are bounded on C, it
follows that in order to prove (4.1) it suffices to show that for each m > 1,

,}i_l)rgoEmf(Z‘T';’)g(Zam) = E°f(Zr)E"g(Z,,).
Now T > o,,, so by the strong Markov property,
E*(f(2§))2,, = 2) = E*(£(Q"(Z1))Z,, = 2) = Ef(Q"(Zr))
for all z € I',,. By the conformal invariance of Brownian motion,
E*(f(Q"(Zr))) = EV®f(Zy).

But as n — ©, "(z) — » uniformly for z € I,,. Since E¢f(Z;) is a continu-
ous function of ¢ € C, it follows that

lim E*( £(24)2,,) = E*f(Zr).

n—oo

The functions f and g are bounded, so by the dominated convergence
theorem,

lim E*f(Z{")g(Z,,)

= lim B*(E*(£(2§")2,,))8(Z.,)

- B(E"f(21))2(Z,,)
K - Ef(Z;) E°8(Z,,)- 0

NotTE. A similar argument shows that. the stationary sequence (Z{™), .,
of random paths is strongly mixing.
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In view of [12], Chapter 3, Theorem 4.12, Propositions 10 and 11 imply all
of Theorem 1 except for the case where « is a neutral fixed point. This case
will be taken up in Section 9.

5. Polynomial mappings and Brolin’s theorem. In this section we
assume that @(z) is a polynomial of degree d > 2. Thus, = is a superattracting
fixed point, so Brownian motion started at « reaches _# in finite time and the
hitting distribution v is an invariant probability distribution (Propositions
8-9).

The property that distinguishes polynomials @ among the rational map-
pings that fix « is that z = « is the only solution of @(z) = «. Therefore, all d
branches @; ' of @ ' satisfy Q; ()= . Define F,= @, '@ (for some
indexing of the branches @, !); then each F, is single-valued and analytic in a
neighborhood of «. (In fact, by Proposition 2, the functions F,, F,, ..., F, are
analytically conjugate to the d rotations through angles 27wj/d, j = 0,1,...,d,
in some neighborhood of «.) Moreover, each F; has an analytic continuation
along every path in % \ {z € C: @(2) = 0} (but F, may be multivalued).

Let (Z,)y.,.r be a Brownian motion started at « and terminated at 7.
Define the trace Z of the Brownian motion (Z,),_,_, to be the equivalence
class of all continuous paths that can be obtained from (Z,),_,., by a
reparametrization of time. Observe that each of F(Z), i =1,2,...,d, is a
Brownian trace, as is @(Z), by conformal invariance. [Note: The original
parametrization (Z,), _, . can be recovered from Z by a standard formula for
the quadratic variation of a Brownian path.]

ProrosiTiON 12. Given the trace Q(Z), the conditional distribution of Z is
the uniform distribution on F(Z), FZ), ..., F(2Z).

Proor. Generate a trace Z by choosing one of F(Z),..., F/Z) at ran-
dom. Since each of F(Z) is a Brownian trace, so is Z; thus Z has the same
distribution as Z. Furthermore, Q(Z) = Q(Z), since F, = Ql:l o Q. Therefore,
the joint distribution of (Z, Q(2)) is the same as that of (Z, Q(Z)). But the
conditional distribution of Z given Q(Z) is clearly uniform on F(2), ..., F(2),
hence uniform on F(2),...,F,(Z). O

CorOLLARY 3. Given Q(Z;), the conditional distribution of Zp is the
uniform distribution on the d preimages of Q(Zr).

This is an immediate consequence of Proposition. 12, since the o-algebra
generated by @(Z;) is contained in the o-algebra generated by Q(Z).

There is an easy, direct proof that u3, — v for each z € &, \ {x} based on
* Proposition 12. (Recall that Brolin’s theorem states that u? — v for all but at
most one z € C.) Here is a sketch.

First, consider z € %, z # », such that z is not a branch point of any @ ™",
n > 1. Let T be a simple closed curve in %, which separates © from _#, such
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that z € I’ and such that no point of I' is a branch point of any @ ~". Such a
curve I' exists because the branch points can only accumulate at © in %
(Section 2). Let @ ", i =1,...,d", be the distinct branches of @ " in a
neighborhood of T'; then @ (I') = U% ,@;™(I"). Observe that each @; ™(TI")
contains exactly one point of @ "(2), so

(5.1) pi(Q™(T)) =1/d"  Vi=1,2,...,d"

The curve I' may be covered by two simply connected neighborhoods
contained in %, neither containing branch points of any @ ~". By Proposition
3, the collection of all branches of all @ ", n > 1, is a normal family in each of
the two neighborhoods. Consequently, by Proposition 5,

(5.2) lim max distance(¢, #) =0,
n—ow e ™T)
(5.3) lim max diameter(Q;"(T)) = 0.

n—ow l<i<d”

Now consider Brownian motion (Z,),_, _ started at « and terminated at
_#. By Proposition 7, the path Z, must intersect each @ ~"(I') before reaching
/. Let o, = inf{t: Z, € @ ()} < T since Z, is continuous, (5.2) implies that
0, T and Z, — Zp as. as n - . It follows that the distribution of Z,
converges weakly to v as n — «. Now Proposition 12 implies that

(5.4) P*{z, e@™(I)}=1/d" Vi=12,...,d",

because for each i, exactly one of the d” paths mapped into @"(Z) by Q" first
hits @ (') in @; ™(I'). But (5.1) and (5.4) together with (5.3) imply that for
large n, w? and the distribution of Z, are close in the weak topology.
Therefore,
(5.5) weak lim u? = v.

noo

Next, consider z € %, \ {=} such that z is a branch point of some ",
n > 1. Recall (Proposition 3) that if @ is a polynomial, then @ (%) = %;
hence, for each m > 1, @ ™(z) € &,. For large m > 1, all of the points of
Q@ ™(z) must be near _#, by Proposition 2, so if m is sufficient]y large, @ ™ (2)
contains no branch points of any @ ", n > 1, because the Bfanch points can
only accumulate at » in .%,. Consequently, for each £ € @ ™(2),lim,, ,, pué =v
by (5.5). But u?,, is a weighted average of p, £ € @ ™(2). Therefore,
lim, ,, u3% =v.

With just a little more work, one can show that for any nonexceptional
2,, 25 € C [an exceptional point being a d-fold root of @(z) = z] the measures
w2 and u?2 becomes close in the weak topology as n — . Since this argument
is carried out in [8], Section 4, we shall omit it. As there is at most one
exceptional point of @ other than o, this proves Brolin’s theorem.

6. Entropy of the equilibrium distribution. In this section we as-
sume that Q(z) = P(z)/Py(z), where P; and P, are polynomials of degrees d
and d,, d — d, = 1, and that « is a superattracting or attracting fixed point.
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Brownian motion started at « reaches _# in finite time and the hitting
distribution v (i.e., the equilibrium distribution) is an ergodic, invariant
measure, by the results of Section 4.

Since ® is a (d — d ,)-fold root of Q(z2) =z, there are (d — d ) distinct
branches @; ! of @ ! that fix . Define F, = @ '@, i = 1,2,...,(d — d);
each F, is single-valued and analytic in a neighborhood of », and Fi(») =
®. Also, each F; has an analytic continuation along each path in &, \
{ze C: @(2) = 0 or Q(2) = x}.

Let (Z,) ;.7 be a Brownian motion started at « and terminated at 7.
Define the Brownian trace Z as in Section 5, and observe that each of F(Z),
i=12,...,(d —d,), is a Brownian trace.

PropPOSITION 13. Given the trace Q(Z), the conditional distribution of Z is
the uniform distribution on F(Z), FX2), ..., F;_, (Z).

Proor. Same as for Proposition 12. O
Let A(Q) be the entropy of the measure-preserving system (7, @, v).
ProposiTION 14. A(Q) > log(d — d ).

Proor. It suffices to prove that for any & > 0, there exists a finite Borel
partition & of # such that (&£, Q) > (1 — e)log(d — d ). We will show that
this inequality holds for any partition & of sufficiently small diameter. (Note:
The notation for entropy is as in [11], Chapter 5.)

Choose & > 0 small. There exists 8 > 0 so small that if diam(#) < §, then

(6.1) v{z: cardinality(@ '(z) N G) > 2, some G € P} <

[multiple roots ¢ of Q(¢) =z are counted according to multiplicity]. This
follows from the fact that, with probability 1, Z, has d distinct preimages
under @ . .

According to a standard result ([11], Chapter 5, Proposition 2.12),
hM2,Q) = H(PIV=_,Q ™(£)). Now, conditioning on V5_,Q "(&) is the
same as conditioning on the sequence of sets G; in & containing
Q(Z;),QHZy), ... . Clearly, Q(Z;) determines this sequence, so the o-algebra
& generated by the Brownian trace Q(Z) contains V5,_,@ "(&). It follows
([11], Chapter 5, proposition 2.5 (2)) that

WMP,Q) = H(@ Vv Q‘”(@)) > ﬁ(gfw).

n=1

B}'f the result of the preceding paragraph, the probability that @(Z;) has more
than one preimage (under @ ') in’any set of & is less than . Moreover, by
Proposition 13, given & the conditional distribution of Z, is the uniform
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distribution on d — d , of the d points in @ (Q(Z;)). Therefore,

H(PZ) =E ¥, 1{Zy € GYlog P(Z; € GI#)™"
Ge&

> (1 - ¢)log(d —dy). O

A variant of this argument will be used to prove Theorem 2(b) in Section 8.

7. Rational mappings and Lopes’ theorem. Let Q(z) = P(2)/Py(2),
where P,, P, have no nontrivial common factors, and assume that @() =
o & #. Lopes’ theorem states that if » = w, where y is the maximum entropy
invariant measure of @, then @ is a polynomial. In this section we shall
present a proof of Lopes’ theorem under the additional hypothesis that « is an
attracting or superattracting fixed point of @. The (less interesting) case in
which « is a neutral fixed point will be treated separately in Section 9 [by
showing that (_#; @, v) is ergodic and has entropy zero].

The main step in the proof will be to show that if v = u, then |Py| is
constant on _#. (Lopes [9] also does this, but his proof involves some laborious
calculations.) Our argument will be based on a simple fact about harmonic
measure which may be of some interest in its own right. Let K be a compact
subset of C such that « ¢ K and such that K has positive capacity, that is,
Brownian motion started at o will hit K with probability 1. Then Brownian
motion started at any point of C will hit K with probability 1. Let 7 = inf{z:
Z, € K}; for ¢ € C, define v,(dz) = P{Z, € dz} (under P¢, Z, is a Brownian
motion started at ¢). Define v = v,. Note: v, is the harmonic measure on K as
seen from ¢&.

PROPOSITION 15. Let £, &,,...,¢, € C (the same point may be listed more
than once). A necessary and sufficient condition for v = n~'L}_ 1V, is that
ITI7 (z — &)l be a.e. constant for z € K, relative to v + Lv, .

Proor. First we will show that if K c L, = {z € C: |R(2)| = a}, where
R(z) =TIz —§) and 0 <a < o, then v = n'12§‘=11/§i. Let (Z,)g.,., be
Brownian motion started at « and stopped at o = inf{¢: |Z,| = a}, under P~.
Define

Z,=ad2,/1Z), t>0,

that is, Z, is the reflection of Z, in the circle of radius a centered at 0. Since
reflection in a circle is a conformal map (orientation-reversing), Z, is a
time-changed Brownian motion started at 0. With probability 1, neither
(Z)o<,<o DOr (Z,)y ., -, hits a branch point of R™*.

The polynomial R(z) has an inverse function R~! with n distinct branches
R{%,...,R;! defined in a neighborhood of . Choose one of the n paths
R;XZ),...,R;XZ), t = 0, at random (according to the uniform distribution
on {1,2,...,n)) and call it Y, if Y, = R;XZ,), define Y, = R;(Z,). Then
(Y.)o<: <o is a time-changed Brownian motion started at « and stopped upon



BROWNIAN MOTION AND JULIA SETS 1949

reaching L,. This follows from virtually the same argument as that used in
proving Propos1t10n 12. Similarly, (Y,)y.,., is a time- changed Brownian
motion started at Y, and stopped upon reaching L,, where P*{Y,=¢,) =n"1
for each i =1,2,...,n (with multiple pomts g counted accordingly). By
construction, Y = Y consequently, v = n X7 1V,

Next we will show that if v = n~1L7_ 1V, then |[R(2)| is constant a.s. on K
w.r.t. v. Suppose not; then there exists a > 0 such that

K.,=Kn{z:|R(2)| > a}
and
K =Kn{z:|R(2)| <a},

both have positive v-measure. Let Y, Y,, o, P* be as in the previous para-
graph, and define

a =inf{t:Y, € K},
a =inf{t: Y, e K}.

Observe that Y, has distribution » and Y, has distribution n~1X7_ 1V, We
will show that

P*{Y,€K,}>P*{V, €K },

contradicting the assumption v = n~1¥7_ 1V,
Note first that

a<o=Y €K,
a<o=Y,eK_.
Hence
P*{Y,€eK,} =P°{c>aVa}+P{@a=o0>a)
+P*{Y,eK ;o <aAa)
+P*{Y,eK ;a<o<a}
and
p{Y, €K, }=P°°{I7_EK+;&za>a} +P°°{}_’_EK+;03a/\&}.
On the event {0 < a A @)} neither Y nor Y hits K before time o. But Y = Y

S0 beg'mnmg at time o each of Y, Y is a Brownian motion started at the same
point T, = Y_ and hence by the strong Markov property,

P*{Y,eK o<and) =P (V€K ;o<aAa).
Consequently,
‘P*{¥,eK,} -P*{Y, €K}
—Plo>ava) +P(azo>aT¢K,)+ P (Y, e K ;a <o <a).

We will show that the sum of the first two terms is strictly positive.
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The region {z: |R(2)| > a} is a connected open set, so there are continuous
paths from « to K, that do not hit {z: |R(2)| = a}. It follows that P*{c > a}
> 0. Suppose that P*{o > a V a} = 0; then P*{@ > o > a} > 0. On the event
{o < @}, the path Y, goes from Y, to Y, without hitting K. Conditional on this
event, there is positive probability that Y, will approximately retrace its path
from o < ¢ < 20, avoiding K and landing, at time 20, at a point near Y,,.
Since the unconditional probability of {Y, € K_} is positive and since hitting
probabilities are continuous functions of the initial point, it follows that

P (Y, e K_|Z){a> o} >0

(here ¢, is the o-algebra generated by {Z, , ,,¢ > 0}, i.e., the stopping field).
Thus,

P”{&20>a}>0=>P°°<I7C_,EK_;&20'>01>>0;

this proves that P*{Y, € K, } > P°°{I_’ € K }. This completes the proof that if
v=n"lLr Ve, then |R(z)| is constant a.s. on K w.r.t. v.

Finally, suppose that |R(2)| = a a.e. (v + 2y, ). Define K' = K N L,. Then
the hitting distribution of K' is the same as that of K for each of the
processes Y, and Y,, because (v + Sy, XK \ K') = 0. But K'cL,, so the
hitting dlstrlbutlon of K’ is the same for each of the processes Y, and Y Thus
v=n 1):;_11’@ a

Let R(z) =TIz —-¢;) and L, ={z € C: |R(z)| = a}, where 0 <a <

and §;,&5,...,&, €C. Then L, is the union of a finite number of simple
closed curves LY, ..., L(®, each of which surrounds a bounded region of C in
which |R| < a.

LEMMA 2. Let F be a rational function. If |F(2)| =c > 0 for infinitely
many z € LY, then |F(2)| = c for every z € L.

Proor. Take z, € LY such that |F(2)| = ¢ for infinitely many z in every
neighborhood of z, in L{’. There is a 1-to-1 conformal map ¢ of the unit disk
onto a neighborhood % of z, such that ¢(0) = z, and ¢~ (LY) consists of a
finite number of line segments through 0, one of which is the real axis. Also, ¢
may be chosen so that |[Fo¢(¢)| =c for infinitely many ¢ € R. A routine
argument now shows that the power series of i(log F o ¢ — log ¢) must have
real coefficients. Consequently, |[F(z)| = ¢ for every z in an open arc of L{’
containing z,. But the same argument applies at the endpoints of this open
arc; therefore, the arc of L, on which |F| =¢ may be extended indefinitely
until it comes back on itself. O

The crucial fact about the maximum entropy measure u for the argument
below is that it is balanced, that is:

ProprosiTiON 16. Let X be a random variable with distribution w, where p
is the maximum entropy measure for @ on £. Let Y be a random variable such
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that, conditional on X, Y is uniformly distributed on the d points in @ (X).
Then Y has distribution u.

Proor. Choose z € C such that u?, = u weakly as n — « (recall Ljubich’s
theorem). Let Y, have distribution u% and let X, = @(Y,). Then X, has
distribution u? _, and, conditional on X,,, Y, is uniformly distributed on the d
points in @ *(X,,) (this follows from the definition of u? and w?_,). Conse-
quently, the random vector (X,,, Y,) converges in distribution to (X, Y). Since
Y, has distribution u? and u? — u, it follows that Y has distribution w. O

Assume for the remainder of this section that Q(z) = P,(z)/P,(2), where P,
and P, are relatively prime, with d = degree P; and d, = degree P, satisfy-
ingd>d, +1>2, and assume that u = v. We will show that this leads to a
contradiction. Take Py(2) = I1{x(z — ¢;) and let v, v, be as in Proposition 15
for K = /.

Cramv 1. There exists a > 0 such that [P,| = a ae. (v + Z‘f*vfl).

Proor. Let Z, be Brownian motion started at « (under P*) and run until
the first time T it hits #. Then Z, has distribution v = u. Let
QrNZ),Q;4Z),...,Q;%Z,) be the d paths that map into Z, by @, listed so
that @ X(Z,) =¢; for i =1,2,...,d, and Q Z,) = « for i > d,. Choose
one of the points Q; (Z;),...,Q; (Z;) at random and call it Y; then Proposi-
tion 16 implies that Y has distribution u = v. Choose one of the points
Q' AZp), Q1 Zy),...,Q; (Zy) at random and call it W; then Proposition
13 implies that W has distribution v = u. Consequently, if one chooses one of
the points @; (Zp), Q5 N(Zy),...,Q; (Zy) at random and calls it X, then X
has distribution ».

If one chooses one of the paths Q7 (Z),...,Q;(Z,) at random, the result
is a Brownian motion started at a random point in {£}, £,,..., &, } and run
until it hits #. (This is because Z,, ¢t > 0, does not hit branch points of @ *,
and each branch of @ ! is conformal except at branch points.) Consequent-
ly, the distribution of X is (d,) 'Efx,v,. Thus v = (d,) 'T{*,v,, so the
claim follows from Proposition 15. (The constant a cannot be zero, because
|[Py(2)l = Oonly at z = £,,&,,...,&, and ¢, & £) O

CLAM 2. [Py(2)| = a for every z € £.

Proor. Let z € # and % be a neighborhood of z. There exists n > 1 such
that »(Q@"(%)) > 0. [This follows from Montel’s theorem (cf. [1], Section 5),
which implies that U, . Q™"(%) excludes at most two points of C.] Since
v =.u, it follows from Proposition 16 that (%) > d  "v(Q™(%)) > 0. Conse-
quently, by Claim 1, there exists £ € % such that |P,(¢)| = a. Therefore, since
% is arbitrary, |Py(2)| = a. O
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Recall that L, = {z € C: |Py(2)| = a} consists of a finite number of simple
closed curves LY, L®, ... L™ each of which surrounds a bounded region of
C in which |P,| < a.

Cramm 8. f£= U™ LY for some m <k, provided LY,..., L are la-
belled appropriately. ‘

Proor. By Claim 2, #c L,; consequently, if [Py(z)| > a, then z € %
(because {z: |Py(2)| > a} is connected). Thus, if z<€ L, and z & _#, then
ze % and so Q"(z) > was n — w,

Since @"(#) =_F V n > 1, it follows that [P, Q"(2)| =aVz € £ n > 1.
Hence, by Lemma 2, if #n LY is infinite for some i, then [P, Q"(2)| = a
V ze LY, V n>1; consequently, L’ c_#, by the result of the previous
paragraph.

To complete the proof it suffices to prove that # has no isolated points. But
this follows from the argument in the proof of Claim 2. O

It is now easy to obtain a contradiction. Consider L’ c _# (note: £+ O so
there is at least one L% contained in _#, by Claim 3). The curve L is a
simple closed curve that surrounds a bounded region R; in which |P,| < a;
hence R, c &% but R,N % =@. It follows that @ (R, c &% but
Q@ NR)N Z =3, because Q(F) c . However, if @ Y (R,)C ¥ and
Q@ Y R)N % =, then @ (R, c U™ ,R,;, where R, is the bounded region
surrounded by L’ and m is as in Claim 3. [Note: @ '(R,) cannot intersect
Uk ,..1R;, because R, Cc & for i >m + 1, since LY ¢ _£.]

Now each R;, i =1,2,...,m, contains a zero of P,(z), by the argument
principle (R; is surrounded by L, on which |P,| = a and |P,| < @ in R,). But
€ maps the zeroes of P, to «; since R; is a connected component of %, it
follows that Q(R,) c %, This is a contradiction, because @ (R,) c U™, R;
and R, N % =C. O

8. Totally disconnected Julia sets. Assume throughout this section
that « is a superattracting fixed point of @ and that the branch points of @ !
are contained in %, Our goal is to show that: (i) @Q: #— £ is topologically
conjugate to the forward shift o: 3 — 3 on the sequence space 3 =
{1,2,...,d}"; (i) the equilibrium measure » pulls back to a Gibbs state
v on 3; and (iii) the entropy A(Q) of the system (_Z, @, v) satisfies h(Q) >
log(d — d ). ‘

. 8A. Topological conjugacy.

LEMMA 3. There is a smooth Jordan curve T in C whose interior contains
/ and whose exterior contains Uﬁ=1Q”(£O).
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Proor. By hypothesis, Q(#,) C Z, because Q(#,) consists of the branch
points of @ 1. It follows from Proposition 2 that (%)) € %, V n > 1 and
that @"(z) — = V z € #,. Hence there is a large open disc D in C containing
/ and at most finitely many points of U} _,@"(#,). Label these points
£, €, ..., &, Since %, is connected and £,,..., ¢, € 7, there is a closed set
P c %, containing &,,..., &, such that D \ P is simply connected and con-
tains #. Let ¢: {|z| < 1} = D \ P be a conformal homeomorphism of the unit
disk onto D \ P (such a mapping exists, by the Riemann mapping theorem).
For r sufficiently close to 1, o({lz| <r}) 2 _£. Set T = ¢({lz| = r}. O

Define
9 = domain interior to T'.

Observe that 2 is simply connected, so by Lemma 3, all branches ;" of all
Q" n>1,are single valued and analytic in a neighborhood of 2. Fix some
definite labelhng Q7' Q2 ,..., Q7! of the distinct branches of @ ! in 9. For
any finite sequence i,i, - -* i, of symbols from {1,2,..., d}, define

Aty o0 iy) = Qi_1°Qi_21° OQi_nl(/)’
I‘(ili2 n) = Qzl 12 oQi_nl(F)7
D(igy " 1,) = Qi_l °Qi_21° °Qi_,11(=@)'

[These are legitimate definitions, because (i) @ '(#) =_£C 2 and (ii) all
branches of @ " are single-valued and analytic on 2, hence each must agree

with some @; 'c -+ °Q; ' on £.] The definitions have some immediate but
important consequences:

(a) Sy o i,) C LIy " ip1);

(b) Figig - in) N F(ihih -+~ i,) =@ unlessi, =i, V1<j<n;

(c) Q:/’(i'li2 oo i,) = F(igig "+ 1,) isasurjective homeomorphism;
(d) lim = max diameter( £ (i, - - i,)) =0

n—w iy L,

[property (d) follows from Propositions 4-5]. Note that (a)-(d) imply that # is
totally disconnected.
For each infinite sequence i;i, - € 2 we may now define

m(igy ) = OI/(iliz ).

By (a), (c), this is the intersection of a nested sequence of nonempty, com-

pact sets (see Proposition 1) and by (d) the intersection consists of a single

.point. Hence 7: 2 — / It follows from (a), (d) that this map is continuous

and from (b) that it is 1-to-1; it is clearly onto, because for each n, f=
Uiyiyi, £G1a "7 5. Flnally, by (c),

Qomr=moo.
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Thus, we have exhibited a topological conjugacy between @: #— ¢ and
g:3 > 3.

The curves I'(i i, - - i,) have played no role thus far. However, in study-
ing Brownian paths started at « and stopped at # they will be very useful,
because each I'(i i, - i,) surrounds the corresponding #(i;i, ‘- i;). Un-

fortunately, the sets 2(iji, - i,) do not satisfy the nesting property (a)
above. But ' and the region exterior to I' are contained in %, so @"(z) — ®
as n — o uniformly for z € 2, by Proposition 2; consequently, there is an
integer r > 1 large enough that

(e) Q(1) < (2),
(f) Q@ (Z)c2 Vnxr.

Henceforth we shall assume that » > 1 is an integer large enough that both
these statements hold. We now have

(g) g(ZIZZ l(n+1)r)c°@(l1l2 lnr)’
(h) D(igg - i,) N D(ifly i) =@ unlessi;,=i;V1<j<n;

(i) Q: D(ijiy - i,) = D(igig *+* i,) isasurjective homeomorphism;
() P(igiy = ip) =0D(igiy " ip);
(k) Ay 0 1,) CD(igiy 0 1y).

Finally, observe that &= %, so % is connected. Here is the proof. The
region @ )¢ exterior to I' is contained in %, by construction. For any n > 1,
Q@ " (2)) c &, by an easy induction argument using @, @, (k). But
F=U%_1Q@ "(2)%), because F= N5_,Q@ " (2).

8 B. Characterization of a Gibbs state. We are to show that the pullback
V=vom

of the equilibrium measure v is a Gibbs state on 3. For that it suffices to show
that there is a Holder continuous function f: % — R and constants 0 <¢; <

¢, <  such that for every i;i, -+ €2 and n >0,
(8.1) e; < v(Fidy " 1,))/exp(S, f(isds -+ )} <ca
where

S, f=f+foa+foad?+ - +foo™

(see [2], Theorem 1.2. A function f: 3 — R is Holder continuous if there exist
constants C < «, 0 < B < 1 such that |f(i;i, - -) — f(i4i5 -+ )l < CB" when-
,everij=i'j\7’lsjsn.) )

LEmMMA 4. To prove (8.1) it suffices to prove that
(8.2) v(Figdy -+ in)) >0 Vigy o+ iy,
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and that there exist constants C < o, 0 < < 1 such that for any two se-

quences iqiy *** i, and ijiy - i, satisfyingi; =i, V1 <j <k, it is the case
that
69 |oof HLGE NI LY o
v( (s - 1)) /v( S (s o i)
Proor. For any sequence i,i, ‘-, define
firig - ip) = log{v( F(isis -+ i,))/v(F(isig = in))}s

f(isgy o) = lim f(igy - 1,).

The hypotheses (8.2)-(8.3) imply that f is Holder continuous on 3 and
furthermore that

v(F iy " i,)) _ eXP{Z}l=1f(ijij+1 in)}
exp(S, f(ids <)} exp(S,, f(idz )}

is bounded above and below. O

To investigate the quantities in (8.2)-(8.3), we bring in once again the
Brownian motion process started at « and run until the time of first entry into
/ (since = is attracting or superattracting, this time is finite with probability
1, by Proposition 10). Under the probability measure P, let Z, and Z, be
Browman motions satisfying Z, = Z = and Z = QZ (as before Z and Z
denote the traces of the paths Z, and Z,). Define T = inf{t: Z, € _#} and

= inf{¢: Z € _/}. Then

v(F iy - ip)) = P2 € £(isiy - i,)},
v( izl o i,)) = P"{Zg € F(igis -+ i)},
SO

(S s o in)
v(F(igiy o 1,))
This conditional probability may be rewritten in a form that eliminates the
process Z,. Consider the path Z,, 0 <¢ < T; it avoids the branch points of
Q! (except for Z, = ©) and terminates at Z; € 2. In the domain 2 the
branches @;!,...,Q;' are single-valued and analytic, so Q; '(Z;) is well-
defined for each i = 1,..., d. By the monodromy theorem, @, can be contin-
ued along Z, from ¢ = T to ¢ = 0 (¢ runs backwards), so we can define @; 'Z,
to be this path. Observe that @ 'Z, € @ '(»); define the event

F, = {Q7'Z, = «}.

b i

P*{Zs € £(i)Zy € Fisis " in)}-

LEmMMA 5. To prove (8.3) it suffices to show that there exist constants C < o,
0 < B <1 such that for each i €{1,...,d} and any two finite sequences
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ity *** 1, and %5 -+ i, satisfying i; =i, V1 <j <k, it is the case that
P*(F|Z, € F(iyiy - i,
lo m( d /(.,1.,2 . D1 Cp*.
P(F|Zy € £(iy - iy))

Proor. The event {Z~7- € _#£(i)} is the same as the event {@;'Z = Z). By
Proposition 13,

(8.4)

PQ'Z=21Z)=15/(d - d,).

Since the events {Z, € £(i,i, --- i,)} and {Z € _£(}i, --- i,)} are measur-
able with respect to the o-algebra generated by the trace Z, it follows that

P*(Zs € £(i)lZy € Firiy - i,))
= (d = dy) "P(FlZp € £(isiy + in)),
P*(Zs e £(i)Z, € £(i%y i)
= (d —d,) 'P(FlZp € £(iy}y - i) O

NoraTioNAL CONVENTIONS. Let (Q, &, P) be a probability space, A € %,
and & a o-algebra contained in #&. Then P(A|#) is the (essentially) unique
#measurable random variable such that P(A N G) = E(15P(A|#)) for all
G e 4. If & is generated by a random vector X, we will sometimes write
P(A|X) instead of P(A|#); since this is a function of X we may sometimes let
P(A|X = x) denote the corresponding function of x. If A, B € &, P(A|B) =
P(A N B)/P(B). Similar conventions apply for conditional expectations.

8C. Application of Harnack’s inequality. Verification of the inequalities
(8.2) and (8.4) will require some auxiliary information about Brownian motion
in 7. We begin with a version of Harnack’s inequality. Assume that under P¥,
Z, is a Brownian motion process in C with Pf{Z0 =¢=1. Let K be a
compact subset of C; define Ty = inf{t: Z, € K}. If P¥{Ty < } = 1, define

vi(dz) = P¥{Z;, € dz}.

LEMMA 6. Let D be a connected component of K¢, and assume that for some
£ €D, P{Tx < @} = 1. Then P{Ty < «} = 1 for every { € D and for any two
points &, { € D, the measures v§ and v are mutually absolutely continuous.
For each compact G C D, there is a constant ¢ = ¢(G) < » such that for all ¢,
{€G,z€K,

dvé
V?(z) <c.

-1
(8.5) c < vk

Proor. It follows from [12], Chapter 2, Proposition 2.10 that either
PHTx <o} =0V ¢ €D or P{Tx'< @} = 1V £ € D. Let A be any measurable
subset of K; then v§(A) is a harmonic function of ¢ € D (by the strong
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Markov property, it satisfies the mean value property). Clearly 0 < v4(A) < 1,
80 by the maximum principle for harmonic functions ([12], Chapter 4, Proposi-
tion 1.4) either v%(A) = 0 for all ¢ € D or v§(A) > 0 for all ¢ € D. Thus v§,
vk are mutually a.c. By the Harnack inequality ((12], Chapter 4, Theorem 3.5),
for any compact G C D there is a constant ¢ = ¢(@) such that

c'<vg(A)/vk(A) <c V& (€G, VACK;
the inequality (8.5) follows from this. O
Let #; be the o-algebra generated by the random variable Z; (as usual,
T = inf{¢: Z, € _£).
LEMMA 7. There exists a constant € > 0 such that
(8.6) P*(F|H#p)=2¢e a.s.Vi=1,2,...,d.
Proor. Let I'y be a smooth Jordan curve enclosing _# such that I'y c 2.

Any continuous path from « to # must first intersect I' = 4D, then I',, before
reaching _#. Define

7 = inf{¢: Z, € T'},
T4 = inf{t: Z, €T, }.
For ¢ € C, define measures v*, v§ on £ by
vé(dz) = P¥{Zy € dz),
v4(dz) =P{Zycdzand T < 7}.

Note that for ¢ &€ 9, vé = 0; also, (dv§ /dv?) < 1. Using Lemma 6 we will
show that there exists a constant ¢ > 0 such that

dvé,
- (2)2e V¢el,, Vze s

For this it suffices to show that for some (possibly different) ¢ > 0,
dvé,

dyf(z)ZS Véerl,, Vze/j
because Lemma 6 (with K = ¢, D = &%, G = ', U {=}) implies that dv*/dv
is bounded above and below. Consider a continuous path from I', to . It may
go directly to _# (without hitting I'); or it may hit T, return to Ty, then go
directly to _#; or it may hit I" and return to I'y n times, then go directly to #.
Thus, by the strong Markov property,

vé=vi + [ vh daf(2),
" : F*
where the measure o satisfies «*(T'y) < X _;p” with p = sup, ., P{r < T}
< 1, by Lemma 6 (with K= _fUT,"D = 2\ £ and G =TI',). Another appli-
cation of Lemma 6 (again with K= _fUT, D = 2\ £, G =T,) shows that
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for some ¢ < «,
dvé
dvé

so the integral representation above implies that

cl<

(2) <c V¢ leTl,, Vze s,

dvi /dve = (1 +¢p(1 —p)_l)_l.

Now choose ¢ € I'y. For each i = 1,2,...,d, there is a smooth path y,(¢),
0 <¢ < 1, such that ,(0) = «, y,(1) = £, 5,(¢) € % \ ({=} U T, U Q(£)) for
0 <¢ <1, and such that if @; ' is analytically continued backwards along Vi
from ¢ = y,(1), then @; 'y,(0) = . This follows from the fact that Q(-%,) (the
set of branch points of @ 1) lies outside I',, (Lemma 3), together with the fact
that the Riemann surface of @ ! is connected ([13], Section 3.2, problem 7).
Observe that for small & > 0, if y(¢), 0 < ¢ < 1, is a continuous path such that
v(0) = « and

distance(y(¢),7,(t)) <8 VO0<t<1
(here distance means spherical distance), then @, ! continued analytically
backwards along y from y(1) will end at @; y(0) = c.

Consider Brownian motion Z, started at  and run until the first time 7,
that it reaches I'y. Let G, be the event that some reparametrization of the
path Z,, 0 <t < 7,, stays within distance § of y,. Then

P*(G,))>0 Vi=1,2,...,d
(this may be proved by elementary arguments). By the strong Markov prop-
erty,

P(F,n{Zy € dz2}) = E*15v%(dz);
since dv¥ /dv is bounded below, (8.6) follows. O
PrOOF OF (8.2). This is by induction on n. For n = 0, the inequality (8.2)
is trivial, because v(#) = 1. Now
(”(/(i1i2"" in)))/(”(/(izia in)))
=P(Zy € F(i))Zr € F(inis " in))
= P(F|Zy € £(iyis -+ i,))/(d — dy)
. 2¢e/(d—dy)
by Lemma 7 (see the proof of Lemma 5). O
ProoF oF THEOREM 2(b). Let Z, Z, T, T be as in the proof of Lemma 5.
~ Recall that -
) P*(Zp € £(i)IZ) = P(Q'Z = Z12)
= ly/(d-dy)
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and
d
Z Ip = (d—dy).

Consider the partition &= {{ZT € (M, ... 4 its entropy h(Z, Q) satis-
fies

WP, Q) = E” .Z Zy € £(i)|log P*(Zr € £(i)l#7)

_E Y {P“(FIJZ’T }l {P“(FI%’T)}

i=1

P*(F)| A7
= log(d - d )—E“IZI{ d( 7 )}lgP“(F}IJfT)

> log(d — d,),
because by Lemma 7, 0 < P*(F,|#}) < 1. O

8D. Exponential estimates. It remains to prove the inequality (8.4). This
will require some additional estimates.
Recall that I' is the smooth Jordan curve bounding the domain 2 (Lemma
3). For n € Z, define
I,=@ ().
By statements (e)-(f) of Section 8A, T'_, lies in the exterior of I' = I;, while
for n > r, T, lies in the interior of I'. Observe that for n > 1,

l-‘n_ U F(hlz n)

biig i,

LemMmA 8. If r is sufficiently large, then there exist constants C < o,
0 <B <1 suchthat foralln > 1landallz €T,,,

(8.7) P Z, hits T before #} < CB".

Proor. This is an extension of the argument used in proving Proposition
10. Consider first the case where « is superattracting. In the proof of Proposi-
tion 10, we exhibited sets I,, n € Z, with the followmg properties: (a) I, =
Q"I V neZ (b I,isa smooth Jordan curve in C containing # in its
interior. (c) Any continuous path from [, to T,_,, & > 1, must intersect I',.
(d) Any continuous path y(¢), 0 < ¢ < ¢, that 1ntersects each I, ;3, >0, must
intersect Z. (e) For each n > 0 and each z €T,, P¥Z, hlts .+1 before
I, )=2/3

We claim that for all n, £ > 0 and any z € f‘n+k,

P?{Z, hits T}, before £} < 27"

The proof is as follows. To get from z to I‘k before 7, the path Z, must cross

Fn+k+1, Fongr.- Fk in that order before crossing all T thems M = 1. Let
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Xy, Xq,... be the indices of the successive sets F h1t by Z,. Then under P*
the sequence 27% is a supermartingale with 2 = 2'" ~* (because the
chance of moving up one before going down one is at least 2/3). Hence,
P*27% = 2% for some j > 0} < 27", by the maximal inequality for super-
martingales.

Now consider the sets I',, constructed in Section 8A. We may assume that f‘
lies in the exterior of I' = I‘O, because in the original construction of the sets
F (proof of Proposition 10) we could choose the radius R, of the circle C, as
large as we like, forcing FO to be close to ». Choose m > 1 so large that
Q™([I) =T_,, lies in the exterior of Ty; o; this is possible because I' C %, and
QM — unlformly on compact subsets of Z. Then @"(I') lies in the exterior
of F for all n > m, because @ maps exterior (T into itself. Choose r > m so
large that T, is contained in 2 (= interior of T') for all n > r; this is possible
because _£C 2 and the sets I}, accumulate at # as n — «.

Let y be a continuous path from [, to I, where n > 2. Then @""(y) is a
continuous path from I"'to I'_,,, Wthh must cross I, because I'and I'_,,. are

on opposite sides of Iy. Thus y must intersect I, = @~ ”’(F ). Let v* be the
segment of y that runs from I, to I'. Then Q”‘y* runs from [, toI'_
Since n > 2, nr —m > m, so I‘ n € Z; hence Fn, m and I'_ lie on oppo-

site s1des of I‘ This 1mp11es that Q"‘ * intersects I 0, Which i 1n turn implies
that v* intersects F . This proves that any continuous path y from [}, to T,
n > 2, must first h1t F,”, then I‘ , before reaching I'. Consequently, for n > 2,

P*(Z, hits I before £} <27""*™ VzeTl,,

The inequality (8.7) follows V n > 1 by adjusting C, with g = 27"

The case where = is attracting rather than superattracting is similar, but
requires modifications similar to those in the second half of the proof of
Proposition 10. Since these modifications are routine, we omit them. O

Henceforth we shall assume that r > 1 has been chosen so large that the
conclusion of Lemma 8 is valid. [Recall also that r should be large enough that

statements (e)-(f) of Section 8A hold.]
Let 7 < » be a stopping time for the process Z,; define o-algebras %, <,

#, by
G =0({Z; 7} i20)
& =0({Z1.}150)
H, = 0o(Z,)

G.e., &, &, H# are the smallest o-algebras making these collections of

random variables measurable). Observe that % C 4 and # C %; also, 7 is

not in general measurable w.r.t. . One should thlnk of 97 as representing

' 'all information about the path Z, up to time 7 and « as representing all
information about Z, after time,r.

LEMMA 9. For any event F € &, P{(F|£) = P4(F|#).
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Proor. Let G € . By the strong Markov property and elementary prop-
erties of conditional expectation,

Ef(lGPf(Flf,))
= Ef151,
= Ef(1,P4(GI 7))
= Ef(1,P4(G7)))
= EX(P4(F|2) PH(Gl7;))
= B4 (1P4(FI7,));

since this holds V G € £, it follows that Pé(F|£) = P4(F|#) a.s. O

Define
r,=inf{¢t:Z,€T,}, n=0.

Statement (e), Section 8A implies that any continuous path from « to J/Z must
intersect each I, n > 1, so P*{r, < T} = 1. Moreover, statements (f), (J)
imply that for any nzr,Z €9 Let F", n >r, be the event that if @ !
is continued analytically along Z, 0<t < 7,, backwards from Z, , then
Qz 1ZO = x,

LEMMA 10. There exist constants C < ©, 0 < < 1 such that for each
k>1landeachi=1,2,...,d,

\P(F|#;) - P~(F|#,) < CB*.

Proor. The events F; and F/" differ only in paths Z, which exit 2 after
t = 7,, and before t = T. (If Z, does not make such an exit, then the analytic
continuation of @, ! along Z,, 0<t<T, backwards from Z, ends at the

same value as the analytic continuation of @ ! along Z,, 0 <¢ < T4, back-
wards from Z ) To make such an exit, Z, must hit I' = dD. Thus it suffices

to prove that
P*(Z,eT,some 7, <t < T|H#}) < CB*.
By the strong Markov property, for any Borel set A C_#,
P*{ZyeAand Z, €T for some 7,, <t < T}

=E*(P%w{Zp € Aand 7, < T})
= E“Eszr(l{fo < T}P%o{Z; € A})
! < {EE?w1{1y < T}}{cP*{Z; € A}}.

The last inequality follows from Lemma 6 (with K = S D=F,G=TU{x}),
since Z, €T the constant ¢ <  does not depend on A or k. Lemma 8
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implies that for some C < », 0 < B8 < 1,
EZ%u1{ry < T} < CB*.
It now follows that P*(Z, € T, some 7,, <t < T|#;) < C'8%). O

Let iji, -+ iy,, & = 1, be a finite sequence of symbols from {1,2,...,d}.
Any continuous path from » to a point of I'(i,i, --- i,,) must intersect
I'(i,i, -+ i,,) for each 1 < n < k, by statements (g), (j) of Section 8A. There-
fore, for any &£ € T'(ii, - - - i;,), we may define a probability measure u{; ...,
on I'(i;iy -+ i,,), n <k, by

¢ (A) = P(Ziiyig iy € A5 T(inly = i) < T3 Zrgy oo,y € dE)
Hiig i, P°°(T(i1i2 . ikr) < T’ Z‘F(iliz"'ikr) S df)

r

’

where
7(igdg " i,) = inf{t: Z,eTl(iiy " im)}.

LEMMA 11. There exist constants C < o, 0 < B < 1 such that for all inte-

gers 1 < n <k, all sequences iji, *** iy, and any £, L € T(iyi, - iy,),
(88) ”Mfliz . /.Lfliz inr” < CBk_n.
Note. | ‘|| denotes the total variation norm, which may be characterized

as follows. For any two positive, finite measures u,, u, on a measurable space
(Q, F) there exist unique, positive measures Ay, A, A, with A; and A,
mutually singular such that u, = Ao + A; and p, = Ay + A,. The total varia-
tion distance between w,, w, is then [lu; — woll = A(Q) + A,(Q).

Proor OF LEMMA 11. Since 7(iyiy = i,,) <7(iy =" igep) < <
(i, -+ ip,) [see (g), (j), Section 8A], the strong Markov property implies
that

By i (A) = [, i (A) dBfy i (€,

#fliz i,,,(A) = f/-‘?;i2~~~in,(A) d#«flizmi(nﬂ),(f'),
where the integrals are over all ¢ € T(iiy *** i(n41).)- Let Ao, Ay, Ay be the
unique, mutually singular, positive measures such that —
=, i(,:;l), =Ag+ Ay,
=Ay+ Ay

¢
"'l'lllz Tl n+nr

then
. Wiy i, = [ 8y, AR0(8) + [y i, AM(E),

[J/gliz iy = f”’f;tz - d)ﬂo(f’) + f/.Lf;lz - dAZ( f’)
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so
”:U«flig N A :U«zgliz i,,,” = ”/#iig iy d(Ay —A5)(€) “

< ff”#«iiz N :Uuiliz i,,,” dAy(€) dAy(€7) /Il

where the double integral ranges over all ¢, ¢” € I'(iyiy -+ i(,41).)- Note that
IALll = lIAgll = 1 = [IA,ll because Ay, A;, A, are mutually singular and A, + A,
Ay + A, are probability measures. Consequently,

”/'Lléliz R I“ngliz inr”/”#'iliz “lgmaenr 'u’l{ﬂ‘z i(n+1)r”
L gl _ §”
< max s, .., wsoo |l
§,8'elGiy inenyr 2t e e

Therefore, to prove (8.8), it suffices to show that there exists a constant 8 < 1
such that for all n > 1, all sequences i,i, -+ i, and all ¢, { € T'(i,i, - -

i(n+1)r)7

(8.9) ety i, = By il < 2B.
For any sequence i4i, -*- i,, and any z ¢ _# define a subprobability mea-
sure A7, ..; on I'(ii, -+ 7,,) by
Ay i (A) = PZ(Z,(ili2 iy €A T(igdy 0 iy,) < T).

Then for ¢ € I‘(zlt2 ey and 2 € TGyi, -o- 1,,),

B, i, (d2) = llll;" :,( ﬁ) {)g» Ny - (;?;)}(lﬁf) 5

iyip " iny i Lt yr igig-

and

X, m i(,,ﬂ,,(df) _ / Az L (d&) Xy (dz’)

i T Jreryyeeiy,y e s ”mz I
Consequently, to prove (8.9), it suffices to show that there exists ¢ > 0 such
that for all n > 1, all sequences ;i *** i, 1, all £ €T(Gi, - i,,,),) and
all 2,2 € T(iyiy ~+ - i,,),

(8.10) £ < Motz - o0 9) g1

Azlllz l(n+1)r( f) =

Because of the symmetry in z and 2/, it is enough to establish only the upper

bound.
For each z €T(i,i, -+ i,,), define another subprobability measure on’

TGy - i(n+1)r) by
Visig i (A) = P(Z € A;7(iis  iany) <T A To1y)

(recall that 7,, = inf{¢: Z, € T}, }). Observe that the event in this definition only

7182 L+ 1pr)
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involves that part of the path Z, before its first exit from 2(i;i, - -
i(n—1)—this is the point of stopping at 7,_,,.. Recall that @ 1" is an
analytic homeomorphism of 2(i i, - i(,_;,.) onto 2 [statement (i), Section
8A] that maps I'(i,i, --- i,,) onto ', _1y,,; "+ i,.)and TGy - i,4q,)
onto I'(i,,_yy, .1 *** i(,4+1).)- Therefore, by the conformal invariance of Brown-
ian motion,

Nz T —Vr(, n—1)r

Niyig i(n+l)r(A) = A‘?(n—x)rix)"' i(n+1)r(Q( D (A))
Since there are only finitely many sequences i.,_1).41 *** ipni1y it DOW
follows from Lemma 6 that there are constants 0 < ¢; < ¢y < ® such that
for all sequences ijiy *** ini1y all § €T(Ey ~ " i(y4q),) and all 2,2 €
PGyiy oo 1,,),

/\ziliz i(n+1)r(d§)

Cl < = < c27
Nz ien(DE)
€ = “/\ziliz i(nﬂ),“ = PZ{T(iliZ e i(n+1)r) <T~A T(n—l)r}-

Consider a continuous path from I'G;iy -+ i,,) to T'(iyiy <+ i(,. ;) that
does not intersect Z. It may go directly to I'(i; - - i(,.1),) without hitting
[(,_1); or it may hit [, _,, first, then return to I'(G;i, --- i,,), then go
directly to I'(z; --- i(,,).); or, in general, it may make m > 0 cycles between

[,—1) and T'Gyiy -~ i,,), then go directly to I'(i; - - i(,.1,) [see (g), (h), (§),
Section 8A]. Consequently, by the strong Markov property for z € I'(i;i, - -
inr)7

[~
A =A; + X Ny inary F2m(Z),

Lig insyr i1i2 " Lnt1yr . .
m=1"2€TGy - i,,)

where [la?|l < (1 —¢)™, by the last inequality of the preceding paragraph.
The upper bound in (8.10) now follows directly from the second last inequality
of the preceding paragraph, with ¢! = ¢, X%, _o(1 — ¢)™. O

Proor of (8.4). Let i, -+ i, and i}, -+ i/, be sequences of indices
from {1,2,...,d} satisfying i; = i’ V 1 <j < 2kr. [Note that the factor of 2r
is irrelevant in establishing (8.4).] Let

Ay ={Zp € iy 1,)),

Ay =(Zpe (i, - i)}
T="7(idy " ip),

Tx = T(ili% i2kr)'

On each of A;, A,, it is the case that 7,, <7 <7, <T, by (g), (h), (j), (k) of
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Section 8A. Since # C F, .y C & p and F}" € & , ;, Lemma 9 implies
P*(F\Hrp)14,
= E*(P*(F" {7 < T} 1)l #7 )14,
= E(P*(FMI 2\ )7 < TNH#)1,,
= E*(E*(P*(FM|H# p)1{r < THZ, 7 )L{rs < T}IH#;)1,
= E(E*(P(F}|# \p) Uz < TNH pp)U{ri < TYHp )1y,

On the event {r < T}, P*(F, ’"Id‘f A1) is a function of Z_, which we will denote
f(Z ). Thus

P(F} )1, —E“(ff(z)d,ulllz kr(z)lAjléfT),

where the integral is over all z € I'(i i, ‘- - i;,). Lemmas 10-11 now imply
that for any ¢ € T'(ijiy < igp,),

'{Poo(FiléfT) — [fidub, }1A
for suitable constants C < =, 0 < 8 < 1. But
P*(F|A;) = E*(P*(F)#y)1, ) /P(4)),

so by Lemma 7 and the preceding inequality,

{ P*(FJA;) }

0 e ———————————
&\ P(Fi4,)

< CB*, j=12

< Cp*

for appropriate constants C < o, 0 <8 < 1. O

9. The neutral case. Assume now that « is a neutral fixed point of
and that © € &. Then the connected component %, of & containing « is a
Siegel disk—see [1], Sectionh 7 (the other four possibilities of [1], Section 7 are
impossible). This means that there exists a surjective, analytic homeomor-
phism ¢: Dy » & (here Dy = {z € C: |z| < R}) and an irrational 6 € (0, 1)
such that

¢(e*™%2) = Q(¢(2)) Vz€Dp.
This implies that ¢(0) = «, that : 7, —» %, is 1-to-1 and that « is the only
periodic orbit in . Moreover, %, # %, because Q: ¥ — & is d-to-1, and we
have assumed that d > 2. It is not necessarily the case that ¢ extends

continuously to Dp.
’ Let Z,, t > 0, be a Brownian motion started at Z, = » under P* and let
=inf{t: Z, / }. Since %, # &, there is a nonempty, open disk D ¢ &#\
9" Brownlan motion on C is recurrent, so it must visit each open disk, with
probability 1, hence Z, € D for some ¢ < «. But a continuous path from « to
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D must intersect 7, otherwise D ¢ &, This proves that
P*{T <} =1,

so the logarithmic capacity of _# is positive and v is the distribution of Z,
under P*. The same arguments as used in the proof of Proposition 9 now show
that Z,, Q(Z;),Q*(Z;),... is a stationary process, that is, that » is an
invariant measure. However, the arguments of Proposition 11 no longer apply.
Next, we must consider the boundary values of ¢. As before, let D be a
nonempty, open disk contained in %\ %, with center {. Let ¢ be a linear
fractional transformation such that ¢({) = «. Then ¢ - ¢: Dy = Cis a bounded
analytic function, so by a well-known theorem of Fatou, i o ¢ has radial limits
a.e. Consequently, ¢ has radial limits a.e. Thus, ¢ extends to a (not necessarily
continuous) function ¢: Dy — C such that lim, ,  p(re'*) = p(Re?*) for a.e.
a € [0, 27) (with respect to Lebesgue measure on [0, 277)).
Let Z,, t > 0, be a Brownian motion started at Z, = 0 under P° and let
= inf{¢: IZ | = r}. Then PO{T <o} =1, and under P0 the distribution of
ZT is the uniform distribution (Lebesgue measure) on {z: |z| = r}. The process
Yo ‘P(ZTR Y Jn 1 is a bounded, discrete time martingale under P°, hence has a
limit as ¢ — « almost surely. An easy argument using the Poisson integral
formula ([5], Section 5.2) shows that

lim v e ¢(Zr,..,,) = v o(Zr,) as. (%)

= lim <p(ZTR l/n) = ¢(ZTR) a.s. (PO),

n-—o
that is, the Brownian limit is the same as the radial limit.

Lévy’s conformal invariance theorem implies that ¢(Z,), 0 <t < T‘R, is a
(time-changed) Brownian motion in &, started at ». Clearly, lim,, 5 o(Z) e
07, C _/, so it follows that qo(ZT ) has the same distribution as Z, under P*,
namely v. Now

lim Q(qa(z’T-R_V"))

n-—o

= lim g(e*"%Z, )

00
= ¢(e2"i”ZTR).

Thus, (£, Q,v) is a factor of (0Dg, M, ;,, A) where M, is rotation by « and
A is (normalized) Lebesgue measure. (The conjugating map is ¢ restricted
to dDy.)

D
—_—
=

N,
;x
~—
~—

Il
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