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The aim of this paper is to extend Stein’s method to a compound
Poisson distribution setting. The compound Poisson distributions of con-
cern here are those of the form POIS(v), where v is a finite positive
measure on (0,»). A number of results related to these distributions are
established. These in turn are used in a number of examples to give bounds
for the error in the compound Poisson approximation to the distribution of
a sum of random variables.

1. Introduction. In 1970, Stein introduced a powerful and general
method for obtaining an explicit bound for the error in the normal approxima-
tion to the distribution of a sum of dependent random variables. The method
was extended from the normal distribution to the Poisson distribution by
Chen (1974, 1975a). Since then Stein’s method has been an area of intensive
research in combinatorics, probability and statistics; see, for example, Arratia,
Goldstein and Gordon (1989, 1990), Baldi and Rinott (1989), Barbour (1987),
Barbour and Eagleson (1985), Barbour and Hall (1984), Barbour and Holst
(1989), Barbour, Holst and Janson (1988), Bolthausen (1984), Bolthausen and
Gotze (1989), Chen (1987), Goétze (1991), Green (1989), Schneller (1989), Stein
(1990) and the references cited therein. An excellent account can be found in
Stein (1986),

The aim of this paper is to extend Stein’s method to a compound Poisson
setting. A motivation for doing so is succinctly stated by Aldous (1989). The
most interesting potential applications require extensions of the known results
on Poisson approximations to the compound Poisson setting: Developing such
extensions is an important research topic. In particular, one of the questions
that we are interested in is: In situations in which the Poisson approximation
is inadequate, when do we have approximately a compound Poisson distribu-
tion?
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The following definition of a compound Poisson distribution is taken from
Aldous (1989).

DEFINITION. Let v be a positive measure on (0, «) satisfying
f (1 Ax)v(dx) < o,
0

where (1 A x) = min(1, x). We say W has a compound Poisson distribution
POIS(») if

E exp(—-0W) = exp(—fow(l - e@x)y(dx)),
for all 6 > 0.

Thus the usual Poisson distribution with mean A is POIS(A6,), where §; is
the degenerate probability measure at i. In this paper we are interested in the
class of compound Poisson distributions of the form POIS(v), where v is some
finite positive measure on (0, ). Writing v = Au, where A >0 and u is a
probability measure on (0,x), we observe that POIS(v) is the law of the
random variable L ;X,, where the X,s are ii.d. random variables with
distribution p and N is independent of the X,’s with the usual Poisson
distribution with mean A.

There are many studies on the rates of convergence to compound Poisson
distributions. Examples of such studies include Le Cam (1960), Chen (1975b),
Brown (1983), Serfozo (1986), Michel (1988) and Wang (1991). Arratia,
Goldstein and Gordon (1990) have recently introduced an alternative approach
to compound Poisson approximation for sums of indicators (also via Stein’s
method) which involves a “declumping” process. In contrast, we approach the
compound Poisson approximation problem using Stein’s method directly by
considering a compound Poisson identity. In this way we avoid having to
“declump.” An advantage of this approach is that it applies not only to sums
of indicators. Unfortunately, the compound Poisson identity is difficult to solve
in general, and even if a solution is obtained it is difficult to obtain an effective
bound on it. However, we believe that this approach has the potential of
producing the best results when effective bounds are obtained.

The rest of this paper is organized as follows. Section 2 gives some results
related to the compound Poisson distribution. In particular, a compound
Poisson identity is obtained. This is specialized to discrete compound Poisson
distributions in Section 3. In Section 4 these results are used in a number of
examples to give bounds for the error in the compound Poisson approximation
to the distribution of a sum of random variables. Example 1 gives a lower
bound on the total variation distance between the law of a sum of independent
.discrete random variables and an appropriate compound Poisson distribution.
Example 2 deals with random variables under local dependence (of which
finitely dependent and m-dependent random variables appear as special cases)
and Example 3 treats a problem on equiprobable allocations which involves
long-term dependence.
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2. A compound Poisson identity. In this section we consider a slight
generalization of the compound Poisson distribution, namely the compound
Poisson measure. We think that in doing so, the proof of Theorem 1 becomes
more transparent.

DeFiNITION. Let u be a finite signed measure on (0,®). We define the
measure |u| on the Borel subsets of (0, «) by

lul(E) = sup f |u(E;)|,
i=1

the supremum being taken over all partitions {E,} of E. Furthermore, we
write |1|[(0,%)] = y,, the total mass of u. The compound Poisson measure
S,, . on [0, ), generated by u and parameter A > 0, is defined by

Sy, u({0}) =™,

) Sy, u(E) = Zﬂ‘*(E)/\‘ /il
i=0

for all Borel subsets E of (0, «), where u'* denotes the i-fold convolution of u
with itself. [Thus, if u were a probability measure, then S o = POIS(An).] We
now state the main theorem of this section.

THEOREM 1. Let g be a bounded function on [0,x). The integral equation
(2) wf(w) = A [tf (w + t) du() = g(w)
has a solution f defined on [0, ») such that sup,, . olwf(w)| < » if and only if
/&dS, ,, = 0. The solution is unique except at w = 0 and for w > 0, it is given
by '
8w+t + +tk) k

f(w) = ZAk/ fw(w+t1) (wt it + o +ty,) E du(ts).

Furthermore,

sup |wf (w)| < exp(Ay,) sup |g(w)].
w>0 w>0

Proor. Let % be the Banach space of all bounded functions defined on
[0, «) and supplied with the sup norm || - [lz and let 2 be the quotient space of
& with respect to the closed subspace .#= {g € Z: g = 0 on (0, ©)}. Denote
. the norm of @ by || -|lg. Also.define the following normed linear space on

equlvalence classes of functions on [0, «):

= {F: sup|ur(w)| <=},

w>0
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where the norm || - |4 is given by

I fller= sup |wf(w)].
w>0

Let v be a finite signed measure on the Borel subsets of [0,%) and let fe 2
or 2. We define

[f'du = f(o,w)fdv.

Since v defines a linear functional on %/ through integration, where ambiguity
does not arise we shall use the same notation to denote the linear functional.
Thus vf = [fdv for every f€ % and ker S, , = {g € 2~ /gdS,, , =0}

Now define the linear operators U, M from 2 into 2 and U, M from 2~
into 2 as follows:

Uf(w) = wf(w),
Mf(w) = [tf(w +t) du(2),

Uf - Uf,
Mf = MF,

It is clear that U is an isometry and ||M| < 7, and hence U —AM is a
bounded linear operator from 2 into &. Similarly U is an isometry and
M| < 7, and hence U-AM is a bounded linear operator from £ into 2.
Furthermore, U is bijective and hence U~! is also an isometry. This shows
that & is a Banach space. Next we need a few lemmas.

LemMA 1. The image of U — AM is contained in ker S, ,
Proor. For every f € 2,
JUf(w) dS, (w)
= [wf(w) dS, i(w)

© Ak k
=et o) J+ ) f k) T du(s),
p-1 k! i=1
which by symmetry, is equal to

o

N 5
e_Ak=1(1e——1)T/ o [t f +;k)11:[1 du(t;)
- A/ftf(w +.¢) du(t) dS, (w)

= [AMf(w) dS, ().

This proves Lemma 1. O
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The next lemma can be proved by induction.

LEMMA 2. Letay,...,a, be complex numbers. Then, provided no denomi-
nator vanishes,

Qray " Anry 1
)
T afr(l)(a'n'(l) + a7r(2)) T (a'n'(l) + o +a‘n’(k))

where the summation is taken over all permutations

LEMMA 3. The operator U — AM is bijective. Its inverse is given by
~ - -1 t ~
(3) (U-xM) g= ) AU'g
k=0
for every § € @ where A = AU~M. Moreover,
~ ~. -1

() @ - 230)™"] < exp ().

ProoF oF LEMMA 3. Since U~! exists, we may write

U-AM=U(I-A\U'M),

where [ is the identity operator on 2" and I — AU"M maps & into itself.
Hence_the bijectivity of U — AM is equivalent to the existence of (I —
AU'M)~. Let f€ 2. By Fubini’s theorem and symmetry, A*f = h, where
for w > 0,

wh(w) = A [t f(w + ;) du(t)

if 2 =1, and
tk (w+t1 . +tk) k

wh(w) = A* du(t;
( ) .[ f(w + tl) (w +it+ +tk_1) LI:II 'u( l)
if 2 > 2. So for £ > 1, we have

t o« e t
Arfll < M| f ! i dlul(¢;
145l < M flaf - [ sy L H lkl(t),
which by Lemma 2 and symmetry, is equal to ()w“)kll flla/k!. Hence
(5) Z | A*fll o< eXp(M,L)IIfIIgLr

k=0

This shows that {£5_,A*f} is a Cauchy sequence in 2. By standard argu-
~ ments using the completeness of 2" and the boundedness of A, the inverse of
1 — A exists and is given by

(1-4)"" Z AMf.
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The bijectivity of U — AM follows. So does (3). Finally (4) follows from (5) and
the fact that U~! is an isometry. This proves Lemma 3. O

For every g € 2, choose a representative g’ of g, g’ € 2 such that
£'(0) = —exp(A) [£dS, .

This defines a linear map ¢ from 2 into 2 and clearly ¢(g) € ker S, ,. The
next lemma can easily be proved.

LemMa 4. The map ¢ is injective and im ¢ = ker S, ,. Furthermore,
lp*ll < 1, where ¢* is the left inverse of ¢.

LEMMA 5. For every f€ 4,

(U = AM) f= (#(0 = A3D)) f

Proor oF LEMMA 5. It suffices to show that
(U = AM) £(0) = (¢ (U — AM)) £(0).
Indeed the left-hand side equals —A [#f(¢) du(¢) and the right-hand side equals

—er[ (U —aM)f(w)dS, (w)
(0, )

—e*[(U - AM) fdS, ,

e [(U - AM) fdS, , — A [if(2) du(t)

—A[tf(t) du(t)
by Lemma 1. Hence the lemma. O

Theorem 1 is proved by combining Lemmas 3, 4 and 5 and noting that

lw - sy <l@ - azt) [ngin <o - a2y
where (U — AM )’ is the left inverse of U — AM. O

)

The following corollary gives a characterization of the compound Poisson
measure.

COROLLARY 1. Let S be a finite signed measure on the Borel subsets [0, )
-such, that [dS = [dS, ,=a+0. Then S = S, . if and only if for every
fea,

Juwf(w) dS(w) = A [ [#f (w + ) du(t) dS(w).
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Proor. The necessity part follows from Lemma 1. Its sufficiency is proved
by choosing f to be the solution of (2) with g =h —a " YhdS,, and
he 2. O

The class £ in this corollary may be replaced by the smaller class contain-
ing f where f is continuous on (0, ) or continuous on (0, ») with compact
support. The next result gives a bound on the ‘“‘smoothness’ of f.

THEOREM 2. Let A = 0 and let u be a probability measure on (0,x). Let
E c [0, ), I5() be the indicator function of E and f be defined as in Theorem 1
with g(w) = I(w) — P(W € E), for all w € [0,) and W ~ POIS(An). Then

sup sup |w[f(v) — f(w)]] < exp(A).

E vzw>0

The proof of Theorem 2 is similar to that of Theorem 4 below and hence is
omitted.

3. The lattice case. In this section we specialize the class of compound
Poisson distributions to those of the form POIS(X7_;A;8;), where X7_A; < o,
Due to the special structure of these distributions, somewhat sharper bounds
than that in Theorem 1 can be obtained. The next result is the lattice case
analogue of Theorem 1.

THEOREM 3. Let g: {0,1,2,...} » R be a bounded function, A, =0
whenever i > 1 and Y7_iA; <. Then there exists a bounded solution
f:{1,2,3,...} > R of

o

wf(w) — Y irf(w+1i) =g(w), Vw=0,
i=1

if and only if Eg(W) = 0, with W having the POIS(L7_,\;8,) distribution. The
solution is unique except at w = 0 and for w > 1, it is given by

(6) Fw)= T ap,8(m),

where

ay, ., =1/w,

(7 LA, ‘
. N Quriyw= ‘21 w _"_,iaw.;_i_j,w, Vix>1.
j=

We shall now proceed to bound f. To do so, we need the next few lemmas.
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LEmMA 6. For w > 1 and i > 1, we have

i
(8) waw+i,w = Z J w+z w+j*

Proor. Clearly (8) holds for i = 1. Now assume that (8) is true for i < 4.
Then it follows from (7) that

k+1 k+1k+1-1
LJAjGyihstwei = 2 2 Qushrit,wridA A/ (W + k + 1)
J=1 =1 j=1
k+1
= IZI w“‘law+k+1—l,w/(w +k+1)

SWay,  py lL,w:*
The lemma now follows by induction. O

LemMmA 7. Suppose that W has the compound Poisson distribution
POIS(X7_A;8;). Then

P(W=w)=exp( ZA)ZM,aw” Vw>1.

i=1

The proof of this lemma is similar to that of Lemma 6 and is omitted.

LemmA 8. Let W be a random variable having POIS(X7_,A;8,) distribu-
tion. Then for 1 < i < w, we have

a,; <P(W=w —i)exp( i )\j).

Proor. First observe that the lemma holds when w = i. Next, we assume
that w > i. By Lemmas 6 and 7, we have

w—i

P(W=w - i)exp( ) Aj) —ia, ;= > JA(ay_; ;= @y i) 20,
J=1 j=1
since it is easily seen that a,_; ; > a, ;,; whenever w —i >j > 0. O

LEMMA 9. Let W be a random variable having POIS(X7_ A;8;) distribu-
tion. If 1 <i <w, then
1 ) ,

MS

Biaw i P(W w)exp(

J
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where for all j > 1, we define

Bl = )‘1’
j—1

Jj
Bis1=(J+ 1A+ M(B;/T) + kZ (J+1=R)A 1 w(Br/R).
=1

Proor. It follows from Lemma 7 that to prove the above lemma, it suffices
only to show that for 1 <i < w,

j/\jaw,j =Bia,,;
j=1
9 w i-1
+ X [j)‘jaw,j + 2 (B/k)(J — k))‘j—kaw,j]'
1 k=1

J=i+

The proof of (9) easily follows from induction and Lemma 6. O
The following result gives a bound on f.

PROPOSITION 1. Let f be defined by (6). Then we have for i = 1,
sup| f(w)| < [i‘l A min‘(Bk‘l)]eXp( > Aj)suplg(W)I,
w>i l<k<i j=1 w>i

where th~ B,’s are defined as in Lemma 9.

Proor. We observe that if w > i, then
[f(w)l < ¥ anulg(w)l< ¥ a,,suplg(w)l.
m=w m=i w=1

It follows from Lemma 9 that

sup| f(w)| < lm,gn.{eXP( )y Aj)suplg(w)l Y Bi'P(W=m)
w>i =k=i j=1 w=i m=~k

(10)
< minﬁ,;lexp( Y Aj) sup|g(w)].

l<k<i j=1 w>i
On the other hand, it follows from Lemma 8 that
supl /()| = exp| £ | supla(u)| E POW = =)

w=i Jj=1 w>i m=i

it e| T o |supli(u.

j=1 w=i

ety

Proposition 1 follows from (10) and (11). O
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The next two theorems, which are needed in the sequel, give bounds on the
“smoothness’ of f.

THEOREM 4. Let f be defined by (6) and A € {0,1,2,...}. Suppose further
that g(v) = I,(v) — P(W € A) whenever v € {0,1,2,...}, with W having the
POIS(L7_,A;8,) distribution. Then for i > 1 and j = 0, we have

sup sup| f(w +j) = f(w)| < [i7' A lm;n.(Bk‘l)]exp(lZ M),
<RrR=<1 =1

A w=>i

where the B,’s are defined as in Lemma 9.

Proor. From the proof of Proposition 1, it suffices only to show

(12) | F(i+J) = Q)] < Z_l‘am,l»
First we observe that
FG+) = F(0) = = T [:8(m) = ey ii(m +)]
e i [am,i —-P(WeA)(ap,: — am+j,i+j)]
= - i.am,z

Also,

IA

fG+J) - fQ@)

[am+j,i+j +P(WeA)(ap, — am+j,i+j)]

IA
© 3
1s s
]
3

This proves (12). O

ReEMARK. The bound given by Theorem 4 is sharp in the limit as the A,’s
approach 0. Furthermore, there are also other instances in which the
bound is reasonably good. For example, suppose W ~ POIS(A,5,). By taking
A to be the set of nonnegative even integers, it can easily be seen that
sup, sup,, . ,[f(w + 1) — f(w)| > A;(e*z — 1). However, it is enough in appli-
cations to find one function f with nice properties such that, for any random
variable V,

E{Vf(V) - Y ir f(VH+ i)} =P(VeA)-P(WeA),
i=1

r

where W has the POIS(X?_;A;8;) distribution. In this degenerate example, a
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better choice of f is obtained by taking

g(w) = [1a(w) ~P(We4), ifwe2z,
0’ fwe2Z+ 1,

which is just as good, since P(W € 2Z) = 1. For this function g, f(w) = 0 for
we2Z+1, If(w) <eAd™? and sup,|f(w + 2) — f(w)| < 1/(2A,) for some
constant c. In general, the bound in Theorem 4 is very crude and is far from
optimal. It is hoped that this can be remedied in future work.

Under additional assumptions on the A,’s, substantially better bounds on
the “smoothness” of f can be obtained using the probabilistic perturbation
technique of Barbour (1988, 1990). Suppose that jA i~ 0as j— o We write

f(w)=h(w) —h(w-1), w=0.

It can be easily seen that

o)

wf(w) — Y X f(w+1i) =w[h(w) — h(w - 1)]

i=1
- ';ilm[h(w i) - h(w)].

We observe that the right-hand side of the above equation is of the form
—o/h, where & is the infinitesimal generator of an immigration (in groups)-
death process whose equilibrium distribution is POIS(Z7_;A;8,). Let Z be the
minimal process with the infinitesimal generator o7. For A € {0,1,2,...}, let
h,:{0,1,2,...} > R be given by

ha(w) = [ [P,(Z(t) € A) -~ P(W € A)] dt,
0

where W ~ POIS(L?_,A,6,) and P, denotes the distribution given Z(0) = w.
We further observe that

|hg(w)] < f0°°Pw(r > t)dt = E(r) < o,

where 7 is the first coincidence of Z(¢) started at w and another independently
started with initial distribution POIS(Z?_;A,8,). The proofs of the next two
lemmas are very similar to the proofs of Lemmas 1 and 2 of Barbour (1988)
and shall be omitted.

Lemva 10. Let f(w) = h(w) — h(w — 1), w > 1. Then f satisfies
wf(w) — L ik f(w+i) =I,(w)—P(WeAd), w>0.
i=1
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Lemma 11, Let f(w) = hj(w) — hy(w — 1), w > 1. Then

sup sup | f(w + 1) — f(w)| < 1.
A w=1

THEOREM 5. Suppose jA; \ 0 asj — ». Then

sup sup | f(w + 1) — f(w)]
A w=>1

1
<1A

where f(w) = h(w) — h(w — 1), w > 1.

Proor. Without loss of generality, it follows from Lemma 11 that it
suffices only to show

sup sup| f(w +1) ~f(w)| < =51 [ml ~any)

whenever 2(A; — 2),) > 1. From the definition of f, it is easy to see that for
w =0,

flw+2) = f(w+1)
= [[(Puual 2(t) € A] ~ 2P, 1 2(1) € A] + B[ 2(1) € Al dr.

+ log* 2(A, — 2)\2)],

Define the following four coupled immigration (in groups)-death processes: Z©
is distributed as Z started at w and

Z(l)(t) = Z(O)(t) + I{1'1>t}’
Z®(t) = Z29(t) + Iiys
ZO(t) = ZY(t) + Iy,

where 7, and 7, are independent standard exponential random variables,
independent of Z©. It follows that

f(w+2)—f(w+1)
= [(E(L[220)] - L[221)] - 1[200)] + L[2°()]) dt
We observe that the above integrand is 0 whenever ¢ > (7; A 7,). Hence
fw+2) = f(w+1) = [e*{P[20(t) e A - 2]
(13) ' —2P[ZO(t) € A - 1]
- +P[Z29(t) e A} dt,
where A —i={k: k+icA). We observe that ZO@) = W(t) + L7_,Y(2),
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where W(¢) denotes those of the original w individuals still alive at time ¢ and
Y.(¢) denotes those alive at ¢ who immigrated in groups of size i after time 0.
Furthermore, we observe that W(¢), Y{(¢), Y(¢),... are independent random
variables and Y,(¢) ~ POIS[(1 — e~“)u,8,]. Thus it follows that

P[ZO(t) € A - 2] - 2P[Z®(:) € A - 1] + P[ZO(t) € A].
(14)
l:l+k€A

where p,(t) = P[Y,(¢) =1 — 2] — 2P[Y,(¢) = [ — 1] + P[Y{(t) = l]. As shown
in Barbour (1988), we have

(15) | T o= la-eum]

l:l+k€A
Hence we conclude from (13), (14) and (15) that

| f(w+2) — f(w + 1) < f:e-zf{[(l —e™)ug] T A2}t

- SPwe + £xw -4 T a0,

M1

1
— + log* 2u,].
4y

This proves the theorem. O

REMARK. We observe from the proof of the above theorem that it should be
possible, at the cost of more technical complications, to get better bounds by
looking at the transition probabilities of the whole w-process, not just the u;
part.

REMARK. Theorem 5 is most useful if A; > A, (as is often the case in
“perturbation’ problems).

Finally we end this section with a corresponding bound for f. Although this
result is not needed in the sequel, we think it is of some independent interest.

ProposiTION 2. Suppose JA; N0 asj — ». Then
lf /\1 - 2)\2 S 1,

sup :‘;12' fw)l < (1/‘/)\ =2, )[2 - (1/vA - 2 )] if A, — 21, > 1.
where f(w) = h(w) — hy(w — D, w > 1.

The proof of Proposition 2is similar to that of Theorem 5 and hence is
omitted.

4. Applications. In this section we shall use the results of the previous
sections to obtain bounds for the error in the compound Poisson approxima-
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tion to the distribution of a sum of random variables. Here the total variation
distance is used to measure how close the distribution of the random variable
of interest is to a compound Poisson distribution.

DEFINITION. The total variation distance between two probablllty measures
F and G is defined by

d(F,G) = sup|F(E) — G(E)|,
E

where the supremum is taken over all measurable sets of the real line. We
observe that 2d(F, G) = yp_g, the total mass of the signed measure F — G
(see Section 2). Also for simplicity, we denote the law of a random variable X
by - A(X).

4.1. Sum of independent discrete random variables. Upper bounds on the
total variation distance between the distribution of a sum of independent
random variables and an appropriate compound Poisson distribution have
been obtained by Le Cam (1960) and Chen (1975b) using different methods.
Their techniques are more direct and general and give more reasonable upper
bounds than those considered here. As such, we shall give a complementary

lower bound instead.
Let Y,,...,Y,, be independent random variables taking on only the values

0,1,2,...,n.Definefor1 <i<n,1<j<m,
m
p,;j=PY,=i), V=13}Y,
j=1
m
= Epi,j’ V}= ZYZ
j=1

i%j
The proof of the following theorem is similar to that given by Barbour and
Hall (1984) for getting lower bounds in Poisson approximations.

THEOREM 6. With the above notation, we have
n-* 1 n -1 m n 2
d|-Z(V),POIS| Y A,8;|| = |1 A Y ia, Y X ko, il -
i=1 32n i=1 j=1\z=1

Proor. Let A:{0,1,2,...} > R be a bounded function and W be a random
variable having POIS(X?_,A;8,) distribution. We observe that

E| Y iAR(V + i) — Vh(V)]
i=1

iNR(V + i) — Z ip; ;E(h(V)IY; = l)]}

j=1

- E{ g: é ‘Pi,jpk,j[h(vj vis k) = h(V; + i)]}'
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It is easy to check that E[Wh(W) — L7_,iA,A(W + i)] = 0 and hence

E[ i iNR(V+D) = VR(V) — i INR(WA+G) + Wh(W)] '
i=1 i=1

= E{ Y ¥ ipi,jpk’j[h(Vj +i+k)-h(V + i)]}. '
j=1i k=1
This implies that

S iAh(i +) —jh(j)‘

2d(£(V), £(W))sup
J oli=1

(16) m n

> Y ¥ i by E[R(V,+i+Ek)—h(V,+i)].
j=1ik=1

Let A = X7_iA; and

h(j) = (J = Mexp(=(J = V)*/(8))),  Vj=0,
where 6 is some positive number to be determined later. To get an upper
bound for sup;|X7?_,iA;h(i +j) — jh(j)|, we observe that
Y iAh(i +j) —jh(J)
i=1

n

Y ir[R(i+7) = R(J)] = (J — A)exp(—(j — A)/(62))

i=1
< Amax{n,2ne 3% + ge~1}.
To get a lower bound for the right-hand side of (16), we observe that
1 — d(we **/) /dw < 3w?/(6)).
Hence writing U; = V; — A for all 1 <j < m, we have
/Uj+i+k[1 - d(we'wz/(""))/dw] dw < /

Ui+i U, +i

(17)

Uj+.i+k3w2/(0)\) dw.
This implies that
k—h(V,+i+k)+h(V,+i)

< [k® + Bik? + 3i%k + U2k + 3U,(k? + 2ik)| /(6)).
Furthermore, it is easy to see that EU;, = —X}_,kp, ; and EU? < nA. Hence
it follows that
(18)  E[k—h(V,+i+k)+h(V;+i)] <k(7n*+3n1)/(6)).
It follows from (16), (17) and (18) that if we take 6 > ne,

ALY, L(W)

m n 2 7n2 + 3nA
> Z ( kpk’j) [1 i Te— /[2)\(2716_3/2 + 0e‘1)].
j=1\k=1
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As in Barbour and Hall (1984), if A > 1, we take 8 = 21n2 and if A < 1, we
take # = 21n2/A. In both cases, we have

1 n ) -1\ m n 2
d(L(V), £(W)) 2 52— (1 A (~=1mi) )El(kglkpk,j) .'

2

This completes the proof. O

REMARK. In the case where n = 1, Theorem 6 reduces to Theorem 2 of
Barbour and Hall (1984).

4.2. Random variables under local dependence. In this subsection, we
shall approximate the distribution of a sum of locally dependent random
variables by that of a suitably chosen compound Poisson distribution.

DEerFINITION. Let I be an arbitrary index set. A nonempty family of random
variables {X,: @ € I} is said to be locally dependent if for each « € I, there
exist A, € B, CI with @ € A, such that X, is independent of {X,: B € A%}
and {X,: B € A} is independent of {X,: B € BZ}. Let A and B be nonempty
subsets of I. The set {X,: a« € B} is said to be a locally dependent set of
{X,: a € A} if the latter is independent of {X,: « € B¢}.

DEFINITION. A nonempty family of random variables {X: a € I} is said to
be finitely dependent if for every nonempty finite subset A of I there exists
another finite subset B = B(A) (including A) such that {X: a € A} is inde-
pendent of {X,: @« € B} and such that sup,infgz|B|/|A| < », where |- |
denotes the order of a set. The order of dependence of the family is defined to
be the smallest integer not less than sup, infz|B|/|Al. Let C and D be
nonempty finite subsets of I. The set {X,: a« € D} is said to be a finitely
dependent set of {X,: @ € C} if the latter is independent of {X,: « € D} and
|D|/1C| does not exceed the order of dependence.

We observe that m-dependence is a special case of finite dependence which
in turn is a special case of local dependence. We refer the reader to Chen
(1978) for examples of finitely dependent random variables.

For each n > 1, let {X{": a € I} be a locally dependent family of nonnega-
tive random variables. For each a, let {X{: B € AUV} be a locally dependent
set of {X(™} and {X{: B € B{"} a locally dependent set of {X{™: g € A("}.
Also let

YW= ¥ XP,  A™= Y EXM(YM)
peAw® acl

. Here we adopt the convention that 0/0 = 0 and we assume that A™ & (0, «).
Define the probability measure u(™ on the Borel subsets of (0, ) by

p(E) = (X)L EXP(Y) e e gy

acl
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for every Borel subset E of (0, ). Furthermore,
P = P(X > 0), £ = p( T x> o),

(19) BB
(M = Z pc(vn), ]3(") = mach(,,n)-
acl acl

THEOREM 7. With the above notation,

d(./( Y Xg;”), POIS()«("M”))) < 2exp(A™) ¥ pmeg™
acl acl

<2exp(X™) Y. ¥ p{pgY.

acl geB™

Furthermore, if for every n > 1, {X{": a € I} is a finitely dependent family
with order of dependence r, we have the following complementary limiting
result: If d(A(L, < XM), POIS(X™u™)) - 0, p™ - 0 and A™ remains
bounded as n — «, then ¥, p{V¢%) — 0 as n — », where for a €1, n > 1,
{X{": B € B} is a finitely dependent set of {X§»: B € AY)}.

Proor. For simplicity we drop the superscript (n) but will pick up the
superscript when the need arises. Let {X/: a € I} be an independent copy of
{X, a €1l}and let

W= 2:'X;’ ‘Q = 2: Xg,
acl BEAS

vz = 2: Xgs 2&:= 2: Xz,
BEBS BeB,

T, = Y X, Y, = Y Xp.
JjE€B,—A, BEA,

Let E c [0, ), h(w) = Izp(w) and f be a solution of the equation

wf(w) = A [t (w +t) du(t) = h(w) ~ [rdS, .

We observe that

EWf(W) = L EX,f(V,+Y,)

acl

= ¥ Ely .| X f(V, + Y,) = X, f(V, + Y¥,)]
acl

+ ¥ Ely . | Xof(V, + Y2) ~ X, f(W+Y))]

acl

X + Y EX. f(W+Y)

acl

= R, + Ry + AE [tf (W + ) du(t),
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where R, denotes the ith sum on the right-hand side of the second equality.
Now
Ry = ¥ Ely .ol o X F(V, +Y,) - X, f(V, + X))

acl

and so it follows from Theorem 2 that
IRyl < exp(A) X EI(X >0)I(T >0}

acl

<exp(A) Y p.é,

acl

<exp(A) L Y PuPs-
acl ﬁEBa

Similarly,
= Y Ely oz > o Xof(V, + Y) = XLA(W + Y))]

acl

and by the same argument as above,

IRyl <exp(A) X X PP
acl BeB,

Hence the first part of the theorem is easily proved using Theorem 1.

For the second part of the theorem, we assume that for each n > 1,
{X{: @ € I} is a finitely dependent family with order of dependence r. It is
easy to see that sup, . ;|IB{| < sup, o ; rlA™| < r2. Hence it suffices to show
that 7" [defined as in (19)] remains bounded as n — « since ¢ < r2p™. It
follows from Lemma 12 below that {X{": a € I} can be partitioned into r
subsets of independent random variables with index sets I{™,..., I{™. Let

™ =L, e mpl". Suppose {r} is unbounded. Then there exists a subse-
quence {n} ‘of {n} and a sequence {k,} of numbers from {1,...,r} such that
¢ > ©as n - @ So

P(ZX‘Y‘";O)SP( 3 X;"’>=0) < exp(—7{"),

acl acIf™

which tends to 0 as n — «. This is a contradiction and the proof of the
theorem is complete. O

LEmMA 12. Let = {X,: a € I} be a finitely dependent family of random
variables with order of dependence r. Then & can be partitioned into r
subfamilies of independent random variables.

ProoF. By Zorn’s lemma, every random variable in a finitely dependent
family generates a maximal subfamily of independent random variables, that
'is, every random variable in the family is contained in a maximal subfamily of
independent random variables. We note that every subfamily of a finitely
dependent family is itself finitely dependent. So we partition % as follows.
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Start with a particular X, € & and let 4 ¢ ¥ — UL }.#, be a maximal
subfamily of independent random variables generated by X; € & — UL 4.4,
i > 1. This process cannot continue beyond ¢ = r. For if it did, then by virtue
of the maximality of each .#;, every locally dependent set of every X, .,
belonging to .#,,,; would have a nonempty intersection with each .#;, i =
1,...,r. This contradicts the assumption that the order of dependence is r.
Hence the lemma. O

In the case of a sum of locally dependent indicators, the bound in Theorem
7 can be improved. Let {X,: @ € I} be a family of locally dependent Bernoulli
random variables with p, = P(X, =1) =1 - P(X, = 0) > 0. For each a €1,
let A, B, be a locally dependent set of {X,}, A, respectively. We define for
i>1,

w= Y X, A =EW,

ael

Ya = Z X ’ )‘i = (1/1’) Z EXaI(Y =i}
BEA, acl “

We assume that A € (0, x).

THEOREM 8. With the above notation,

d(./(W),POIS( f;Aiai))
i=1

(20) "
<2(1A )tl_l)exp( Z )\j) Y Y PuPs-

Jj=1 acl BEB,

However, if we have the additional condition that jA; \ 0 as j — », then the
bound can be improved to

d(./(W),POIS( i)\iﬁi))

i=1

2{1 ! [ ! + log™ 2(A; — 2A )]} > ¥
< A og - DaDp-
Ay — 22, 4(A1 - 2)‘2) ' 2 acl BeB, ?

" Proor. The proof is similar to that of Theorem 7 with the exception that
the first (second) part of the theorem uses Theorem 4 (Theorem 5) to bound
sup, sup,, » 1/f(w + 1) — f(w)| respectively. O
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Arratia, Goldstein and Gordon (1989) have shown that

d(-£(W), POIS(A8,)) < A7Y(1 — e"‘)(Var(W) -A+2Y) % PaPs -
ac€l BEA,

This, together with Theorem 8, implies that in the case that
ATH (1 — e ) [Var(W) — A]

is large, for which the Poisson approximation fails, we still have an approxima-
tion—the compound Poisson approximation—provided the right-hand side of
(20) is small.

For an illustration of a concrete application of Theorem 8, we refer the
reader to Chen (1990), who considered a problem involving head runs. In
particular, an error bound is obtained for the compound Poisson approxima-
tion of the distribution of the random variable which counts the number of
locations among the first n tosses of a coin at which a head run of length at
least ¢ begins. The asymptotic distribution of the length of the longest run of
heads beginning in the first n tosses of a coin is also considered there.

REMARK. Though it will not be covered in this paper, we wish to remark
that Chen (1976) has also used Stein’s method to obtain a number of limit
theorems and asymptotic expansions involving the compound Poisson approxi-
mation of the distribution of a sum of finitely dependent random variables.

4.3. Equiprobable allocations. Let there be v balls and % urns. The balls
are placed independently and randomly randomly (uniformly) among the k&
urns. Let N; denote the number of urns containing exactly i balls. We are
interested in the random variables U = 2N, + N; and V = N, + 2N,. Here U
can be interpreted as the minimum number of additional balls needed to
ensure that each urn has at least 2 balls and V the total number of balls
contained in urns with exactly 1 or 2 balls. It is easily seen that for i =
0,1,...,v,

E(N, kC”lil a A
T L

where C; denotes the number of ways of choosing i objects from v ob-
Jjects. In this example, we shall approximate the distributions of U,V by
POIS(A;8; + Ay8,), POIS(X?_,A,8,) respectively. For convenience, we write

) 1, if the Jth urn contains exactly i balls,
Y, - .
J 0, otherwise.

Thus N; = £%_,Y,;. Let A c{0,1,2,...} and g(v) = I,(v) — P(W € A), where
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W ~ POIS(X?_,A;8,;). By Theorem 3, there exists a bounded function f satis-
fying
2

Eg(V) =E[Vf(V) ~ TNV )

i=1

k
=E i { Y iP(Y,; = E[f(V)IY,; = 1] —id f(V + i)}
i=1\j=1
9 _
=E Y ix{E[f(V)IY;y = 1] — f(V + i)}
i=1
2

=E Y iN[f(V) - f(V+i)],
i=1

where V; has the conditional distribution of V given that Y;; = 1. Hence

2
(21) |[Eg(V)| < Y iNE
i=1
To obtain a reasonable bound for E|V + i — Vj|, we shall couple V and V, on
the same probability space as follows. Distribute » balls at random (uniformly)
among k urns. This determines V. Let Z; denote the number of balls
contained in the jth urn. If Z; > i, distribute Z; —i balls from urn 1
uniformly among the remaining urns. If Z; = i, do nothing. If Z; < i, select
i — Z; balls uniformly among the balls in the remaining urns and put them in
urn 1. This determines V..

V+i-y, f(w+1) — f(w)

sup
w>1

LEMMA 13. With respect to the above probability space, for v > 1, k > 2,
mvat1-vi<(i-2) N2 e 2) v o) s s
- - — —| +4{— —| +3].
* IS( k) (k) (k)+ (k)
Proor. We observe that,
(22) ElV+1-V|=E(V+1-V),+E(V,-V-1),

and
E(V+1-V)),=E[(V+1-V),|Z, =0]P(Z,=0) +P(Z, =1)

+ Z E[(V"' 1- V1)+|Z1 =j]P(Z1 =J)
j=2 ‘
Furthermore, it can be seen that

[N1 + 2N,

E[((V+1-V),|Z, = O]P(ZQ =0)=E Z, = o]p(z1 = 0)
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and

Y E[(V+1-V),IZ, =j]P(Z, =)

j=2

No+ N, 4N - D) 2L;53N;
k-1 k-1 k-1

<P(Z,=2)E

N,

v Nl
D
j=3

ol -5 GIR-5)

Hence we conclude that

Z1 =j]

(23)

Similarly it can be shown that

E(V,-V-1),< 2(1 - 71—) + (%)(1 - %)H

RN

The lemma follows directly from (22), (23) and (24). O

(24)

LEMMA 14. With respect to the above probability space, for v > 2, k > 2,

mvez-vis(i-g) (3] +o(5) < a(5) o

The proof of this lemma is similar to that of Lemma 13 and hence is
omitted.

THEOREM 9. With the above notation, we have for v = 2, k = 2,

| d(./(V),POIS(iéAiai)‘) < (1 - %)M[(%)a + 4(%)2 + 4(%) + 6

2

iA;.
1

x(1 /\~/\1'1)exp( 22: )tj)

l
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Proor. The proof follows immediately from (21), Theorem 4 and Lemmas
13 and 14. O

REMARK. An immediate corollary is that d(.£(V), POIS(X?_;A,5,)) tends
to 0 whenever v and % tend to « in such a way that v/k — « and A, remains
bounded. '

The essential difference in the treatment of U and V comes from the
observation that A\, << A; < A, for v/k large. Hence in the case of U, Theo-
rem 5 can be used to bound sup, sup,, . ,|f(w + 1) — f(w)| instead. The corre-

sponding result for U is stated next. The proof is similar to that of Theorem 9
and is omitted.

THEOREM 10. With the above notation, we have for v > 2(k — 1), k > 2,

d(ZL(U), POIS(A8, + Ay5,))
<fi-g ) 1R el) -2
X {1 A X _12% [4(/\1 i ) + log* 2(A; — 2/\0)]}.

REMARK. A corollary is that d(_£(U), POIS(1,8; + A,8,)) tends to 0 when-
ever v and k tend to » in such a way that v/k — « and A; remains bounded.

(219 + 1))
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