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SLOW POINTS IN THE SUPPORT OF HISTORICAL
BROWNIAN MOTION!

By JOHN VERZANI
University of Washington

A slow point from the left for Brownian motion is a time during a .
given interval for which the oscillations of the path immediately to the left
of this time are smaller than the typical ones, that is, those given by the
local LIL. These slow points occur at random times during a given
interval. For historical super-Brownian motion, the support at a fixed time
contains an infinite collection of paths. This paper makes use of a branch-
ing process description of the support to investigate the slowness of these
paths at the fixed time. The upper function found is the same as that
found for slow points in the Brownian motion case.

1. Introduction. Consider the following branching Brownian motion,
that comes from the study of superprocesses. Choose a random time 6,
uniformly on [0, 1] and run a Brownian motion started at the origin up until
60,. At this time, the process splits into two particles. Each of these moves as
an independent Brownian motion started from the splitting point. These two
particles split at independent random times distributed uniformly on [6,, 1].
This splitting procedure is repeated ad infinitum. The separate paths and all
the splitting times are independent of each other. In the limit, at time 1 there
are uncountably many paths. This suggests that some of the paths may
exhibit behavior that would not occur at a fixed time for Brownian motion.
This paper studies the existence of slow paths, that is, paths that have
unusually small oscillations from the left, at time 1. A typical path of a
Brownian motion will have analogous slow points at random times in an
interval. The results here indicate a relationship between exceptional times
for Brownian motion and exceptional paths for this branching process.

To state the main results of this paper, we formalize the foregoing con-
struction using the notion of a marked tree following Le Gall [7]. Let
# ={0,8Q),..., B(n))}, with n > 0 and B(:) € {0, 1}, be the set of all finite
sequences of zeroes and ones with first term 0, and let .2, = {0, B(1), B(2), -*-}
be the set of such infinite sequences. Define a marked tree to be an element of

0 = {[0,1],%([0, 1], R)}“.
A generic element of ) will be denoted by
w=(a(B),¥(B)) or (o, ).
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HISTORICAL BROWNIAN MOTION 57

If B = (0, B, B2),...,B(m)) [or B=(0,B(1),B2),...,)], define the projec-
tion map for n < m (n < ©) by

B, = (0’ B(l)’ 3(2)”B(n))

and set /30 = (0). For g =(0, B(1),..., B(m)), set 8(B) = 05 05 -+ g5 , and
define W2, ¢ € [0, 1], by

¥s,(t), 0<t<1-38(B),
'l’Bl t- (1 - a(ﬁo))) + W1 5(Bo)? 1-8(By) <t=<1-38(B),

=
I

% (t - (1 - 5(Bm 1))) + Wl 8(Bm-1)? 1- 5(Bm—1) <t<1l- 6(Bm)’
WE 58,0 1-8(B,) <t=<1l

By [7] there exists a measure on ) for which the following hold:

1. All the random elements {o'( B)}; < 5 and {¢( B)}; < 5 are independent. The
random variables {o( 8)} are i.i.d. with uniform distribution on [0, 1] and
{¢(B)} are i.i.d. with distribution like a Brownian motion started from 0.

2. Uniformly in 8 € %, and ¢t € [0, 1] the following limit exists almost surely:

WP = lim Wpn.

n—w

By construction we have the following properties almost surely.

1. For each B €%, WpF is distributed like a standard Brownian motion,
independent of {o(v): v € %} (i.e., independent of the branching).

2. If B, =1, foran n >0,then WP =W} for0 <t <1 - 8(B,).

3. If B, = yn, but Bn +1 % Yat1, then WY — WY_ 1 is conditionally indepen-
dent of WP — WE ss, fort €[1 - 8( B,), 1] given 8( B,).

We prove the following theorem.

THEOREM 1.1. For g(t) = tV/2,

o [WpE — WE|
inf limsup ————— =
B 11 g(1—-1)

In [7] it is shown that the branching Brownian motion defined above gives
a representation of the support of historical Brownian motion at time 1. If we
set W = {WP: B €4}, then the support of historical Brownian motion at time
1 is found by taking a union of a finite, Poisson distributed number of
independent copies of W. With this in mind, Theorem 1.1 says if we look at all
the functions in the support of historical Brownian motion at time 1, then the
function with the slowest point at time 1 has ¢#/2 as an upper function.

A corresponding fast-point theorem may be formulated as follows.
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THEOREM 1.2. For h(t) = (2t log1/¢)Y/2,

1<l Wt"—Wf’< i wp - wf
B TR B e TC e

This theorem has been established implicitly by Dawson and Perkins [6]
improving upon the work in [5]. The theorem in [6] is for all time, not a fixed
time. Their proof uses the familiar branching Brownian motion approxima-
tion to the superprocess. That is, a branching process with zero or two
offspring at each branching time, and identically distributed interbranch
times. They get an estimate on the variation of the paths in the branching
process between two close time points in terms of the function 21/2A, which is
independent of the parameter controlling the branching rate. From here, to
establish the characterization of the paths in the historical Brownian super-
process, nonstandard analysis is employed. With similar techniques, but
applied to the branching picture described in the Introduction, one can prove
Theorem 1.2 without the use of nonstandard analysis.

It is of interest here that the normalizing functions g(¢) and A(¢) corre-
spond to the normalizing functions needed to answer the same questions for
Brownian motion over an interval. That is, for X, a standard Brownian
motion, almost surely,

1.

1 Xt _Xr
sup limsup ——— =1,
ref0,11  ttr h(r —t)

. . l}(t - Xrl
inf limsup ——— =
ref0,11 41, &(r—t)
(cf. [9] and [4].
It would be interesting to know how far this extends.

ProBLEM 1.1. Let X, be a standard Brownian motion. Find a description of
the set & for which P(3¢ € [0, 1]: the path {X:0 <s <¢} €&) =1 if and
only if P(38: the path (Wf:0 <s<1}eg)=1.

Outline. The paper is arranged as follows. The preliminary section con-
tains a few general facts about this branching process are collected. The
second section handles the slow-point problem. The key idea is to take an
approach from [4] and modify it to fit the model at hand. The basic idea is to
pick out a subtree of the tree at time ¢ (those branches that are not too wiggly
compared to how much their offspring will spread apart) and then to count
the number of branches there are for this subtree. For the lower bound a
calculation involving expectations suffices. To get:-the upper bound, an ap-
proach of Bramson [2] is used to get a handle on the dependencies of different
branches. The problem reduces to estimating the variance of the number of
paths with a certain property. The key formula is from Sawyer [10]; it allows
‘one to reduce the calculation to one involving a branching picture with just a
single branch time.
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2. Preliminaries. Let N, be the number of branches at time ¢. Notice,
N, is dependent only on the branching structure of W. The set 4, is naturally
partitioned into those branches that have the same ancestor at time ¢. Let
7,(B) =infln > 0:¢t < 1 — 8(B,)}. For each ¢, define the equivalence relation
on &%, as follows B ~,y « m,(B) = m,(y). Denote by [ B], the equivalence
class of B, and write y € [ B], to indicate that y ~, 8. When a labeling of the
branches at time ¢ is necessary, we assign a random ordering independent of
W to the N, branches. Let [ B1,(2) be the ith equivalence class corresponding
to this ordering. For a set A, let #A denote its cardinality. Constants whose
values are unimportant will be generically denoted by a k;, for some i.

Recall that a Yule process is the name given the model of binary fission,
where a particle splits into two after an exponentially distributed amount of
time.

LEMMA 2.1. Let Zf = Wf ., and N, = N,_,._,. Then N, is a Yule
process and ZP is a branching diffusion with diffusion part a time change of
Brownian motion and branching structure of the Yule process.

ProoF. It suffices to show that ]\7, is a Yule process, that is, the branch
times are independent and identically distributed exponential random vari-
ables with parameter 1. The branch times for W have the structure 1 —
03,08, *** 03, Where each o is an iid. uniform random variable on [0, 1].

Thus the interbranch times for N have distribution

log(aboobl O-Bm) - log(aﬁoaﬁl O-Bm+l) = IOg(l/abmH)’
but
P(logl/o>t) =P(og<e?)=e"

Hence, the interbranch times are i.i.d. exponentials with the correct parame-
ter. O

LEMMA 2.2. E(sM-¢) = st/(1 — s(1 — t)), in particular E(N,_,) = 1/t.

PrOOF. The easiest proof is that ]\Af, is a Yule process, for which the
moment generating function is well known (cf. [1]).

An alternative proof comes from the construction of the given branching
process in terms of a Brownian excursion ¢, from the origin in [7]. The
branching structure arises from the binary tree structure constructed from a
Brownian excursion by Neveu and Pitman [8].

To summarize, branch times for the branching process correspond to
downward excursions from height 1, of a Brownian excursion from the origin.
The maximum depth of an excursion determines a branch time. We have
N;_,, the number of branches for the branching Brownian motion at time
1 — ¢,4is equal in distribution to the number of excursions of ¢, from 1 that
reach a level 1 —¢. Let p =1 — ¢t be the probability an excursion from 1
misses 0 given that it hits a level 1 — £. Because all such excursions are
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independent, we have that the number of branches at time ¢ for the branch-
ing Brownian motion, N, _,, has

P(N,_,=j)=p"'(1-p), Jj=12,....

From this the moment generating function and the expectation are easy
calculations. O

For the next two lemmas, let Y, be a branching Brownian motion with
branch times independent of the spatial motion. Let N, be the number of
particles at time ¢. The following useful lemma is well known in branching
process theory.

LEmMMA 2.3. Write Y, ={yl,..., N, where y} is an element of C((0, t], R)
and let 8(x) designate point mass at x. Define the measure

M .
v= ¥ o().

Then, for B a Borel subset of C([0, t], R),
E{v,,13) = EN,P(y, € B).

ProorF. We have

N,
E(v,,15) = E( Y <3(y;‘),1B>)
i=1
= Y Y E((8(cyf), 1p)IN, = n)P(N, = n)
n=1i=1
- ;l ._le(y;' € B)P(N, =n)

Y. nP(N,=n)P(y, €B)
n=1

=EN,P(y, € B). o
This next lemma says that n independent Brownian motions will spread
more than a branching Brownian motion conditioned to have n branches.

LEMMA 2.4. For X, a Brownian motion independent of Y,

(2.1) E(P(1X, - X, <c)™) < P(suplYt‘B - Yfl< c).
B .

PrOOF. The lemma will follow if it can be established that for all «,

(22)  P(IX,-X,+al<c)™ < P(supmﬁ _Yf+al< cINt).
B
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Proceed by induction on {N, = n}. If n = 1, no branching occurs so this is a
triviality because Y# has distribution like a Brownian motion. Assume for all
k < n the lemma is true. Let N,°(NN;!) be the number of branches that have
By =(0,0) [ B; =(0,1)]. Then by looking at the two distinct family lines
determined by the first branch, at time 1 — §, [i.e., B; = (0,0) or B, = (0, 1)]
we can employ their conditional independence to reduce the calculations to
two branching processes with N/ < n branches: '

P(supIYt‘B - Yf+ al<cIN, = n)
B

=E(P(suplYt‘B -Yf+al<cIN,=n,1- 80) N, = n)
B

n-1
=E( Y P(N!=ilN,=n,1- &)

i=1

XP| sup |YP-YE+ al<ec,

ﬂ1=(0,0)
sup [YP-Yf+ al<c|IN,=n,1- 80,M1=i)M=n)
B1=(0,1)
n-1
=EK P(N!=iIN,=n,1- &)
i=1
xP( sup [YP-YP, +YL, —Y§+al<e,
ﬁ1=(0,0)
sup [YP-YP, +Yf, -Yf+al<c
Bl=(0y1)
X|N, =n,1—-8,,N! =i N,=n)
n—1
=E P(N}!=ilN,=n,1-4,)
i=1

XP( sup VP -YFf, +X,_; —X,+eal<c,
ﬁ1=(0,0)

sup |YP-YP , +X,_, —X,+al<c
ﬁ1=(o,1)

, X|N, ¥'n,1—60,]\Q1=i)]\ft=n).

However, the two branching processes are conditionally independent, so
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we have that the above expression is equal to
n—-1
E( Y. P(N}=ilN,=n,1- 8)
i=1
XP( sup [YP-Yf, +X, , —Xp+al<cIN’=n—i,1- 80)
B,=(0,0) -

XP( sup [YP-Y{, +X, , —X,+al<c
B=0,1

X|N,1=i,1— 8§)|N, = n)
(2.3)

i=1
XP(IXt _Xl—so +X1—60 _Xo + a' < c)n_l

n-1
zE( Y. P(N} =iIN,=n,1- 8,)

=E(P(IX, — X, + al <c)"IN, = n)

Inequality (2.3) follows from the induction assumption, because given the
time 1 — §,, the two processes determined by this first splitting are both
branching processes. O

3. Slow Points. Define m, = sup sup, (o ;(Wf — W§).
LEMMA 3.1. Forallk > 0, E(m?) < =,

ProOF. Let 6 =1/2,A > 1, X, be a Brownian motion independent of W,
x, = (n + 1)6" log2)"/? and s, = P(sup,c(y_gn 1- o)X, — X;_ gl < Ax,).
Set L =X, _yx, <. Finally let N5(i) be the number of offspring the ith
particle at time s has during [s, ¢]. Then

P(m, > AL)

< P( U {sup sup [Wp — WE .| > Axn})
n=0"' B te[l1-6",1-0"*1]

< Y P(sup sup [WpE — WE | > Axn)

n=0 B te[1-¢m1-06""1]
w Ny_gn .
< Y1-E|TI ( sup sup WP — WL .| < )txn)
n=0 i=1 BE[Bly_pn(i) te[1- 9", 1 gn+1]

(3.1)
o Ny_pn Nizgiea)
< Y1-E|(T1I P( sup 1 X, — X;_ gl < Axn)
n=0 i=1 te[1-67,1-6"+1)
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(3.2)

M 50

1- E(s,ﬂvl-ﬂ"”)

1-(s,0""1) /(1 =52~ 6""1))

B
I
o

IA
™M s

(1 - sn)/(sn0n+l)
0

IA
S
I

S S
L0738 109

kiexp(—(2A*(n + 1)log2)/2)6~ "+ D
k1(1/2)(A2—1Xn+1)

= ky(1/2)V 1.

Equation (3.1) comes from Lemma 2.4. From this it is clear that for £ < « we
have [§x*P(m; > xL) dx < =, and from this the lemma follows. O

REMARK 1. In fact even more can be said. Let
b, = {sup sup [Wp — WE .| > an}.
B ye[l1-6"1-06""1]
Then by letting A = 2, we can see from the last calculation that
P(b,i0.) =0
b})lf the Borel-Cantelli lemma. Because x, sums, this has the consequence
that

(3.3) lim sup sup |[Wf — WE|=0.
t11 B sels,1]

For fixed B, s, define M, and M, by
M,(B,s) = sup sup (W) -W)),
ye[ Bl tels,1]

My(B,s) = — inf inf (W7 - W7).
velBl, tels, 1]

By (3.3), M/(B,s)/0 as s11 uniformly in B. By scaling, M,(B,s) is dis-
tributed like m,(1 — s)'/2. Notice for i = 1 or 2, M,( 3,0) does not depend on
B; in this case we write M; = M;(B,0). M, is distributed like m,.
For ¢ > 0, n > 0, define
7.(B,s) = sup{t <s:Wf-WF=M/(B,s)+c(l- t)l/2 or

WE — WP =—My(B,s) —c(1-1)"?.
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If the set above is empty, set 7,( B8, s) = 0. The picture to keep in mind is a
Brownian broom. Fix a 8. Then the part of the branching process between s
and 1 that corresponds to the offspring line for 8 is the fan of the broom, and
the handle is the path W/ for 0 < ¢ < s. When 7,( 8, s) = 0, the interpretation
is that the handle is not too crooked compared to the size of the fan.

Let X, be a standard Brownian motion independent of W and define
T,=inf{t > 1: X, - X, =M, +ct"?or X, - X, = —M, — ct'/?}.

By Brownian scaling and time reversal, we have for r € [0, ¢],

1-r
(3.4) P(7,(B,t) 2r)=P(Tcz 1—t)'

LEMMA 3.2. Ifc <1, then E(T,) < »; hence, nP(T, > n) - 0 asn — .
PrOOF. Let M = max(M,, M,). If
S, =inflt > 0:1X,,, — X;| = M + ¢(1 + )%},

then T, < S, + 1. It suffices then to show S, has a finite expectation. Let
¢ < 1 be fixed and drop the dependence on c in the notation. Set S, = S A n.
S, is a bounded stopping time for the process {Y,=X;,, —X;:¢ >0}, a
Brownian motion.” Hence, by optional sampling and Hélder’s inequality,

E(S,) = E(Ys)
<E(M?) + 2cE(M(S, + 1))"? + ¢?E(S, + 1)
< E(M?) + 2¢(E(M?))*(E(S, + 1))"* + ¢2E(S, + 1).
So
(E(S,)) E(M?) + ¢’
(B(S, + )~ (B(S, + 1)

1/2

+2¢(E(M?))"".

(1-¢%

By Lemma 3.1, E(M?2) < ; hence, by monotone convergence the lemma
follows by letting n — . O

Set
A(c) ={B:Vre[0,s], -My(B,s) —c(1—r)"?
<WP=WP <M(B,s) +c(1-r)"?
={B:7(B,s) =0},
B,(c) ={[Bl.: B A,}.



HISTORICAL BROWNIAN MOTION 65

The Brownian-broom scheme is chosen to ensure monotonicity of the sets A,.
That is, for s <t, A, CA,.

LemMaA 8.3. Ifc <1, then P(N,,14,_1/,(c) # &) =0.

ProoF. Because {A;_;,,(c)},_; is a decreasing sequence, we have

PN Arsnle) #2)

nx>1

lim P(A;_,,,(c) # D)

IA

lim E(#B,_,,,)
B r}i_l;r:oE(Nl—l/n)P([ Bli-1/n € By_1/,)
- lim nP((8,1-1/n) = 0)

(3.5) = lim nP(T, > n)

=0.
T, is from Lemma 3.2. Line (3.5) follows from (3.4) and Lemma 3.2. O

THEOREM 3.1. Almost surely,
Wp — Wi

inf limsup ——— >
B 11 (1-t)?

PrROOF. Suppose there exists a d < 1 for which there exists a B with
positive probability such that

(3.6) lim sup w—l
i1 (1—¢)Y?
Thus with positive probability there exists a random & > 0 and B such that
WP — WEl<d(1—-1t)"? forallt e[1-¢,1].

Choose n so that P(e > 1/r) > 0. With positive probability there exists 8 for
which

WP — WPl <d(1-1t)"? forallt e[1-1/n,1].
However, W# is distributed like a Brownian motion; thus,
PO(IWf — Wl <d(1 —¢)"? forallt€[0,1-1/n]|
W# — Wfl<d(1-1¢)"? forallt € [1.-1/n,1]) >0,

because the part of a path between [1 — 1/n, 1] is independent of the part
between [0, 1 — 1/n], given the value at time 1 — 1/n. We conclude then that
with positive probability there will be a 8 for which

WP — WEl<d(1-¢t)"? foro<t<1.
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However, by Lemma 3.3, with probability 1, for all B there exists a ¢ € (0, 1)
for which

IWE — WP =d(1-t)">
Thus no such d < 1 exists that satisfies (3.6). O

LEMMA 3.4. For ¢ > 1 there exists £(¢) > 0 such that £(c)|0 asc |1 and
for which ast — oo,

P(IX, - X)|<er'/2,1<r<t)~t""9.

Proor. This is a result of Breiman [3]. O
Recall the definition of A,(c), B,(c):
A(c) ={B:Vre[0,t],-M(B,t) —c(1—r)"*
< WP = Wf < My(B,1) +e(1-1)"?),

where M, is defined as previously. B,(c) is the collection of equivalence
classes corresponding to the N, particles at time ¢. Let C,(c) be defined like
B(c), except with M; = M, = 0. It is clear that C, C B,. Let H,(c) = #C(c).

LEMMA 3.5. There exist constants k and K for which
k(1-t) "<E(H,) <K(1- t) °.

Proor. This follows from the Lemmas 2.2 and 3.4 for
E(H,) = E(N,)P([B]: € C,)
=E(N)P(IX, - X|<c(1-r)"*0<r<t)
=E(N,)P(1X, - X;l<e(1-7)"*1<r <1/(1-1))
~1-t)'a-)'". O

LEMMA 3.6. There exists a constant k > 0, independent of t, for which
~lin11 P(#B,(c) > 0) =k, > 0.
t1

ProoF. For B,y define B A y=sup{n: B, =v,} and let a(B,y)=1-
8(Bg »,)- Then « corresponds to the time of splitting between the two paths
indexed by y and B. For ease of notation, let {3’,1 <i < N,} be a set of
representatives for the different paths at time ¢ and set a(i, j) = a(B?, /).

A consequence of Jensen’s inequality gives

P(#B,(c) > 0) > P(H,(c) > 0) = E(H,)/E(H?).
A count of the different branches at time ¢ gives

E(H?) - E(H) +E % Y 1(Bec)ip eq,)|.

i j#i
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The following formula is from Sawyer [10], except for a minor adjustment
to accommodate the nonstationary of the process Z,, from Lemma 2.1. At
time ¢ we denote Z, by {2}, z2,---, 2N}, where z! € C((0, t],R). Label the
branch times in chronological order with 7, the time of the nth branch, and
let A and B be Borel subsets of C([0,¢],R). Let N;(A) be the number of
offspring from a branch at time s that are in a set A at time ¢. Define a(z §))
analogously.

We have the following decomposition:

E(T T 1a(20)1a(20))

i j#i

EZ ) 1A(zf)13(z{))
a(i,j)=1,

_ Z/P(T eds)E(E Y 1A(zt)13(z1)|a(l J)= s)

i j#i

(3.7 f(ZP(T eds)E(Z X 1a(z)1s(2])l (i, ) _s)

i j#i

= 2[le* ds E(E"(N!(4))E"(N!(B)))
- 2f0‘es ds eXt=9E( PUs(1,(U,)) PV (15(T,)))
= 2[(e P (Lo(U}) 15 (U2l ( U2, U?) = s) ds.

Line (8.7) comes from Lemma 2.3. The appearance of 2 comes from the
symmetry involved. At time s the branch splits in two, and we count the
expected number of paths from each branch. The symmetry in the expected
number of those from the first branch that end up in A and those from the
second branch that end up in B and those from the second branch ending in
A. That (X, P(7r, € ds)) = e° ds is a simple calculation that follows by condi-
tioning on the location of the first branch.
Time changing back to get W, we have the formula

N,

N,
Y. Y1piec,p eC)
(38) i=1j#i

=2(1-1)7" [0~ s)P(X} € C,, X? € C/la(1,2) = 5) ds,
0

where X' is distributed like a Brownian motion and X! and X2 fork apart
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at time s. That is, X'(r) = X2(r) for r < s and X! — X! is independent of
X% —X? for r > s. Simplify notation by setting ' =1 — r for any r. To
analyze this, it suffices to ignore the part common to the two branches:

P(X}eC, X? e Cla(1,2)=5)
=P(Vr€[0,¢],1X? - X} < c(r")"?,

X2 - X2 < c(r')l/le,1 =X%r< s)
<P(Vre[s,t],IX} - X} <e(r)?1X2 - X2l < e(r')'?)
= P(Vr e[s,t],1X, - X,| < c(r’)l/z)2
= P(Vr el¢,s],1X, - X, | < crl/z)2
< ky(t'/s)21?,

This follows from the time reversal properties of Brownian motion, Brownian
scaling and Lemma 3.4. With this, (3.8) becomes

2(¢')’['s'P(X} € C,, X? € Cla(1,2) = 5) ds
0
< k2(t/)—2fts/(tr/s,)ﬂl—e)ds
0

= kz(t')—2€‘£)t(sy)"(1—2€) ds

< ky(t') % /(28)

< k,E(H,)>.
Here k5 < » is independent of ¢, but E(H,)T as ¢ 11 by Lemma 3.5; thus,
we get

P(#A,(c) > 0) = E(H,)*/E(H?)
> E(H,)’/(E(H,) + ks E(H,)’)
>k, >0.

Here %, is a positive constant independent of ¢. O

THEOREM 3.2. Almost surely,
W — Wf|

inf limsup ——— <
B 11 (1- t)l/z

Proor. Fix ¢ > 1. The sets A,(c) are monotone decreasing in ¢ as ¢ 71, so
the last lemma assures us that with positive probability

N A .(c) 3.
n=1 )
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Thus, there exists with positive probability v such that for all » > 0 and for
te[0,1 - 1/n],
—My(v,1/n) = (1 = )"/* <IW} = WY_1,,| < My(y,1/n) + (1 = 2)"/%.

Set M(¢) = M(y,t) V My(y,t), M(¢) ] 0 uniformly from Remark 1. Fix ¢, < 1
and d > c. Then we can find n such that ¢, <1 - 1/n and

2M(1 — 1/n) +c(1 - t,)"/? <d(1 - t,)"/%
Thus we must have that
Wy, — WYl < W] = Wi_y | + WPy, — WY
<M1 -1/n) +c(1 —¢t,)"? + M(1 - 1/n)
<d(1-ty)"2.
Thus we have that for each d > ¢ there exists a y for which
lim sup M <
tr1 (11— t)l/2
So with positive probability,
(3.9 inf lim sup M <c
B i1 (1-¢)V?

To establish that (3.9) holds with probability 1, we now show that there is a
0-1 law for this problem. Let 7 be the time of the first branch of W and let
W1, W2 be the two separate branching processes determined by the branch
at 7. Set

r(W) - | B timeup 21

= :limsup —— <¢
et (11— t)l/ 2
Then
P(T(W) + Q)

= P(T(W?') # @ or [(W?) # &)

- [OIP(T € dt)[P(T(WY) # @Ir = t) + P(T(W?) # Qlr = t)
—P(T(W?) # Qlr = t)P(T(W?2) # QIr = ¢t)]

= [OIP(T € dt)[2P(T(W) # @lr = £) - P(T(W") # @ir = t)’]

=2P(T(W) # &) — P(T(W) # Q)°.
Solving for P(I'(W) # ) gives, for ¢ > 1 almost surely,
WP — WE|

inflimsup —— <¢
B o1 (1-8)?
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The theorem follows by letting ¢ | 1 along a countable sequence. [

Combining Theorems 3.1 and 3.2 gives Theorem 1.1.
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