The Annals of Probability
1995, Vol. 23, No. 1, 178-222

APPROXIMATION AND SUPPORT THEOREM IN
HOLDER NORM FOR PARABOLIC STOCHASTIC
PARTIAL DIFFERENTIAL EQUATIONS!
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The solution u(t, x) of a parabolic stochastic partial differential equa-
tion is a random element of the space &, ; of Hélder continuous functions
on [0,T] x [0,1] of order @ = 3 — & in the time variable and 8 = 1 — ¢ in
the space variable, for any £ > 0. We prove a support theorem in &, , for
the law of u. The proof is based on an approximation procedure in Holder
norm (which should have its own interest) using a space~time polygonal
interpolation for the Brownian sheet driving the SPDE, and a sequence of
absolutely continuous transformations of the Wiener space.

0. Introduction. Consider the stochastic partial differential equation

(01)  Z2(t,2) = T (%) + g (u(t, )W, . + F(u(t, 2)),

t € (0,%), x € (0,1), with boundary conditions
0.2 ou t,0 ou t,1 0
(0.2) (5,0 = —(5,1) -

and initial condition (0, x) = u,(x). Here {Wt’x, (t, x) € [0,) X [0, 1]} is the
space—time white noise, f, g:R —» R are bounded and Lipschitz and , is
some real-valued function defined on [0, 1].

Equation (0.1) is formal and a rigourous meaning of this equation is given
by means of the evolution equation

(03)  u(t,x) = Gz, u) + [ ['Gy(x, )& (u(s, ) W(dy, ds)

[ 6 () (5, ) dyds,

where G,(x,y) is the fundamental solution of the heat equation with
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Neumann boundary conditions (0.2) and
1
Gi(%,20) = [ Gil(x, y)uol¥) dy.

Basic results concerning the existence and uniqueness of solutions for this
kind of equation are given in [11]. In particular, if the function u, is a-Hélder
continuous for some « € (0, 3), then the solution u is also Hélder continuous
in both variables: a-Hoélder continuous in x and «/2-Hélder continuous in ¢.

The aim of this paper is to give a characterization of the support of the law
of u as a probability on the space of Holder-continuous functions.

Fix T > 0 and let # be the Cameron—Martin space associated with the
Brownian sheet W = {W, ., (¢, x) €[0,T] X [0, 1]}, that means, the space of
functions 4:[0,7] X [0,1] —» R which are absolutely continuous and whose
derivative A belongs to L2([0,T] X [0,1]). For any h €.# let S(h) be the
solution of the deterministic evolution equation

S(R)(t, %) = Gy(x,u0) + [ ['G,(x,9)
x[8(S(h)(5,¥))h(s, ) + F(S(h)(s,¥))] dyds.

1

(0.4)

We prove in Theorem 2.1 that the support of Pou~! is the closure in the

Holder topology of the set ., = {S(h), h €#}.

Notice that the stochastic integral in equation (0.3) is an It6 stochastic
integral, and not a Stratonovich one (as in the classical theorem of Stoock and
Varadhan for diffusion processes). Actually, the Stratonovich integral does
not make sense in (0.3) because of an “infinite trace” phenomenon. This is not
surprising. Indeed, it is well known that in (0.3) the space and time variables
do not play the same role; actually, we are dealing with an infinite-dimen-
sional process, since u(¢,-) is L?([0, 1])-valued. This is one of the specific
difficulties of this framework.

In the proof of such a characterization we have combined some ideas of
[10], [6] and [7] (see also [1], [2] and [3] for related approaches of the support
theorem). More precisely, the inclusion support (P - u~!) c 7, is stated using
some adapted approximations of the Brownian sheet W; on the other hand
the converse inclusion uses some sequence of absolutely continuous transfor-
mations of the canonical probability space (Q,%, P), associated with W.
Notice that the sequence of densities of these transitions need not be con-
trolled. In Proposition 2.2 we give an abstract formulation of these ideas.
Both inclusions can be deduced from a result on approximation of evolution
equations more general than (0.3); this constitutes the core of the work.

The paper is divided in two parts. Section 1 is devoted to establish the
main result on approximation. We introduce a sequence of grids, with mesh
n~! in the space variable and a ", a € (1,®), in the time variable; then we
a§s’ociate a sequence of adapted approximations of W by elements of %, say
W,. The general convergence result proved in Theorem 1.13 makes:precise in
particular what the explosive drift perturbation introduced when we replace
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W by W, in (0.3) is. The property a " < n~! is widely used to handle the
lack of orthogonality of the stochastic integrals in the space direction.

In Section 2 we prove the support theorem. A suitable choice of the
coefficients in the approximation theorem yields both inclusions. Finally,
technical results concerning applications of the Garsia-Rodemich—-Rumsey
lemma in the setting of Holder norms and the Green function are proved in
the Appendices A and B, respectively.

All the results of this paper also hold if, instead of the Neumann boundary
conditions (0.2), we consider Dirichlet boundary conditions

u(t,0) =u(t,1) =0.

All positive constants appearing in this article are called C. They may change
from one line to the next one.

1. Approximation in Holder norm. Fix T € (0,©) and restrict the
parameter set to [0, T'] X [0, 1]. For the sake of simplicity we will take T' = 1.
Let #2(0,1]%), a € (0, 1), denote the set of continuous functions ¢:[0, 1]*> —
R such that

lo(t, x) — (%, S‘C)I

(1.1) lella == sup le(¢, x)|+  sup
O<t<1 0<¢, t<1 (It—t|+|x—x| )
0<xx<1 O0<x,x¥<1
(¢, x)sé(t %)
is finite.

Let us consider a sequence of partitions of the parameter set [0, 1]? defined
by {(ka™",jn"1),0<k<a”—-1,0<j<n—1}, n> 1, with a € (1,») and
denote by A, ; the rectangle (ka™™,(k + Da "] X (jn~ ! ,(j+ Dn"']. Given a
point (¢, x) € [0 112, set

t,= sup {ka",ka"" <t},
O<k<a™-1
ty = (t, —a™") V0
and
(12) L(x) = (jn ', (j + Hn7Y],

if x € (Gn™ L (j+ Dn1]
We can now define the approximations of the process W that will be used
in this paper. For each n > 1 let W, be the element of the Cameron-Martin

space # given by
na"W(A,_, ;), if(t,x)€d,;, l<k<a"-1,
(1.3) Wy (¢,x) = - 0<js<n-1,
0, if(¢,x) €4y, 0<j<n-—-1

Notice that the process {Wn(t, x),(¢, x) € [0,1]%} is adapted to the filtration
{#,,t €[0,1]} generated by the random variables W(A), for any Borel set
A co,t] x[0,1].
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For any p € [2,»),
(14) IW.(s, y)ll, < Cn/2a"/2,

In this section, statements concerning the validity of inequalities involving
the integer n and a real number p > 1 are to be understood for n > n,,
where the integer n, depends on p, may change from one statement to the
next one and is never specified.

Let F,H,K, f:R — R be bounded, Lipschitz functions, and suppose also
that H is a @3 class function with bounded derivatives. We consider the
processes {X, (¢, x), (¢, x) € [0,1]?} and {X(%, x), (¢, x) € [0,1]?},n > 1, given
by

X,(t,%) = G(x,u0) + [ ['Gr_(x, Y) F(X,(s,))W(dy, ds)

t rl
(15) +,/(.),/(.)Gt—s(x’ y)H(Xn(S,y))Wn(dy,ds)

'+f0tf01Gt—s(x’ y){K(Xn(s, y))fz(s, y) +f(X,(s,¥))

—(FH)(X,(5,¥))b(s,y) = (HH)(X,(s,5))ca(s, )} dyds,
where h € # and

(1.6) b,(s,y) = na"fs:slnfln(y)Gs_,(y, z) dzdr,
(1.7) c,(s,) =na"f§nf1n(y)Gs_,(y,z) dzdr
and

X(t,x) =G,(x,uqy)
18) [ [7Ge (2 )LF + HI(X(s,))W(dy, ds)

+j(;tj(;1Gt—s(x’ y){K(X(s’ y))il(S, y) +f(X(s,y))}dyds,

We denote by %, the subset of /# consisting of those functions with bounded
derivatives. Our aim is to prove the convergence of {X,,n > 1} to X in the
norm ||-|l, defined in (1.1), with @ €(0,3) and h €.%,; this is done in
Theorem 1.13, which is the main result of this section. The motivation for this
convergence has been to give a unified proof for both inclusions of the support
Pou~!. This will be made explicit in the next section. Notice also that if
F =K =0and H = g, the result provides an approximation of the solution of
(0.3) by means of a sequence {u,, n > 1} defined by

un(t, %) = G(x,u0) + [ G- (2, 1) 8 (a(5, 1)) Wa(dy, ds)

+/0‘f01Gt—s(x» W F(ua(s,5)) — (88)(un(s,¥))ca(s, ¥)] dyds.
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So the term involving the coefficient ¢, corresponds to the explosive correc-
tion between the It6 and the Stratonovich formulation of the stochastic
integral with respect to W.

We start with some preliminary lemmas. Let X, (¢, x) = G,_, (x, X, (¢,, - )).
The semigroup property of G implies that

X,(6,x) =X (t,2) = [ G- (x, ) F(X,(5,9)W(dy, ds)
(1.9) + [ [ G2, ) H(X, (5, 3)W,(dy, ds)

tr1
+//G,_s(x,y)Kn(s,y) dyds,
t,70

with
Kn(s, y) =K(Xn(s1 y))il(s, y) +f(Xn(s’ y)) - (FH)(Xn(s’ y))bn(s1 y)
_(HH)(Xn(s’ y))cn(s’ y)‘
Notice that
(1.10) sup|K,(s,y)l < Cn.

LEMMA 1.1. Forall p € (2,),
(1.11) supll X, (¢, x) — X, (¢, x)ll, < Ca™"/*.
t,x

Proor. We have, for all ¢, x,
E(IX,(¢t,x) — X, (¢, x)I") < C(T, + Ty + Ts),

ftz/Ol-Gt_s(x,y)H(Xn(s,y))Wn(dy,ds) )

P
1
j;t'/;) G,_(x,y)K,(s,y)dy,ds )

Since F is bounded, Burkholder’s inequality yields [see (B.6)]

with

t

[ G-, 9 F (X5, )W (dy, ds)

tn

and

p/2
(1.12) T, < c(/‘jlaf_s(x,y) dyds) < Ca—"P/4,
t,70 .

Lefnma B.3 ensures that
(1.13) T, < Ca™"1/2-1/2p)pp /2,
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Finally, by (1.10) and (B.3) we obtain
(1.14) T; < CnPa™"P.
The estimates given in (1.12), (1.13) and (1.14) imply (1.11). O

For £ > 1 set
(B+Da"At (1 _ :
XB(, x) = [T TG, (x, 9) [H(X (s, 9)) — H(X; (s, )]
ka " At 0
XW,(dy,ds).

n

In order to simplify the notation we will write in the sequel ka™" and

(k + Da " instead of ka™" A ¢t and (B + 1)a™™" A t, respectively.

LEMMA 1.2. For any p € [1,®) it holds that
a”-1

T (AP, x))’
E=0

< Cn3a~"/2,

(1.15) sup
t,x p

Proor. By Hoélder’s inequality we obtain

a”-1

a*—1 b
( Y ()\(nk>(t,x))2) ]sa"(p—l) Eo E[(AP(¢, x))"].

k=0

E

Moreover, for any £ > 0

E[(x0(2, )]
n-1
< Cn?P~1 Y nPaP

Jj=0
X{E
n—1

< Cn3p—1anp Z a—n(4p—1)/2
Jj=0

4P}1/2

B . B 1/2
X{f(k+1)a f(j+1)n Gt_s(x,y)Ean(s,y) _X;(s, y)|4P dyds}
Jnt

(k+Da™" G+ a1 )
f : ,[.J_tl G, (x,9)|X,(s,5) — X, (s,y)|dyds
jn

ka™"

ka™"

< CnBpPq=3np/2,
where, in the last two inequalities we have used, first a Holder inequality
with respect to the measure u(dyds) = G,_,(x, y)dyds, and then Lemma
1.1. Consequently (1.15) holds. O

Iﬁ order to deal with Holder norms we need a new result in the spirit of
Lemma 1.2, but involving increments of the Green function. The following
lemma is crucial in the proof of Proposition 1.5, which is used to get rid of the
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explosive drift correction coefficients appearing in (1.5). We first introduce
some notation. For s, ¢, ¢, x, X € [0, 1], set

(1.16) I'(¢,%,%,%; $,¥) = G, (%, 7)1}, 51(8) — Gi_s(X, ¥) 10, 5(5)

and
XB(8,8, x,%) = XB(¢, x) — AB(E, %)
(+1a" r1 - _
1.17 = I'(t,t,x,Xx;s,
(1.17) . fo ( y)

X[H(X,(s,9)) - H(X; (s, 7))|W,(dy, ds).

LEMMA 1.3. For any p € (1,) there exists C such that for every t, t, x, X
and n € N,

(118) /\(k)(t t x, x)) {x '_xl + |t _ t|1/2}

p

with lim,, , , &, = 0. Consequently

-1

Z (AP, 2, x, x))

k=0

(1.19) sup < C{lx — x| + 1t — i['?}.

p

PROOF. Set

XB(¢t, x, %) = XP(¢, x) — AP(¢, %)

=[5 G2, 9) ~ G (3, 9)]
x[H(X,(s,)) ~ H(X; (s, )] W,(dy, ds),
and let / be the positive integer such that
la"=t, <t<(l+1)a™"
We will first prove that for p € (1, ),

a”—1

sup

(1.20)

X = sup < Clx — xl&,
t

p

i (‘A;“(t,x,fc)f
k=0

with lim,, _, ,&{" = 0.
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Fix p € (1,») and let y be such that 1/2p + 1/y = 1. Then y € (1,2) and
E[(x(z, x, B))"]

n 2p/vy
< C(f‘k“"’ [16ei(x,9) = G ® )] dyds)

ka™"

(1-20) xE(/"””"’"flan(s,y)—X;(s,y)l“lwn(s,y)l“dyds)
ka™" 0

< Cnpa_n +n(p/2)

(k+1Da™" 1 _
X[ [ 16 03) = G (2 )] v

ka™"

)ZP/Y

Suppose that 7 =X — x > 0; using statement (i) in Lemma B.2, we majorize
the last integral in the right-hand side of (1.21) by Cla™"n? + 7% "I(k, v)],
where I(k, y) is defined in (B.15). Because of the explicit estimation of I(k, y)
obtained in (B.12) we introduce the positive integer [, defined by

lo=inf{k > 0:t— (k+ 1)a™ " <’} AL

The estimation (1.21) yields that

S=

l
Y (XB(¢, x, %))
k=0

< Cna—n/p+n/2—2n/‘y,n2an

p

(1.22) - ! o/
+ Cna~"/P+n/223/v=D 3" I(k,v)
k=0
3
< Cna—n/ZnZ + Cna—n/p+n/2,n2(3/y—1) Z Si7
i=1
where
Uo-DAU-2)
2
S= ¥ I(kv)7,
k=0
! 2
S;= X I(k,y)"”
k=ly+1
and

S3 = I(l(),7’)2/y + 1,11 - 1,7)2/7,

with the convention that S, =0 if [, + 1 > {. Using (B.12) and Hélder’s
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inequality, we obtain that
UAo-DAU-2)
S, = Z 7’-2(3/2—7)2/7
k=0
x[(¢ = ka™")**7 = (t = (k + 1)a™)**77
Uo-DAU-2)
=Cnp* %7 ¥ [
(1.23) k=0

< Cnt=8/7 ( / ¢ u72=92/v gy | g —n@/v=1)
t=[lpAU~Dla™"

]2/7

2/y
t—ka™"
¢ ul/?2=7du
t—(k+1a~"

< Cn4-6/7a—n(2/7— 1
o
< Cn?4/7g="@/7=D)
where the last inequality uses the fact that ¢ — [,a ™" > n?. Similarly,

l
— -2(B - 2)2
Sz" Z n @-v)/2)2/v
k=1ly+1

X [(t —ka )2 (4~ (R + l)a—n)(3—‘y)/2]2/7

= Cn—2(3/‘y— 1)

t—ka™" 2y
(124) = u@-772 du)

k=1ly+1 ( t—(k+1a™"

< Cy26/7- 1>(ft*“0+ Da™ a-vy2e/v du) a-"@/7=1
0

- — —nn1 _ -
< Cn~%3/7"D(t — (L + 1)a~")"Ta="@/7"D
< Cn26/7=D+2/75-n@/7-D),

We finally estimate S;. Suppose at first that /, <! — 2; then,

t—1,a " \**7 [t —(ly+ 1a"\C?
1(10’7)50[(_"7‘1) _( (0 2 ) ) .

n n
Since 3/2 — y< (8 — y)/2 and (¢t — lja™™) /7 > 1,

- 2/
t_l a—n (3—’}')/2 t_ l +1 a—n (€] ‘)’)/2
N

m m
’ < Cp 26/ V(¢ — (I + 1)a™ )" ta=m@/m,

Since I, < — 2, we have that n® >a™" and ¢ — (I, + 1)a™ > a™"; there-
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fore,

I(l,, 7)Y < Ca=™@/7=1/ M2/ 7=26/7=1)g—n(1/y-1)
< Cn2—4/7a—n(2/7— D,

In order to deal with the cases [, =1 — 1or [, =1, let

ey 1 £2 1 £+ 1)°
I=fo(t t”)/"fR—exp( )— exp(—g—))

27r T 4r 2mr 4r

t—t, 3-v)/2 t—t, 3/2-y
<C AL S AT 2 - 1]|.

Then, since Iy =1 — lorl,=1,t — t, > 1%, so that n% < 2a~". Hence

dédr

S;<C

e

< Cn—G/'y+2+2/'ya—n(2/'y— 1).

Inequalities (1.23) to (1.26) yield

‘— 3/2—y 2/v

3
(1.27) na "/P¥r/2n26/v=D ¥ . < Cna~"/"m?/".
i=1

Therefore, inequalities (1.22) and (1.27) yield (1.20) for p > 1 with
e = Cna="/2.
For any ¢t < and «x, set
XP(t,2, x) = XP(F, x) — AP(t, x)

1.28
(1.28) = uP(t,t, %) + vP(t,%, x)
with
(k) t’z" - (k+1)a_"/\t 1 G__ , _.G_ ’
uP(t,t ) = [ "G (x,9) = G2, 9)]
X[H(X,(s,9)) — H(X, (s,))|W.(dyds)
and
yP(t,E, %) = [N G (x, y) [ H(X(5,9)) - H(X; (5,9))]
ka "Vt 0
XW,(dyds)

with the convention »*¥)(¢,%,x) = 0if ka ™" V t > (k + Da=" AL
We prove that for p > 1,

3 a”-1 ‘
(1.29) sup|| ¥ (AB(t,E,2))°| < ClE - ¢V%®
x k=0 p
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with lim, £ = 0. We at first estimate y*)(¢,%, x). Let p > 1 andlet y € (1, 2)
be again such that 1/2p + 1/y = 1. Hélder’s inequality implies that for
every k such that ka™ Vi <(k + 1)a™" A £,

(wP(2,2, x))2||p
= C[{(k + 1a™" A Z‘} - {ka_n Vv t}](2P—1)/p

x[ (k”)"_"/\zfole—s(x’ y)(E(an(s, y) - X, (s, y)'4p))1/2

ka" "Vt

. 4pr\1/2 1/p
X(EIW"(s,y)I*")" " dyds

< C[{(k +1)a " At} —{ka™ "V t}]zna”/z
<Cna™2[{(k+ 1)a™ " A2} — {ka™" Vv ¢}].

Therefore,

a”-1

}_: (x®(¢,2, x))°

< Cna "/t — t|.
P
Thus, the proof of (1.29) reduces to checking

a”-1
T (uh(t,7, x))°
E=0
the arguments are similar to that of (1.20). Thus
- 2
E(( (2,2, ))"")

. 2p/v
(1.32) < C(/(k+l)a fllaz—s(x’ y) = G (x, )" dyds)
0

ka™"
XnPg n+tmp/2)
Let » =% — t > 0; then statement (ii) in Lemma B.2 implies that the integral
in the right-hand side of (1.32) is dominated by Cla™"|f — t| +
h®=7/2J(k, y)], where J(k, ) is defined in (B.16). As previously, we intro-
duce the positive integer [/, defined by
lLy=inf{k>0:t — (k+ 1)a™ " <h} AL

Hence, we have that

l
T= Y I(sP(8,8 ),
k=0

(1.30)

< Cli — t|"%®;
P

(1.31) sup

x

) .
(1.33) < Cna™/»*"/2 Y [a="®/DRT + ROV (k,v)"]
k=0

3
< Cna "/2hp2/7 + Cng—n/P*tn/2p3/v-1 Z Ti’
i=1
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where
(i-DAU-2)
T,= Y  J(k,y)Y,
k=0
l
Ty= YL J(k,v)?
k=1,+1
and

Ty = dJ(ly,v)"" + 1y, J (1 - ).
We assume that T, = 0 whenever /; + 1 > I.
Using (B.14) and Holder’s inequality, we have

(1 -DAU-2)
T, <C 2 h—8/20-v2/y
k=0

2
X[(t _ ka_n)3/2(1—'y) _ (t _ (k + 1)a~n)3/2(1—‘y)] /v

G -DAU-2) han 2/y
< Ch3-3/7 y [ t—ka ul/2-3v/2 du]
(1.34) k=0 t=(k+Da™
< Ch3‘3/7(ft ul/7-3 du)a—n@/y—l)
t—[LAU-1D]a"

< Ch8-3/vg—n@/y=1)
x[(t = [l A (1= D]a )72 = 112
< Chl-2/7g—n@/v-1)

Similarly,

l
T,<C Y h6/rD

k=l+1
x[(t = ka2 — (¢ — (k + 1)@~y /"
! t—ha-n 2/

< Ch—(?»/y—l)(f‘*”l*1)“‘"u<1—v>/2<2/y>du)a—n@/v—n
0

< Ch=®/7"D(¢ — (I, + 1)a™ ") "a /7D
< Ch~®/ry=D+1/yg—-n@2/y=1)

To estimate T, we at first suppose that /; < — 2; then the mean value
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theorem yields

J(l,v) <C

[ (t_lla—n )3/2(1—’}’)

t— (I, +1)a "\ 72
- +1+1—( - )

-

c a™® a " [t— (Il +1)a "\
< +
i % )

Since /; <1 — 2, we have that A >a ™ and ¢ — ([; + Da™" >a~". There-
fore, if [, <1 - 2,

(1.36) J(1, 7)2/7 < Ch~2%/7q=21/7 < Cq "@/7-Dpl-2/v,

Finally, consider the cases [; =1 — 1 or [, = [, and let

g (Gt ! 2 ! ( f)ydd
= ————exp| - ———— | - exp| — — zdv

fo [R V2m(v + 1) P 4(v+1) 2mv P 4v

t—t B-v)/2 t —t 3/2(1-1y)
n n

sC( - /\1) +1(t_tn>h,(1—( - ) )
Since t — ¢, > h, it holds that 2 < 2¢™" and
(1.37) T, < Chl=2/7q=n@/v=D),
Inequalities (1.34) to (1.37) imply that

3
(1.38)  na~"/P*n/2R3/v"1 3N T, < Cna™"/?h'/? < Cna™"/2h/2.
i=1

Inequalities (1.33) and (1.38) imply that (1.31) and (1.29) hold with &?® =
na~"/2; this concludes the proof of the lemma. O

Set

é.(s, )

(1.39) . = E(H(X,(s,9))W,(s,9)/5,)

~[(FH)(X,(s,7))b.(5, %) + (HH)(X,(s,7))ea(s, )],

where b, and c, are given in (1.6) and (1.7), respectively. Our aim is to prove
that

(1.40) lim supll¢,(s, y)ll, = 0.

n—o s,y
This will be done in three steps. We at first show an estimate for
sup, ,ll¢,(s, y)ll, in Lemma 1.4. This enables us to prove L, estimates of
X, (¢, x) — X, (¢, x) with constants depending on n, which will be used to
complete the proof of (1.40) by improving the estimates of Lemma 1.4.
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LEMMA 1.4. For any p € [1,) it holds that

(1.41) supll¢,(s, ¥)l, < Cn.
Sy

PrOOF. We consider the Taylor expansion
H(X,(5,)) = H(X; (5,)) + H(X; (5,9))(Xa(5,7) = X; (5, 7))

+R,(s,y),
with |R, (s, )| < C|X,(s,y) — X, (s, ¥)|%. Then

2
CACR e M EACRO R
o

where
0i(s,y) = E(H(X; (5,9))(X,(5, ) — X; (5, 9))W,(s,9)/5%,)
—[(FE)(X,(5,9))b,(5, ¥) + (HH)(X,(5,5))eq(s, ¥)],
02(s,7) = B(R,(s, y)W,(5,9)/5,)-
Set Ii(s, y) = Elgi(s, y)I?, j = 1,2. The identity (1.9) yields

3
Li(s,y) <C Y I;(s,9),

Jj=1
where

Ii\(s,y) =E

(s 90

X (fsfole_r(y, 2)F(X,(r,2))W(dz, dr))Wn(s, y)/zn)
X (/sfle—f(y’ 2)H(X,(r, z))Wn(dz,dr))Wn(s,y)/,Zn)
s,”0

i

_(FH)(Xn(s’ y))bn(s’ y)

IM%(s,y) =E

\E(H(xu's,y»

_(HH)(Xn(s’ y))Cn(S, y)

|

I}'3(s,y) =E

IE(H(X;(s,y))
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The estimate (1.10) yields

p
1,3 s rl /2. np2
(1.42) L*(s, ) SC"”(];nfO Gs_r(y,Z)dydz) np/2qnp

< Cn(3/2)aa—n /2p‘

We will now deal with I,-'(s, y). For I,(y) defined in (1.2), first notice that
. _ s r1
E[H(Xn(s,y))( [] Gs_,(y,z)F(Xn(r,z))W(dz,dr))

an(s,y)/zn] =0,

and
E[H(X;(s,y)) L], Goerlo F (X, 2))W(dz, dr)
an(s,y)/zn] =0.
Hence

I'(s,y) = E ‘E(H(X;(s,y))fnfl (y)Gs-r(y,Z)

XF(X,(r,2))W(dz,dr)W,(s, y)/.zn)

P

(1.43) —(FH)(X,(s5,))ba(s, )

2

nanf§n£n(y)Gs—r(y, Z)[H(X;(S, y))E(F(Xn(r’ z))/'g;n)

Sn
p)

—(FH)(X,(s,))| dzdr

We have

na* [ [ G (1 DX (7, 2))

Sn

I}(s,y) < CE(
(1.44)

p
—F(X,(s,))|dzdr ) + CnPa—"®/9,
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Indeed, consider the following decomposition:

IFY(s,y) < C(IFVY(s,y) + I112(s, y)),
with

fs”f (3, 2)(B(X; (5,9)) ~ H(X,(5,9)))

Sn
p
’

Iit(s, y) = [

XF(X,(s,y))dzdr

and

Lt (s, ) =E[ nat [*f Gy (3, 2)H(X; (s, )
Sn " LalY

1

Sn
na"|X,(s,y) - X; (s, 9)If f, Gaer(3,2) dedr
sn ny

x{E(F(X,(r,2))/%,) - F(X,(s,))} dzdr

Since H is Lipschitz, Lemma 1.1 shows that

)

IMb1(s,y) < CE(

< CnPa"P/%,

Furthermore, by Hélder’s inequality,
I;4%(s, y)

<o}

[7f  Gur(3:2)

sn “1(y)

x[|F(X; (r, 2)) = F(X,(r, 2))|
+|E(F(X,(r,2) = F(X: (r, 2)/5,)

|

+|F(X,(r, 2)) — F(X,(s,9))|| dedr

(1.45)
< CnPa™Pq=Mp-D [ Ay, 2
f fI(y (7,2)

XE(|X,(r,2) - X; (r,2)[") dzdr

+E

)Gs_r(y,z)

s, L(y

<F(X,(r.2)) - F(X,(s, ) dsrt |
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Then, Lemma 1.1 and the boundedness of F' ensure

I} b2(s,y) < C(nPa™"P/* + nP).
Hence
(1.46) IM(s,y) < CnP.

This estimation will be improved in the sequel.
Let us now consider I,"2(s, y). We have

E(H(X;<s, W, 9) [ ['G, (3, 2) H(X,(r, 2))W,(dzdr) /5,
~ E(H(X,:(s,y))Wn(s,y) [ [6r2.2)

xXH(X, (r, z))Wn(dzdr)/%n) +A,(s,y),

where as using Lemma B.3 we obtain
E(lAn(s’ y)lp) < CnPg—™MP-1/4,
On the other hand,

E(H(X;(s, DLACE) [ G, (,2)

xXH(X, (r,2))W,(dz, dr)/,%n) =0
and

E(H(X;(s,y))Wn(s,y) [ G (922

xXH(X, (r,2))W,(dz, dr)/?sn) = 0.
Consequently, arguments similar to those used to study I (s, y) yield
I;%(s, )

<CE IE(H(X;(S’y))W”(S’y)-/j L(y)

G, (y,2)H(X, (r,2))W,(dz, 3")/%)

]

__(HH)(Xn(S’ y))cn(s’ y)
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py—n(p—1)/4
(1. 47) + CnPa p

= CE(lna”LiLn(y)Gs_,(y, z)

x[H(X; (s, ) H(X, (r,2)) — (HH)(X,(s,))] dzdr

l
l

+ CnPg™MpP-1/4

na [ [ Gy ) H(X,(r,2)) = H(X,(5, )| dedr

Sp”4n\Y

sCE(

+ CnPq (P~ D/4,
Since H is bounded,
(1.48) I}2(s,y) < Cn?,

which will also be improved later on. Inequalities (1.42), (1.46) and (1.48)
show that

(1.49) supIl(s,y) < CnP.

sy

Finally, Jensen’s and Schwarz’s inequalities together with Lemma 1.1 show
that

(150 12(8,9) = CE(W, (s, 9)P") " E(1X,(5, ) = X; (5, 7)1*7)"

< CnP/?,

Hence, (1.49) and (1.50) imply that

Supl|¢n(s,y)||p SCn. O
s’y

We now prove moment estimates of X, (¢, x) — X, (¢, ¥) with constants
depending on n.

ProPOSITION 1.5. For any p € (2,%), we have
(1.51) IX,(¢, x) — X, (%, ®)ll, < Cn(lt — {"* + |2 — &'/?).

Proor. Fix p € (2,©); then

4
i=1
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where

Wl(¢,%, x, T) =f

Olfolf'(t,i, x, %58, y){F(X,(s,y))W(dyds)

+H(X, (s,5))W,(dyds)},
(//nz(t’z,x’x)
1,1 - —.
_./;)/;)r(t’t’x’x,s,y)

X[H(X,(s,7)) = H(X, (s,7))|W,(dyds)

a”—1
(k+Da™" 1 -
- ZE( I'(t,¢,x,%;s,y
LB\ R )

ka™"
X[H(X,(s,y)) — H(X, (s,))] X W,(dyds)/F_1,a — n)
$2(t,t, x, %)
- jolfolr(t,z, %, %55, 9) [ K(X,(5,9))h(s,5) + F(X,(5,))] dyds
and
bi(t,t, x, %)
- folfolI‘(t,Z, x, 5, 5)| E(H(X,(s,9))W,(s, %) /%) — H(X,(5,))

X{F(Xn(s’y))bn(s’ y) + H(Xn(s’ y))cn(s, y)}] dyds.

Since ,(¢,%, x,%) is a stochastic integral, Burkholder’s inequality and
Lemma B.1 imply

1/2
_ 1,1 _ 2
lwl(t,z,x, %)l SC( I'(t,t,x,x;s, dds)
(1.52) i Mo j(;‘/(; ( y) dy

< C(lx — =% + [t — 2V*).
The term %(¢, %, x, X) can be written as follows:

b2t t,x, %) = L{AP(t,F, 2, %) — B(AP(¢, 1, %, B) /T o) )
k

where A)(¢,%, x,X) has been defined in (1.17). The discrete Burkholder
inequality and Lemma 1.3 [see (1.19)] yield

(1.53) ly2(t, 2, %, %), < C(lx — xV2 + [t — #*/*).

v

- Clearly Lemma B.1 implies

(1.54) ly2(2,2, , %), < C(lx — 21V2 + [t — F'/*).
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Finally,
’-’ 2 ' ' t’ 2 2 ; 2 ’ 2
¥, (t,t,x,%) [fl( t,x,x;s y)¢n(s y) dyds

with ¢,(s, y) defined in (1.39).
Applying Schwarz’s and Hélder’s inequalities, then Lemmas 1.4 and B.1,
we obtain ,

lgt(t,2, x, %),

1/2
1,1 -
(1.55) < (f [Tt %555, ) dyds) supll,(s, y)ll,
0”0 s,y
<Cn(lt —#"* +|x - a’cll/z).
The estimates (1.52) to (1.55) imply (1.51). O
The preceding proposition enables us to improve inequalities (1.46) and

(1.48) using (1.44) and (1.47), respectively. The additional tool is given in the
next lemma.

LEMMA 1.6. For any p € (2,x),

[s_/ Gs—r(ya 2)|Xn(r, Z) —Xn(s,y)ldzdr < Cna~5"/4,
Sn I,,(y)

|

(1.56)

Proor. Fix p € (2,); then

S
E( fsnfz,.mGs-*(y’z)'Xn("’z) ~ X,(s,y)l dzdr

(1.57) can
sn” Ly
XE(IX,(r,2) — X,(s, y)I")dzdr.

By Proposition 1.5, the right-hand side of (1.57) is bounded by

S .
Cae | ['f Gy (v, 2)nly — PV dedr
s, I(y

)Gs_r(y,Z)

S
+ G,_.(y,z)nPls — r|?’* dzdr
j;nj;n(y) (3.2)

< Ca=™MP~Dpp [sf —1———Izl"/2exp __z2__ dzdr
- s.’RY2m(s —r) \ 2(s—r)

+[S[Ra-n<w4>as_,(y, 2) dzdr]

< Ca"‘(l"l)np[fs(s —r)?*dr + a‘”"‘”“] < CnPaq=5mp/%, ]

Sn
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REMARK. 1.7. Consider the inequalities (1.44) and (1.47) in the proof of
Lemma 1.4. The Lipschitz property of F' and H together with Lemma 1.6

gives
I (s,y) + I;%(s, ¥)
p)

sCE(

na"[§"f G,_.(y,2)IX,(r,z) —X,(s,y)ldzdr
(1.58) s, “L(y)
+ CnPq-"(P-D/4

< CnPa"PnPq=5"p/* 4 CpPq n(P~D/4

< Cn?Pq=n(P-1/4,
Thus the estimate (1.49) is improved as follows:
(1.59) supll(s,y) < Cn2Pq="(P-1/4
e

The improvement of (1.50) requires a Taylor expansion of order 3 of H
around X, (s, y). The next lemma deals with the corresponding term of
order 2.

LEMMA 1.8. For any p € (2,®),
(1.60) supIIE(IXn(s, y) — X, (s, y)*W,(s, y)/zn)llp < Cn*a™"/%.
8,y

ProoF. By the identity (1.9) we have
2 3 6 .
E(1X,(s,5) = X; (5, 9)*W,(5,9) /%) = ¥ Ti(s,),
i=1

where

[ 2
Ti(s,5) = E|W(s, ) j:fole_,(y,z)F(Xn(r,z))W(dzdr)) /9*]
T2(s,y) = E|W,(s, ) /s[ole_,(y,z)H(Xn(r,z))W,,(dzdr)) /9*}

2
Ti(s,9) = E|W(s.0)| [ ['G,- (5, 2)Kn(r, 2) dzdr) /9]

s,”0

Ti(s,y) = ZE[Wn(s,y)( [ [ 6y, P, z))W(dzdr))

S

X (fss](‘)le_,(y, z2)H(X,(r, z))Wn(dzdr))/.ZnJ,
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T5(s,y) = 2E[W,,(s,y)( [ [G-r(y. ) F(X,(r, z))W(dzdr))

y (];s](-)le_r(y’ z)Kn(r,z) dzdr)/zn]’

T(s,y) = 2 Wn(s,y)( [ IGS_,(y,z)H(Xn(r,z))Wn(dzdr))

X([stle_,(y,z)Kn(r,z) dzdr)/?sn

For any p €(1,) and every random variable Y,(s,y) € N;.,<.L,, we
have, by Jensen’s and Schwarz’s inequalities,

161 IE(W,(s, )I¥u(5, )2/, )ll, < 020 21Y, (5, y)IEp.
Consider Y,'(s,y) = [{ [¢G,_(y, 2)F(X,(r, 2)W(dz, dr); Burkholder’s in-
equality implies that
1Y, (s, y)ll, < Ca="/.
Hence
(1.62) IT(s, y)l, < Cn'/2.
For YX(s,y) = [§ [¢G,_(y, 2) H(X,(r, 2))W,(dz dr), Lemma B.3 implies that
1Y,2(s, y)ll, < Ca™"(/2-1/2P)p1/2 and hence
(1.63) IT2(s, y)ll, < Cn¥2q="/2-1/4p),

Finally, if Y,%(s,y) = /2 [§G,_,(y, 2)K,(r, 2) dzdr, we have ||V, (s, y)l, <
Cna™", and hence

(1.64) IT23(s, y)ll, < Cn®2a=37/2,
Schwarz’s inequality implies that
(1.65) T (s, y)lp + ITE(s, ), + ITE(s, ¥)l, < Cnta="/2-1/8p),

It remains to improve (1.62).
Set :

Z,(s,9) =E[Wn(s,y)( [ IGS_,(y,z)F(X;(r,z))W(dz,dr)) /37]

We have Z (s, y) = 0; indeed,
Z,(s,)

=E Wn(s,y)E([sfolez_,(y,z)F(X;(x, zi)2 dzdr .9';")/9;"]

= (f;folez-r(y, 2)F(X; (r,2))° dzdr)E(Wn(s, y)/gr;n),
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Moreover,
E[Wn(s,y)( fj" A le_,(y,z)F(X;(r,z))W(dz,dr))
X (fsj;)le_r(y,z)F(X;(r, z))W(dz,dr))/Z"] = 0. ‘
Hence, B
2
T(s,y) =E Wn(s,y)( [ le_,(y,z)F(Xn(r,z))W(dz,dr)) /9’]

We want to show that for p > 2,
(1.66) IT (s, y)lI, < Cna="/%.
Notice that we can replace T}!(s, y) by

ThY(s,y) =E Wn(s,y)(j;§n‘/;)le—r(y, 2)F(X, (r, z))W(dz,dr)) /'9';,,)

More precisely,
(1.67) IT (s, y) — T(s, y)ll, < Cn'/2a="/4,
Indeed, set
Sn (1
Yi(s,y) = f f G, .(y,2)F(X,(r,2))W(dz,dr)
s, 0

and
Y3(s,9) = [ ['G, (v, 2)F(X; (r, 2))W(dz,dr).
s, 70
Then for p > 2,

1Y,(s, ¥) = ¥.2(s, )l
=|fjnfole-'(y’z)[F(X”(r’z)) - F(X,(r,2))|W(dz,dr)

<Ca™"/2,
Furthermore, since F is bounded,

1Y, (s, ¥)llp + 1Y.2(s, y)ll, < Ca™"/%.

p

Then,
IT (s, %) — T (s, ),
= 1E(W,(5, ) (%25, 9)° = X2(s,9)°) /% )l
< ”Wn(s’ y)”2P“Yn4(“$9 y)2 - Yns(s? y)2”2P

< Cn'2a™?|Y (s, y) + Y,2(s, )4l (s, ) — Y,2(s, ¥)lap
< Cnl/Zan/Za—n/4a—n/2 — Cnl/\2a—n/4,
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which proves (1.67). Fix s € (0,1] and consider the stochastic process {N,,
u € (s, s, and {M,,u € (s,, s,]} given by

Nu = W((sn?u] X In(y))’

M, = [ 6, (5. 2)F(X, (r,2))W(dz, dr),

respectively. Using the It6 formula for f: R?2 — R defined by f(x, y) = xy?, we
obtain

E[Wn(s, y)(j;§"‘/;)lgs_,(y, 2)F(X, (r, z))W(dz,dr)) /?sn]

= na"E[ f(N,,, M) /%, | = na[Z}(s, ) + Z2(s,y)],

where
ZX(s,y) = ZE[ ( [ IGS_,(y,z)F(X;(r,z))W(dz,dr))
X (j; ( )Gs_u(y, 2)F(X, (u, 2)) dz) du/?;n]
and

Zi(s,y) = E[]j"W((sn, u] X I(y))

X (j;)lez_u(y, 2)F(X, (u, z))2 dz) du/%n].

Notice that, since [¢G?_ (¥, 2)F(X, (u, 2))* dz is F, -measurable, Z2(s, y) =
0. Consequently,

IT (s, ), = na™lZ;(s, y)ll,.

Jensen’s, Holder’s and Burkholder’s inequalities imply
1/2
I1ZY(s, y)Il, < Ca_”(f§nflG82_,(y, z) dzdr) < Ca=6/Hn,
s, 70
and therefore (1.66) holds true. The estimates (1.63) to (1.66) yield
6
Z ”Trf(s, y)”p < Cn4a_n/4"

i=1
and thus, the proof of (1.60) is complete. [

‘It is now possible to obtain a much more precise result than the stated in
Lemma 1.4.
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PROPOSITION 1.9. Let p € (2,%) and {¢,(s, y),(s,y) € (0,1] X [0,1)} be
the process defined in (1.39). It holds that

(1.68) supll¢,(s, y)ll, < Cnta=n/4P-1/p,
s’y

ProoF. As for the proof of Lemma 1.4 we consider a Taylor expansion of
H(X,(s, y)) around X, (s, y), but this time up to the third order, that is,

H(X,(s,y)) =H(X,(s,5)) + H(X; (s, ))(X.(5, ) — X, (5,%))
+%ﬁ(X;(s, y))(Xn(s’ y) _X;(s» y))2 + rn(s’ y)’

with
r.(s,¥) < ClX,(s,) — X; (s, 5.
Then
3 .
b, (s, M, <C Y NBi(s, y)llp,
j=1
where

4—03(3, y) = go,f(S, ¥),
as in the proof of Lemma 1.4, while
52(s,5) = H(X; (s, 9) E(Wy(s, ) (X,(5, ) — X3 (5,9))"/%,)
and
82(s,5) = E(W.(s,)ra(s,9)/%, ).
Remark 1.7 [see (1.59)] yields

(1.69) IE2(s, )l = (IX(s, ¥))"” < Cn2a=n/4p=1/p,
Moreover, Lemma 1.8 implies
(1.70) 182(s, y)ll, < Cn*a™"/%.

Finally, Jensen’s and Schwarz’s inequalities together with Lemma 1.1 show
that :

(171 183(s, Mllp < CIW,(s, M 2pl(Xo(s, ¥) = X7 (5,5)) 2
< Cn1/2an/2a—(3/4)n — Cnl/Za—n/4.
Consequently, (1.69) to (1.71) give the assertion (1.68). O
In the next proposition we will establish LP”-estimates of X, (¢, x) — X,,(¢, ¥)

similar to those proved in Proposition 1.5, but with constants which no longer
depend on n.

‘THEOREM 1.10. For each p € (2, ), there exists C > 0 such that
(172)  supllX,(¢,x) — X, (%, ®)ll, < C(It — #"* +|x — %"/?).
n
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ProoF. It suffices to check that the estimate (1.55) in the proof of Proposi-
tion 1.5 can be improved, as follows:

(1.73) (e, 2, x, %), < C(It — "? + |x — ).

However, this is an immediate consequence of the estimate of sup,, S d,(s, Y
provided by (1.68). O ‘

We now prove the convergence of (X, (¢,x),n > 1) to X(¢,x) in L? for
fixed (¢, x).

THEOREM 1.11. For any p € [1,%), any (¢, x) € [0, 1]?,

(1.74) lim|| X, (¢, x) — X(¢, x)ll, = 0.

ProoF. We decompose the difference X, (¢, x) — X(¢, x) into several terms:
X, (t,x) —X(¢,x)
= [ [ GsCe DUEF + H) (X, (5, 9))
—(F + H)(X(s,y))}W(dy, ds)
+ [ [ 6 NK(X(s5, ) = K(X(5, )]s, 9)
+[F(Xu(s,5)) = F(X(s,5))]} dyds + 8,(¢, x),

where

5.(t,x) = jotjla,_s(x,y)H(Xn(s,y))[Wn(dy,ds) — W(dy, ds)]

(=)

[ 6 (5 D [(FHY (X5, )05, 9)
' +(HH)(Xn(3,y))0n(8,y)] dyds.

Fix p €(6,) and let ¢ satisfy 2/p + 1/q = 1; then Burkholder’s and
Holder’s inequalities imply that

E(|Xn(t’ x) - X(t’ x),p)

p/2
+ CE(16,(¢, x)I7)

1 .
< CE(’]:]; G (%, )X, (s,y) — X(s,y)? dyds

, trl \?/ %4 t r1
| sc(fojoaf_qs(x,y) dyds) jofoE(|Xn(s,y)—X(s,y)lp)dyds

+CE(18,(¢, x)17),
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Hence,

sup E(1X,(t,x) — X(¢, x)|?)
x
< C supl|§,(t, x)II5 + Cft sup E(1X,(s,x) — X(s, x)|”) ds.
x 0 =« .

Gronwall’s lemma implies that

(1.75) sup|l X, (¢, x) — X(¢t, x)ll, < C supll§,(s, x)ll,.
x x
Set 8,(¢, x) = Li_,89(¢, x), where

50(t, %) = 1[G, (2, 9) [H(X; (5,))W,(dy, ds)

—H(X; (s,y))W(dy,ds)],

89(t, x) = fotfolgt_s(x,y)[H(X;(s,y)) — H(X,(s,9))|W(dy, ds),
(%) = Ef‘;ﬁ-s(’“’y)[H(Xn(s, ) = H(X; (s,9))|W,(dy, ds)
_fotfolat_s(x, YV E(H(X,(5, %))W, (s, )/, ) dyds

and

t

5(t, %) = [

([ G ) {E(H(X,(5,9)) W5, )/,

—(HF)(X,(s,5))b,(5,5) ~ (HH)(X,(s,5))e,(s, )} dyds.

We next prove that lim, sup, ,[I6{’(¢, x)l, = 0. To this end, we first intro-
duce some notations in order to write §{"(¢, x) as a stochastic integral. Let 7,
be the transformation defined on real-valued functions by 7, p(s) = p((s +
a™") A 1). We also consider the orthogonal projection from L?([0, 1]?) on the
subspace generated by the indicator functions of rectangles A g = (ka™",
(B+Da "] xX(Gn L, (G(+Dn1],0<k<a”-1,0 <j<n— 1, whichwill be
denoted by m,. Then

80, ) = [*[{m 7 (1, ()G, VH (X ()] (8, 9)

~T0,(5,9)Go- (2, ) H(X; (s, 5)) | W(dy, ds).
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Set
o0t %) = [ [Y{ma[m(110.0()Gee- (2 VH(X7 ()] (5, 9)
= [ Lo, 4 ()G (%, ) H(X; (,))] (5, ¥) ) W(dy, ds),
800t 2) = [ [}{m[110,4 (VG- (2, VH(X; ()] (5,9) |

~1i0,0(8) G o(x, Y) H(X;, (5, 9))}W(dy, ds).
Burkholder’s inequality.yields
E(largl, D(t, x)lp)

sCt
i

1|

p/2

a " rl
/;)IGt—(a‘"+s)(x’ y) = G,_y(x,y)I” dyds

)

—aq~ " 1
/: ¢ j(; G2 (x,9)IX;(s+a " y) —X,;(s,y)* dyds
Using Lemma B.1 we obtain

t—a" 1
f ‘ f th—(s+a_")(x’ y) - Gt—s(x’ y)lz dyds
0 0
Moreover, since p > 6 and 2/p + 1/q = 1, we have that 2q < 3. Thus

_aq-" p/2
E( [t ¢ fle‘_s(x,y)IX;(s +a " y) - X, (s, y)|2 dyds )
0 0

—a-" 1 p/2q
< (fot ¢ fOG;"_‘ls(x,y) dyds) supllX, (s +a ", y) — X; (s, y)II3
s,y

p/2
< Caq~"P/4,

< CsupllX,;(s+a™ " y) — X;(s,y)lI2 <Ca="P/*4,
s’y

by Lemma 1.1 and Theorem 1.10. Consequently,
(1.76) sup E(180D(¢, x)[?) < Ca="#/9,
Set i (

6,51*2)(t,x) _ 8,11’2’1(t,x) + 6,11'2’2(t,x),
with
8121(t, %)

[a™] n—1

-If { r X ( J, na"[Gt (x,2) = t_s(x,‘y)]H(X;(s,y))dzdr)

k=0 j=0

XlAkj(s,y)}W(dy,dS)
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and

8 * (¢, x)

[a™] n-1

='/(‘)t'/(‘)1{ Z Z (fA _na”[H(X;(r,z)) —H(X;(s,y))]Gt_r(x,z) dzdr)

k=0 j=0
X1y, (5, y)}W(dy, ds).

Burkholder’s inequality yields

E(180%'(¢, x)I?) < C('/:/:lwn(Gt_.(x, ) = G,_ (%, ) dyds)p/z.

For every (¢, %) €[0,1])* the sequence {|m(G,_(x, ) — G,_(x, 20,112
n > 1} decreases to zero as n goes to infinity. By Dini’s theorem this conver-
gence is uniform in (¢, x). Hence,

(1.77) lim sup [18121(¢, x)l, =0
2 (¢, x)el0,1)2

Applying Burkholder’s inequality and then Fubini’s theorem, we obtain

E(1812%(t, x)I)

<CE

[a™t]) n—
L] e - Ko

E=0 j=0 "8 \"As;

p/2
XGE (x,2) dzdr} dyds)

- cE (MZ"” T [ GEe)

k=0 j=0 "4

p/2
x{fA na"lX;(r,z)—X;(s,y)lzdyds}dzdr) ]
ki

[e™t] n—-1

(f;folaf_,(x,z) Y T

k=0 j=0

=CE

p/2
X {f na"|X; (r,z) — X; (s, y)? dyds}lAh(z,r) dzdr) ]
Ay; i

kj
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[a™] n-1

sc(ftfolefr(x,z)dzdr)p/zqftfl XX

0 070 =0 j=0

X ([ na"| X, (r,z) — X, (s, )5 dyds)lAk‘(r, z) dzdr
Agi !

kj

<C sup X, (r,z) =X, (s, y)5.
(r,2),(s, y)EAy;

Lemma 1.1 and Theorem 1.10 yield
1X, (r,2) — X, (s, )15 < C(I1X,; (r,2) = X,(r,2)5 + 1 X,(7, 2)
=X, (s, VIIF + 11X, (s,5) =X, (s, )II5)
< C(a‘”“’/“) + a ™MP/Y 4 n—p/Z).

Therefore
(1.78) supll§}-22(¢t, x)II5 < Cn~1/2,
¢ x

The estimates (1.76) to (1.78) imply
(1.79) supl|8(¢, x)ll, < Cn~1/2,

¢ x
Clearly by Burkholder’s inequality and Lemma 1.1, we have
(1.80) supll8P(t, x)ll, < Ca™"/%.

¢ x
The discrete Burkholder inequality and Lemma 1.2 show that
(1.81) supll8P(t, x)ll, < Cn®2a~"/*.

t,x

Let p and vy be conjugate exponents and let ¢, be defined by (1.39). Since
p € (6,) we have that y € (1,6/5). Holder’s inequality and Proposition 1.9
yield

1/y

(4) tMar
(182) Suplo] (t,x)nps(fo J, Gr-s(xr9) dyds| - suplign(s, )l

<-Cnig "/4pP-1/p,

Consequently, the inequalities (1.75) and (1.79) to (1.82) give the desired
convergence. O

We finally prove the main result of this section, that is, the convergence of
the sequence (X,,n > 1) to X in the space #* of a-Holder continuous
functions on [0,1]%, « € (0, 3). It is a straightforward consequence of Theo-
rems 1.10 and 1.11.

REMARK 1.12. Given a € (0, 3) consider the separable subspace H{ of
([0, 1]?) consisting of functions ¢ vanishing on the axes and such that

le(t, x) = e(s, ) = o (It = sl +1x = 51*)"),
when |t — s| + |x — y| goes to zero. .
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We notice that equation (1.8) is a particular case of (1.5) corresponding to
H = 0. Consequently, the estimate given in (1.72) is also valid for the process
X. Then, Theorem 1.10 and an easy extension of Théoréme A in [4] to a
two-parameter case ensure that, almost surely, the paths of X, — X belong
to the separable Banach space Hg, for a € (0, 3). Consequently, although
#°((0, 1]%) is not separable, X, — X is a #*([0, 1]?)-valued random variable.

THEOREM 1.13. For any a € (0,1) and p € [1, ),
lim (X, - X) =0

in LP(Q; (0, 1])).

ProoF. Fix « € (0,2) and fix p, € (1, +) such that 2/p, < 3 — a. We
apply Lemma A.1 to the sequence Y, = X, — X. Theorem 1.11 yields the
validity of condition (P1), while Theorem 1.10 (see also Remark 1.12) ensures
(P2) with 2 + y = p,/4. Consequently,

lim E(IX, - XIIZ) =0

for « € (0,%) and any p € (1,%). O

2. Support theorem. The goal of this section is to prove the following
theorem, which describes the support of the law of the process u given by
(0.3).

THEOREM 2.1. Let f, g:R — R be bounded Lipschitz functions, f, of class
%% with bounded derivatives up to order 3. Let u, € #2°([0,1]) for some
a€(0,1) and let (u(t, x);(t, x) € [0,%) X [0,1]) be the process solution of
(0.3). Then the support of Pou~!, as a probability on #%([0,1]?), is the
closure of the set %, = {S(h); h € #}, where S(h) is the solution of (0.4).

In the proof of this theorem we use a method provided by the next
proposition.

ProPOSITION 2.2. Let (B,||) be a separable Banach space, %, C#, and
F:Q - B. .

(1) Let &:#, — B be measurable and assume that there exists a sequence
of random variables H,: ) — %, such that for any £ > 0,

(2.1) lir{n P(IIF(w) = &(H (w))ll > &) = 0.
Then
(2.2) support (P o F~') c £,(7).

(ii) Let &,:%, — B be measurable and suppose that for each h € %, there
exists a sequence of measurable transformations T}:Q — Q such that
Po(T")"! < P and for every & > 0,

(2.3) limsup P(IF(T}(w)) — &(h)Il < ) > 0.
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Then
(2.4) support (P - F~1) D &,(%).

Proor. Although this proposition has already been proved in [7], we
recall the main arguments for the sake of completeness. Part (i) is standard.
As for (ii), we have to check that for each 4 €.%, and each & > 0, P(| F(w) —
&M < &) > 0. Since P o(T})~! < P, this is a consequence of P(|F(T}}(w))
— &Il < &) > 0 for some n > 0; (2.3) ensures the existence of such an
integer n.

REMARK. In the previous proposition the separability of B is required in
order to guarantee the measurability of the map w — ||F(w) — &,(H,(w))|. In
our setting, B = ([0, 1]%) is not separable. However, in our applications
F(w) — ¢(H,(0)) takes, almost surely, its values in some separable subspace
B, of #*([0,1]?) (see, for instance, Remark 1.12).

We can now apply Proposition 2.2 in order to prove Theorem 2.1, using the
convergence result stated in Theorem 1.13.

Proor oF THEOREM 2.1. Let {X,(¢, x),(¢, x) € [0, 1]?} be the solution of
the following equation:

X,(t,%) = Gy(x,u0) + [ ['Gr_ (2, 9)8(X,(5,9))W,(dy, ds)

(2.5) + fO‘ [0 "G, (%, D{FA(Xu(5, 7))

—(88)(X,(s,5))ca(s, ¥)} dyds,
where

c,(s,y) = nanj;sj; (y)Gs—r(y’ z) dzdr.

Let %, =%, be the subset of /Z of functions with bounded first derivatives.
Set £,(h) = S,;(h), where S(%) has been defined in (0.4), and let H,: () > 7

be given by
(2.6) H,(w0)(s,5) = W,(s,5) —&(X,(s,7))ea(s, ).

then S(H,) satisfies the evolution equation
S(H,)(t, ) = G(x,u0) + [ ['Gi_y(%,9)&(S(H,)(5, )
070
(2.7) X{W,(s5) — 8(X.(s,5))eq(s,y)} dyds

+ [ G2 NS (5, 9)) dy .
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By uniquness of the solution of (2.7), X, = S(H,). Hence, by Theorem 1.13
with F = K =0 and H = g, the sequence {S(H,), n > 1} converges to « in
L?(Q; #2(0,1)?)). Thus, condition (2.1) of Proposition 2.2 holds, and conse-
quently

support Pou™' Cc%,.

We now introduce, for o €%, the process X, defined by the equation
¢t 1
X,(t, %) = G(x,80) + [ [ G,_i(x,9)8(Xu(3,5))W(dy, ds)
t 1

- G,_(x,y)8(X,(s,y))W,(dy,ds

28 [ fGe-sx, 9)8 (X, (5, 3)Wo(dy, ds)
t 1 .

+ [ [ Geax, ) {8(Xo(5, 2))h(5, 9) + F(Xo(5,9)

—(88)(X,(5,5))lea(s,¥) = by(s, )]} dyds,
where

b,(s,y) = na™ o G,_.(y,z)dzdr.
(s,¥) fs ) fl ™ (y,2)
Let K,(w) be the element of %, defined by

(29) K,(@)(s,5) =h(s,y) —&(X,(s,9))[ca(s,5) = bu(s, 9],
and let T*: Q — Q be given by
THw) =0 - w, + K,(w).
Girsanov’s theorem implies that P o(7*)"! < P. Furthermore, if (Z,) is the
sequence of processes defined by Z,(w) = u o T*(w), then

Z,(t,x) =G, (x,uy) + fotfoth—s(x’y)g(Zn(S,y))W(dy,ds)
“fotfoth_s(x, v)8(Z,(s,y))W,(dyds)
(2.10) ¢ 1
[ [16i 2, 9)8(Z,(s, )
x{iz(s,y) - 8(X,(s,¥))[c.(s,y) — bn(S,y)]] dy ds

+'/(‘)t'/(‘)1Gt—s(x’ y)f(zn(s, y)) dyds

Then, by uniqueness of the solution of (2.10) we have that X, = uoT}.
Furthermore, Theorem 1.13 applied with F = K =g and H = —g implies
that (X,, n > 1) converges in L?(Q;#*([0, 1]?)) to the process X defined by

X(t,x) =G,(x,uy) + fot[Oth_s(x, v)g(X(s,y))h(s,y) dyds

+ff 'G,_,(x,9)F(X(s,5)) dyds,

that is, X = S(h). Consequently, the assumption (ii) of Proposition 2.2 is
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satisfied with %, =%, §; = S|5,. Hence,
support Pou~' D5, .

To conclude the proof of the proposition, it remains to check that the closures
of %, and % in #*([0,1]?) coincide. Since %, is dense in 7, it suffices to
check that, given any M > 0 and « € (0, 1), there exists C > 0 such that for
any hq, hy €Z with ||hllz V |hsllz < M, .

Given (¢, x) € [0, 1)? it holds that

IS(ha)(2, ) = S(hy)(t, 2)I?

1
< Cliky = illef (G2 (%, y) dyds

+ C(L+ ImIE) [ [\ G2 (%, 9)IS(ha) (5, 3) = S(hi) (5, )" dyds

< Cllhy — hyll% + C[Ot \/Z—E suplS(hy)(s,y) — S(hi)(s,y) ds,
- y

with some constant C depending on M. A generalized version of Gronwall’s
lemma (see, e.g., [11]) applied to the function

W(t) = suplS(hy)(t, x) = S(h)(2, 0)I’

implies that

(2.12) sup |IS(hy) (¢, x) — S(hy)(¢, x)| < Cllhy — hylle.
(t, x)e[0,1]?
Let (¢, x) and (Z, %) belong to [0, 1], and set

ét—s(x» y) = G,_(x, y)l[o,t](3)~
Then using (2.12) and Lemma B.1 we obtain that

[S(ha) (8, %) = S(hy)(8, )] = [S(ho)(E, ) = S(h1)(%, B)]]
< O [H16i(x,9) = Gid( )1+ 16 (5,9) = G (Z.9))
X1S(h3)(s,¥) = S(h1)(s, Y1 + ay(s, ¥)]) dyds
+ Cj;lj;l{lét_s(x, y) — é,_s(a'c,y)l + |ét—s(-’_5,y) — éz—s(i’—C,y)|}
X |hy(s,y) — hi(s, y)ldyds

1/2
1,1 A A :
c( [ [1601(x ) - Gz )P dyds) Iy — Bl

(2.13)

: 1/2
+ Ol [16,_ (5, y) - G (%, 9)P dyds | lhy = hylle
070

C(lx —xI"% + 1t = 8"*)lIky = hylle
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Inequalities (2.12) and (2.13) yield (2.11), which completes the proof of the
theorem. O

APPENDIX A

Holder norms. The following lemma is a straightforward consequence
of the Garsia—Rodemich-Rumsey theorem. See also [7] for a similar result.

LEMMA Al. Let (Y,(t,x);(t,x) €[0,1]1?) be a sequence of R™-valued
stochastic processes and let p € (1, ) satisfy the following assumptions:

(P1) For any (t, x) € [0,1]?,
lim E(|Y,(¢, x)I”) = 0.
(P2) There exists ¥ > 0 such that for any (¢, x) and (&, %),
I - — 12 2+
sup E(1Y, (¢, x) — Y,(¢,%)I") <C(It — &l + |x — %) .

Then for any a € (0, y/p) and any r € [1, p),

lim E(|IY,l%) = 0.
n

ProoF. Let z = (¢, x),2 = (%, %) and set ||z —z|| = |t — #| + |x — X|°. By
the Garsia-Rodemich~Rumsey lemma, for any B8 < vy/p, there exists C such
that, for every A > 0,

(A1) supP( sup ¥o(2) = Y(2)|

> A <CA 7P,
n 22 lz —zII? )

Fix a strictly positive integer n, (to be specified later on) and set z;; =
(i/no,j*/réo), A= (G/ngy, GG+ D/ngl X (i/ng, (G + D/n,l,0 <i,j <n,, and
T = [0, 1]%

For every A > 0, condition (P1) implies that

A A
P( sup |Y,(z;;)l > —) < X P(|Yn(zij)| 2 _)
0<i,j<ng 2 0<i,j<ng 2
C(no)e(n)
S ——
AP ’

(A.2)

where C(n,) is a constant depending on n, and lim, &(n) = 0. Hence for any
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A > 0and a < y/p, (A1) and (A.2) imply

A
sup |Y,(z;)l = 5)

0<i,j<ng

P(suplYn(z)I > )t) <P

zeT

A
+P( sup sup|Y,(2) - Y, ()=
0Si,j<n0 ZEAij 2 .

(A.3)
C(ny)e(n) IY,(2) - Y,(2)!
< ———= + Plsu
AP e Nz —2I°
C(no)&(n) c
< .
= AP naPAP
Fix a strictly positive integer n; and let @ < y/p. Then for every A > 0,
Y, (z) - Y,(2)l
P( o Yl ) (2)
z#

> C)tng‘)

z/\) <A, +B,,

z llz — z||*
with
Y, (2) — Y,(2)l
A =P sup (2) ~ %
0<llz-zl<ni? llz -zl
IY" z) — Yn 2 |
B,=P sup (2) _,1()2)\.
le—zi>nyt N2 =2l

Let & > 0 be such that o + § < y/p. Then (A.1) yields
IY,(2) - Y,(2)l

_ 2”014—8

(A4) A, < P(sup > )\n‘f) < CA PnyoP,

z#Z Ilz
Furthermore, (A.3) implies that

B, > P(supIYn(z) —Y,(3)> )ml‘“)

2#Z

(&.5) C(n)e(mng?  (ny) 1
+C|l—| —.
== AP AP
Therefore, inequalities (A.3) to (A.5) yield that for any A > 0, @ < y/p and
0<é6<vy/p-—a,

ng

C(no)ni?e(n) (_rfl)‘”’ 1

AP ng| Al

P(IY,lla = A) < C[
Thus Fubini’s theorem implies that for any a > 0, r € [1, p),

E(IY,I5) < 2"+ [ raP(IY, = A) dA
-a

ny\*
<2a” + C|C(ny)niPe(n) + (;z—l) ]a"”.
. 0




214 V. BALLY, A. MILLET AND M. SANZ-SOLE

Fix &> 0, and choose a = ¢, n, = n? such that 1/n{? < £¢!*7~" and finally
let N be such that for n > N, e(n)C(ny)n{? < £'*#~". Then for n > N,

E(IY,lI3) < &" + Cs,
which completes the proof of the lemma. I

The following lemma shows that under proper regularity conditions on z,,
the trajectories of the solution X, of (1.5) almost surely belong to &*([0, 1]%)
for any 0 < a < %; see [9] for a similar result.

LEMMA A2. Let u, be a 2a-Hélder continuous real function for 0 < a < ;
then the solution X, of (1.5) belongs to ([0, 1]?) almost surely.

PrOOF. Theorem 1.10 together with the Garsia—Rodemich~Rumsey
lemma clearly implies that X (¢, x) — G,(x, u,) a.s. belongs to #*([0, 1]*) for

0 < a < 1. Thus, it suffices to check the regularity of G,(x, u). Fix 0 <s <
t, x € [0, 1]. The semigroup property of G implies that

Gi(x,u0) = G(x,u0) = [ ['G,(x, 9)Goe (3, 2)ua(2) dyde
~[16(x, y)uol5) dy

- [[6(x ) [[61-1(3 ) ol 2) — uo()] 2] .
Hence
1G,(x,u0) — Gy(x,u,)l

L 1 _ 2a
(A.8) SCfo'Gs(x,y)foGt.s(y,z)lz y12* dz dy

< C[Ole(x,y)It —sldy = Clt — s|°.

Finally, the definition of G,(x, z) shows that

G(x,2) = ¢ (z2—x) + ¢z +x),

where

1- x — 2n)*
@(x) :\/_2—7'”_ )» exp(—(—z-t—zz—).

nez



APPROXIMATION AND SUPPORT FOR SPDE’S 215

Notice that ¢,(-) is an even function of period 2; hence ¢,(x) = ¢,(2 — x). Let
n =y — x, and assume that 7 > 0 without loss of generality. Then

1G,(x, u5) = G(y, %)

foll‘Pt(z —x) — ¢(z2 — ¥)]uo(2) dz

<

+fol[<pt(z +x) — @(2 +y)]u(2) dz

(A7) .

<|[[ ez = @)luo(2) — uolz + )

+ [Moi(z + 2)lug(2) — o2 = m)ldz

+l[0'7(Pt(z +x)uy(2z)dz — [_0 ¢0,(z —x)ug(z + 1) dz

j;l

+

¢i(2 —x)uo(2) dz

1+
[ Tedz + wyug(z — m) 2

< Cn“folG,(x,z)dz
+]:got(z +x)lug(2) — uo(n — 2)ldz
+.fon[¢t(1 —z —x)uy(l —2)
—(z+ 1+ x)uy(l+z—n)]dz

< On® +C[ "oz + 2)luo(2) ~ o(n = 2)|
+@(1 — 2z — x)lug(l —2) —ug(l +2z — 1)l dz
< Cn?e + CfOn[Gt(x, 2) + Gy(x,1 - 2)]

X(n - 22)** dz<Clx — y|**.
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Hence using (A.6) and (A.7), we obtain that for any (¢, x) and (¢, X) in [0, 1]?,
G, (%, uy) — Gi(%,uo)l < C(It — Bl + |x — x)".

This completes the proof of the lemma. O

APPENDIX B

The Green function. In this section several properties concerning the
fundamental solution of the heat equation either with Neumann or with
Dirichlet conditions will be proved, that is, for the functions defined as
follows:

1 —x - 2n)*
Gt(x’y)= anz{exl)(__(z_-%_n_)")

(B.1)
N (y +x —2n)° )}
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First we recall some well-known facts that will be used repeatedly in the
sequel. For instance:

1. For any (¢, x) € (0,) X [0,1],

(B.3) /:Gt(x,y) dy = 1.

2. Semigroup property:

(B4) A 'G,(x,9)Gy(y,2) dy = Gy, (%, 2),

for any s, t € (0,»), x, z € [0,1].. ,
3. There exists a constant C such that for every (¢, x, y) € (0,°) X [0, 1]%,
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A consequence of property 3 is the following property 4.
4. For any q € (1, 3),

(B.6) ftfth-s(x, y)? dsdy < Ca="G-9/2,
t,”0

In the sequel G,(x, y) will be the Green function defined by (B.1); however, all
the results also hold for (B.2). In order to deal with the singularities of
G,(x, y), the following decomposition will be useful:
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where H,(x, z) is a smooth function in (¢, x, ). The following lemma provides
standard regularity properties of u; the proof, similar to that in Walsh [11], is
omitted.
LemMmA B.1.
(a) Let a € (3,3). For any x,y,t €[0,1],
1 —a
(B.8) I(a) = f:]; IG,_.(x,2) — G,_y(y,2)|*dzds < C(lx — y[>*).

(b) For any a € (1,3), s,t,x €[0,1] with s <t,

s' 1 «
I(a) = [ [1G(,9) = Gop(x, )" dydr
< C(lt — s/®7/%),
t rl
K(a) = G,_.(x,y)|"dyd
(a) = [ [1G.,(x, 9)I" dydr

< (It — sI®™7?),

(B.9)
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The following lemma provides more precise information on the increments
of G. For any ¢ €[0,1] and % € {0,1,--,a" — 1}, we write ka™" instead of
ka™" At.
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LeEMMA B.2. Let y<€ (1,3) and let k € {0,---,a™"} be an integer.
(1) Let =% — x| > 0; then it holds that
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(i) Let h =% —t > O; then

a " rl
LR 16 o(2,9) = Gur (2, 9)1 dyds
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ProoOF.
(1) The identity (B.7) yields that
|Gt(g_c’ y) - Gt(x’ y)l
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Consider the change of variables defined by ¢t — s = n%r and x —y = n¢
(respectively, x +y = n¢ and x + y — 2 = n¢). Then (B.11) holds with
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The mean value theorem applied for r > 1 yields that

£2y
OXP\ T

1
V2mr

&+ 1)27)

I(k,y) <C

(t—(k+Da"™/n2A1

(t—ka™")/n%A1 r_,y/2+1/2{[
R

+exp 4
r

d§} dr

=ka™/nV1  _@/2py+1/2 ! ¥ y
+ ST 4 €17+ 1€+ 1
@—(k+Da")/92v1 fnw27rr ( )

2 + 1)°
X [exp( - ﬁ) + exp( — M—)” d§} er,
4r 4r
which clearly implies (B.12).
(ii) The identity (B.7) yields that
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Consider the change of variables defined by ¢ —s =hv and y —x = VA z
(respectively, y + x = Vhz and y + x — 2 = VA z). Then (B.13) holds with

+
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dzdv.

Furthermore, the mean value theorem applied for v > 1 implies that
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which clearly implies (B.14). O
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LeEMMA B.3. For any measurable process ® = {®(t, x), (¢, x) € [0, 1]} and
any p € (3, +),

[0 o006, 50t v

< Ca™"A7271/2Pp1/2 qup||®(s, ¥)ll2p.
s,y

p

(B.17)

ProOF. Let p and g be conjugate exponents; then q € (1, 3) and Holder’s
inequality implies that the left-hand side of (B.17) is bounded by («, 8,)'/?,

where
p/q

an=(j;tj(;1Gt_s(x,y)qdyds ,

= E’j:j:ldl'(s, y)an(s,y)Ilp dyds.

Property (B.6) yields
a, < Ca™™P~3/2,

Moreover, by Schwarz’s inequality,
B < [ [ {B(2(s, ) B (W,(s, )12)}"* dyds

< Csupl|®(s, y)I5,n?/2a"?P/2q=",
s,y

Hence (B.17) is established. O
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