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THE ASYMPTOTIC BEHAVIOR OF LOCALLY SQUARE
INTEGRABLE MARTINGALES!

BY J1A-GANG WANG

East China University of Science and Technology

Let M be a locally square integrable martingale with predictable
quadratic variance (M) and let AM = M — M_ be the jump process of
M. In this paper, under the various restrictions on AM, the different
increasing rates of M in terms of (M) are obtained. For stochastic inte-
grals X = B - M of the predictable process B with respect to M, the a.s.
asymptotic behavior of X is also discussed under restrictions on the rates
of increase of B and the restrictions on the conditional distributions of
AM or on the conditional moments of AM. This is applied to some simple
examples to determine the convergence rates of estimators in statistics.

1. Introduction. Let (Q, % ,F = (%):»0, P) be a filtered probability space
with filtration F = (;);»¢ satisfying the usual conditions and let M = {M,,t >
0} be a locally square integrable martingale based on (Q, % ,F = (F)t=0, P).
We denote by (M) the quadratic variation of M. If

1.1) tlirglo(M)t =00 a.s.,

then it is well known that
M,

=0 as.Vé>0.
J () 1og™ (M),

(1.2) lim

t—o00

Lepingle (1976) proved that if |]AM| = |M — M_| < c for some constant ¢ and
(1.1) holds, then

1.3) lim sup M| =1 a.s,

t>oo /2(M); LLg(M);

where LLg x = log(log(x Vve®)). Xu (1990) lightened the restriction of [AM| < ¢
and proved that if (1.1) holds and

(1.4) AM,| < H“)J%’ limsup H(¢) < k,
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where H = {H(¢)} is a predictable process and & > 0 is an arbitrary constant,
then

(1.5) lim sup | M|

<1l+e&(k) as.,

where £(k) is a finite constant depending on % with £(0) = 0. For the discrete
parameter martingale, similar results were obtained earlier by Stout (1970)
and Fisher (1986). From (1.2) to (1.5) it is easy to see that the asymptotic
behavior of M strongly depends on the magnitude of AM. From (1.2) it is
clear that

|AM;|
(M) log™ ),

(1.6) lim =0 a.s.

t—>00

Now how about the intermediate cases between (1.4) and (1.6)? In Section 2
of this paper, we will give various rates of increase of M; as ¢ — oo under
the different restrictions on AM. By the way, we also get (1.5) even if the & in
(1.4) and (1.5) is a random variable.

For a discrete parameter martingale X = {X,, %,n > 0} with EX2 < oo,
if we put

X,— X,
b2 =Epo1[(Xn — Xn-1)?], &= ——b—l

,  nx=1,

where E,_1[-] = E[- | 1] is the conditional expectation with respect to
Fn_1, then X has the following representation as a weighted partial sum of
martingale differences:

n

a.7) X,=Xo+ Z brep.
: k=1

Its continuous parameter version is just the stochastic integral of the pre-
dictable process B = {B(t)} with respect to a locally square integrable mar-
tingale M = {M,}:

t
(1.8) X, = fo B(s)dM,.

Stochastic integral (1.8) and weighted partial sum (1.7) are met frequently in
the statistics of processes; their asymptotic behavior is related to time series
analysis and the statistics of processes. For a sequence of independent random
variables and deterministic weight coefficients {b,}, Chow and Teicher (1978)
and Teicher (1979) discussed the a.s. asymptotic behavior of (1.7). Lai and Wei
" (1982) proved that if {¢,} is a martingale difference sequence and

E,_1[e2]=1, supE,_1[|&x?*?] < 00 for some & > 0 a.s.,
n n N
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then
| X

limsup ——-——
tooo /(X):log(X);

Recently Zhang (1992) also gave a result on the law of the iterated logarithm
for the martingale difference sequence. In Section 3 we shall discuss the a.s.
asymptotic behavior of stochastic integral X = B - M under restrictions on
rates of increase of B and the restrictions on the conditional distributions of
AM or on the conditional moments of AM. Even in the discrete parameter
case, our results not only include the above-mentioned results, but also give
some new results.

Finally, in Section 4, we give some simple examples to explain the applica-
tions of these results to determine the asymptotic behavior of estimators in
different statistical problems.

In this paper we will use the usual notations and symbols in the stochastic
calculus of semimartingales according to He, Wang and Yan (1992) and Jacod
and Shiryaev (1987), unless stated otherwise.

<00 a.s.

2. The asymptotic behavior of locally square integrable martin-
gales with dominated jumps. For convenience, to describe the asymptotic
behavior we need the symbols O, o and some others. For a function g and an
increasing positive function a if

, g() _

R =
where k is a finite constant, then denote it by g <., ka. We also denote
|g] <ap ka by g = O(a) and write g = o(a) if lim;_ ., g(¢)/a(t) = 0. For
a function g, write the extremal function of g by g*(¢) = sup,,|g(s)|. If
g*(t) < oo V t, then it is easy to verify that |g| <,, ka and g = o(a) are
equivalent to g* <4, ka and g* = o(a), respectively. For a stochastic process G
and an increasing process A, we use similar symbols; for example, G <,, KA
means

lim sup iiz; < K(o) as.

It is equivalent to the fact that for each & > 0 there is a finite random variable
L(w, £) such that

Gi(w) < (K(w) + &)Ai(w) Vi>L(w,e).
We also use the symbols G = O(A), G = o(A) and *

. G
A, {G <ap KG} = [w: lim sup Aﬁﬁﬁ < K(w)}.

Note that if G} < ooV tas., then |G| <ap KA and G = 0(A) are equivalent
to G* <4p KA and G* = o(A), respectively.
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Let (Q,%,F = (%)i>0,P) be a filtered probability space with filtration
F = (%):>0 satisfying the usual conditions. Denote by .# 1200 the collection of
all locally square integrable martingales based on (Q, #,F = (%)0, P). For
M e 4 lzoc, (M) = (M, M) is the predictable quadratic variation of M and
AM = {AM; = M; — M,_} is the jump process of M.

To begin with, recall the following inequality for the probability of large
deviations for martingales in Shorack and Wellner (1986); it will be one of

basic tools of this section.

LEMMA 2.1 [Shorack and Wellner (1986), page 899]. Let M e .# 1200, |[AM| <
d and a, b be positive constants. Then for any stopping time T, the following
inequality holds:

2 fad
@.1) P(M} > a, (M) <b) < 2exp(—§5 (%—))
where
_ 2 (* r¥dzdy 2(1+x)log(l+x)—2x
2.2) ¢(x)_;c3/0f0 = s . x>0

From (2.2) it is easy to show that ¢ is a decreasing continuous function and

Ylx) <1, lmy(x) =1,

(%) _ 4

e 2logx

(2.3)
In the proofs of the main results, we also need the following simple lemma.

LEMMA 2.2. Let X, Y be two random variables, f be a strictly continuous
increasing function and A € . If for all c € R,

(2.4 A{X <c}c{Y <f(c)} as,
then ‘
(2.5) Ac{Y <f(X)} as

PrROOF. From (2.4) we have
(2.6) A(X <r)c (Y <f(r)) for all rational numbers r a.s.

Denote by f~! the continuous inverse of f. If (2.5) is not true, that is, P(A{X <
f~1(Y)}) > 0, then there exists a rational r such that

P(A{X <r < fY(Y)}) > 0.
It contradicts (2.6), hence (2.5) is true. O .
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THEOREM 2.3. Suppose that M € 4% and

(M)
(27) |AM| < H m a.s.,

where H = {H(t)} is a predictable process. Then

(2.8) {M)o =} C {limsup | M| < a(K)} a.s.,
where LLgx = log(log(x Vv e%)), K = limsup,_ ., H(¢), a(K) is the unique
solution of a®y(v/2aK) = 1 for finite K and a(o0) = oc.

PROOF. At first, suppose that

()
(2.9) (AM)t < k m(—t—) Vit a.s.,

(M); <q(¢t) Vtas.,

where £ is a finite constant and g = {g(¢)} is a predictable increasing process
(here and hereafter increasing process means that it is right continuous and
with left limits). It will be proved that

(2.10) {q(00) = 0} C [lim sup | M| < a(k)] a.s.

t-oo  4/2q(t)LLg q(%)
For p>landneN={1,2,...}, set
T, =inf{t > 0: q(¢) = p**}.

Then T, is finite on {g(cc) = oo} and is predictable. From the definition of
T, and (2.9) we have

(M)r,_ < q(Ty—) < p*™ as,

q(Tp-)

(AM); _ <k TLgq(T.D) < k\/i.ﬁ dé‘d,1 a.s.
Put a, = a\/m , Where a is a constant defined below. By Lemma 2.1
we have
P(Ms, > a2 Lig po)
<P((M™)g > an, (M) < ™)

[(2.11)

"a? and
< 2emp| 5o (%) |

= 2exp[—a®LLg p?"¢(v2ak)].
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Since
1 Y2k 5y dzdy
2 —_— —
uaah =g [ [T

is a strictly increasing function of a, then there exists unique a = a(k) =
inf{c: c2y(+~/2ck) > 1} such that a®y(+/2ak) = 1. From the properties of ¢ it
is easy to verify that a(k) is an increasing continuous function of £ and

(2.12) lima(k) = 1.
£40

Now take a > a(k). Therefore
a® a2y(2v/2ak) > 1.
This and (2.11) yield

P(M#,- > a\/2p> LLg p ) < 2exp(-aLLg p™) = @ﬁ—'fg?ﬁ'

Thus by the Borel-Cantelli lemma we get

(2.13) P( % _ > ay/2p?" LLg p» i.o.) = 0.

For ¢t € [T), Thy1[ we have
M, <My, ., q(t)>=q(T,) = p™

*

| M| < Mz, .-
v2q(¢t)LLgq(¢) = /2p?LLg p*»
Then from (2.13) we can conclude that

{g(o0) =0} C {limsup | M < pa}.

t—>00 4/ 2q(t) LLg q(t)

Since a is an arbitrary number greater than a(%) and p is an arbitrary number
greater than 1, the following relation holds too:

B . | M|
(2.14) {g(o0) =00} C [hlflifp 2q(t)Lqu(t “tk )]

Next we will discuss the general case assumed by the theorem. For fixed
constants ¢ > 0 and 2 > 0 put

N = l[H_<_k+a] M,
here, and hereafter 14 and I(A) denote the indicator of A. Then we have
NeWs:, (N)<(M)
a_lﬁd from (2.7), '

(M)
|JAN| = 1ia<k+s1|AM| < (k+¢) LL (M)
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Hence (2.10) yields

{{M)oo = 00} C {limsup V]

t—>oo /2(M); LLg(M);

<a(k+ e)} a.s.

However,
M —N =1g.145- M, (M = N) = 1{gsp4e) - (M), -

{lim sup H(¢) < k

t—>00
C{{(M - N)y <o} C {tlilga(Mt — N;) exists and is ﬁn.ite},
Therefore,
{{M)oo = oo}{limsup H() < k}
t—o00

{ . | M|
C {limsup
tooo  /2(M); LLg(M);
= lim sup [Nl <al(k+ e)} a.s.

Now letting ¢ | 0 and using Lemma 2.2, the conclusion (2.8) is established. O

COROLLARY 2.4. Suppose that M € .#%  and (2.7) holds. Then

loc

. . | M|
(2.15) {(M)e = oo}[tlirglo H(t) = O} C {hrtriizlp 5 a0 < 1] a.s.

PROOF. Recall (2.8), and the conclusion (2.15) comes from (2.12). O

REMARK. From Stout (1970) and Xu (1990) it is easy to show that if M
satisfies the “global” assumptions

(M) =00 a.s.,

(M),
LLg(M),
where H = {H(t)} is a predictable process and

tl—l—g}) H(t)=0 as,

|AM;| < H(t) Vt>0a.s.,

then
lim sup | M =1 as.
tooo /2(M); LLg(M);
However, it is not known whether the right side of (2.15) can be improved to
an equality. '

A
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THEOREM 2.5. Suppose that M € .#3% _ and for some § > —1/2,

loc

|AM| < H\/(M) (LLg(M))?,
where H = {H(t)} is a predictable process. Then

{(M)o = oo}[limsup H(t) < oo}
t—00

(2.16) M,
li =0 .S
< {lm /M), (LLg(M))5+ | o

PROOF. At first, suppose that there exists a constant £ > 0 such that for
&> -1/2,

(2.17) (AM) < k/q(t) (LLgq(¢))® Vtas,

(M); <q(t) Vtas,

where g = q(t) is a predictable increasing process. It will be proved that

— 3 Mt —
ttee) =) {1 o =0 &

" For p>1landneN set
T, = inf{t > 0: q(¢) > p*}.

Then T, is finite on {g(o0) = oo} and is predictable. From the definition of
T, and (2.17) we have

(M)r,- < q(Tp—) < p™ as,
(AM);,_ < ky/q(T,—) (LLg q(T5-))° < kp"(LLg p*)* = d,.

Put a, = ¢p™(LLg p?*)3*+!, where ¢ € (0, 1) is a constant. By using Lemma 2.1
we have .

P(M%,_ > ep™(LLg p™)™*)
< P((M™)%, > an, (M 7)o < p™)

[ ai adn
< 2exp _2p2"¢( p* )]
-2 2n\26+2 .
<2exp| - ZEEP Ty on(iig p2">25+1>]
“ - az(LLg pzn)éé+2 2(1 — &) log(ek(LLg p2n)25+1)
. < 2exp|— 9 eh(LLg p& )2+t ], by (2.3),

< exp[—¢’ LLg p** log(LLg p?>")] for n large enough,
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where ¢’ is a positive constant. Therefore, by using the Borel-Cantelli lemma
it is easy to obtain

P(M%, _ > ep™(LLg p**)**1i.0.) =0

and

. M,
_ ! =0
{g(c0) = 00} C [ti’?o /a(#) (LLg q(2))? }

Now for a fixed constant 2 > 0 put
N = 1[ H<k]* M.

Then the rest of the argument is similar to the proof of Theorem 2.3 and we
conclude

(M) = o0} {Jim H(®) < o] = UM = oo} Jim H(1) < &)
=1

c { lim M. = 0}
t>o0 \/2(M); (LLg(M))°
THEOREM 2.6. Suppose that M € .#2_ and for some 8 > 0,

loc

|AM| < H/(M) (log(M))?,
where H = {H(t)} is a predictable process. Then

_ . M, 1.
{{M)o = 0} C [hItIii?p 70 (log (M)’ < 25 hrtris;lpH(t)} a.s.

PROOF. Suppose that there exists a constant 2 > 0 such that for § > 0,
(2.18) (AM); < k\/q(t) (logq(¢))® Vtas,

(M Je < q(t) Vtas.,

where g = q(t) is a predictable increasing process. It will be proved that

{g(00) = 00} C [ﬁm sup M = i}
t>co /(M) (log(M))? ~ 28}

For p>1and n €N set
T, =inf{t > 0: q(¢) > p2"‘}.

Then T, is finite on {g(c0) = oo} and is predictable. From the definition of
T, and (2.18) we have .

(M)r,- < q(T,—) < p*™ as,
(AM); _ < k/q(Tn—)(log ¢(T»—))° < kp"(log p**)* ¥ d, as.
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Put a, = ap™(log p?*)?, where
> ____k___—
26(1—¢)
is a constant and 0 < £ < 1. By using Lemma 2.1, we have

P(M,_ > ap™(log p™)°)
= P(MT7), > an, (M7 < p*°)

a? andy,
2o -5 (a7
a2 lo 2n\26
( gzp ) ://(ak(log p2n )25)]
a?(log p?*)%® (1 - ¢£)48 LLg p**
= crexp| - 2 ak(log p2nr)28

= (anf)——zzﬁ for n large enough,

where c1, ¢z are constants and a = 2a8(1 — ¢)/k > 1, which implies
Z P(M7% _ > ap™(log p*)?) < o0.
n

(2.19)

< 2exp[—

Thus by the Borel-Cantelli lemma we get
P(M7, _ > ap"(log p*)%i0.) =

and

{q(00) =} C {hm sup M| < i}
t>o0 +/q(t) (log q(2))® ~ 20
Now the rest of the argument is similar to the proof of Theorem 2.3 and we
get the conclusion

{<M>oo—oo}c{

| M|
—hmsu H(t ]
% 7500, Gogm)y = 26 P HOY

REMARK. From this theorem it is easy to show that if
|AM| < Hy/(M) (log(M))°

for some predictable process H and 6 > 0, then
{(M)o = 00} {H = O(1)}

. C {(M)oo = 0} M = O(V(M) (log(M))*)}
C {(M)oo = oo}{AM = O(V/(3) (log())°) }.
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Finally, we mention the discrete-time version of the above theorems. Let
&= {&n, &n, n > 1} be a martingale difference sequence with Ee% < oo, that
is,

En_1(&n) of E(en | £n1) =0 as.
Put
n n
S, = Zf‘,, si = ZEn_l(aﬁ)
J=1 Jj=1
and

Mt = S[t]7 9; = ‘f[t]) t>0.
Then M = {M,, %, t >0} € 4% and
(M): = sfy).
Therefore, from Theorems 2.3-2.6 we have the following statements: If

len] < Jn

" for some predictable sequence J = {¢,}, then

{s2 = oo}{J <ap K,/s2/LLg32]

- [Iimsupl's—”I < a(K)} a.s.,

n—o00 \/23% LLg 8% -

{s% = oo}[J = o(,/sz/LLgsz)}

c [1imsup Sl < 1} a.s.,

n—oo ,/28% LLg S?l -

{s% = oo}{J = O(Vs2(LLg s*)%))
(2.22) " S,
< {n—>ngo \/Z‘Z(LLg §2)0+1

(2.20)

(2.21)

= 0} a.s. for § > —1/2,

{sgO = oo}{J <ap K\/;E(logsz)a}

(2.23) © 1S K
! c {limsup ———— < ——} a.s. for 8 > 0,
{ n—>oop \/-SE(IOg s?l)‘s 26

where K is a finite random variable.
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It should be noted that if {e,} is a sequence of independent random vari-
ables, the right side of (2.21) is the upper bound of Kolmogorov’s law of the
iterated logarithm. Chow and Teicher (1978) and Teicher (1979) obtained re-
sults similar to (2.20) and (2.23). In Teicher (1979), the upper bound on the
right side of (2.20) is

(h) = n1+ekb—1—kb
@ f‘i“o |

By a direct calculation it may be proved that az(k) = a(k). For the martingale
difference sequence {&,}, Stout (1970) and Fisher (1986) first gave an upper
bound similar to the right side of (2.20) with a different constant [for larger &,
a(k) = a(k) is less than that in Fisher (1986)]. Here we improve these results
in two respects: (1) we get the continuous parameter martingale version and
(2) we get the “local” version, which does not require s%, = oo (or |&,| <

K./s2 LLg sZ) almost surely, and here K may be a random variable.

3. The asymptotic behavior of stochastic integrals. Let M ¢ AL
Then M has the integral representation

M= M® + x « (uM — ™),
where M¢ is the continuous local martmgale part of M with predlctable

quadratic variation (M°¢) = (M¢, M°), u M is the jump measure of M, vM is
the dual predictable projection of u™ with

/ xvM({£},dx) =0
R

and ((M°), ¢y, M ) is called the predictable characteristic of M. It is clear that
vM has the canomcal predictable decomposition [cf. He, Wang and Yan (1992),
page 381] .

vM(w,dt,dx) = Ny(w,dx)d(M);,

where N;(w,dx) is a transition o-finite measure from (Q x Ry, #) to (R, #)
with

/szt(w,dx) —1 VieR,.
R

For a predictable process B, if B? is locally integrable with respect to (M),
then the stochastic integral X = B- M of B with respect to M is well defined
and X € .#} 2 . Also, X has the integral representation

X = X+ x % (uX — %),
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where X°is the continuous local martingale part of X, uX is the jump measure
of X and v¥ is the dual predictable projection of uX. Meanwhile,

(3.1) (X)=B2. (M), (X°=B% (M),

I[P ds,de) = [[ 1 B (ds,ds)
[0,¢]xR [0,£]xR
3.2)
=[] lpsof(s, Bax)Ny(dx)d(M),,
[0,t]xR
where f is an arbitrary nonnegative measurable function.

DEFINITION. For a family of o-finite measures {N;, ¢ € I} on R, if there
exist a constant & and a finite measure N such that

N:({x: |x| >a}) <kN({x: |x| > a}) <0 Va>1, tel,

then we say that there exists a majorant measure N for {N;, ¢ € I} and
denote it by (N;) < N.

The following lemma is evident [cf. Wang (1992)].

"LEMMA 3.1. (i) Suppose that for some & > 0, {N,} satisfies

sup/ |2|2*® N, (dx) = C(w) < 00 a.s.
t JR

and
N(dx) = 1551 ng’g dx.
Then
3.3) (N)<N and [2*N(dx) <00 as

(i) If {N:} < N and f is a nondecreasing nonnegative function with f(1) =
0, then

3.4) /R FUYDN(dy) < k [R fUyDN(dy) V.
THEOREM 3.2. Let M € #2, X = B-M and
(3.5) Dy = {w: lim (M), = lim (X), = oo},

3.6) E,= {w: sup[ |%|2*° N, (dx) < 0o for some & > O].
t



ASYMPTOTIC MARTINGALE BEHAVIOR 565

Then

. p2 (X)
DiE 1{“" B = °<LLg<X><M>2/<2+6> log(M))}

X
C[Iimsup | Xe] <1} a.s.,

t—00 ‘/2(X)t LLg(X)t -

3.7

. (X)
DlEl[“" B = O(LLg<X><M>2/<2+8> log(M))}

[ . | X }
Cc{limsup ———— <0} a.s,

t>oo /(X): LLg(X),

3.8)

D1E'1[w: B2 — O( (X) LLg7(X) )}

(M)2/(2+2) log (M)
| X+

J(X): LLg?*"(X),

lim
t—00

3.9)
C [ = 0} a.s. for y > —1,

D1E'1[w: Bz=0(( (X)log”(X) )}

M)2/(2+8) log (M
(3.10) ) os(M)

C {limsup—li{—tl— < oo} a.s. for y € (0,1]
tooo /(X)) log"(X),

The proof of this theorem will proceed in several steps. We will use the
truncation technique; that is, we use the following decomposition of X:

X = X+ xx(uX —vX)
(3.11) = (X4 x1jg<ae) * (BF = %)) + 21 gppaqe * (X = v%)
“y+2z,

where d = (d(t)):>0 is a predﬁ'ctable process defined below. Then Y, Z € .# ﬁm
and

(3.12) |AY ] < 2d(2).

PROPOSITION 3.3. Let

Eg = [w: (N} <N, /sz(dx) < 00}

and let d = (d(t)):>0 be a predictable increasing process. Then

(3.13) E2{B = o(d)}H(X)e = 00} C {lim = }

t=oo (X);
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PROOF. By the definition of Y we have
(Y) = (X°) + (|22 L jg1zae)) * X = Y _(AL(* 1<) * VX])2
=(X),
where " W denotes the summation process of a thin process W. Meanwhile,
0 <(X)—(Y)
= (|2 1eam)) * X + Y (AL(x1fm<am) * ¥ D)
= (1221 za)) * vX + D (AL(*1aam) *v*1)?  (by Alx*v¥]=0)

< 2(|1%2 1) * v¥

X)T+2f bz(s)f |x|21(|x| > ZESDNs(dx)d(M)s [by (3.2)]

) 2 d(s)
X7 +2k/0 /Rlxl I(|x| B ))N(d x)d(X
on E; [by (3.2) and (3.4)],

where T is a random variable satisfying

ds)
B(s)

and T is finite on {B = o(d)}. Thus

>1 Vs>T,

E2{B=o(d)} C lhm/ |x|21(|x| > Z(( )))N(dx) - o}

and

Eq{B= O(d)}{ Yoo = 00}

lim x5, A |2I( g(( ;)N(d x)d( X)s_o}

Therefore (3.13) holds. O

PROPOSITION 3.4. Suppose that ¢ = (¢(8))s>0 is a predictable increasing
process and

(3.14) d2(t) = B2(6)(((M)2/®+® log(M),) v 1).
Then

(3.15) DiEA{(X) = o(¢")} C ’}i‘i‘o;(t‘) = 0}
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PROOF. By using Chebyshev’s inequality and (3.2) we have

N |B(s)|**
Ligisds) * VX < e * vX < f fmxm | 28 12N (e Ns(dx)d(M)s

< sup / |22+ No(dx) [0 1 A (M), log™¥/2(M),) " d (M),
S
<00 a.s.on Ej.

Note that D1{(X) = o(¢?)} C {¢ 1 oo} and the jump measure uX of X is an
integer random measure, uX(A) = ¥, I{(T;,AX71,) € A}. If ¥, I{|AX1,| >
d(Ti)} = ligjsdes) * pZ is finite, then |x|1jz5q¢) * X = X IAX 1, |I{|AX 1,| >
d(T;)} is finite too. Therefore

D1E1{(X) = o(¢?®)} C {Ljz>a(s) ¥ vE < 00} 1 00}

C {Ljxsaes) ¥ pX < 0o}{@ t 0o} (cf. [6], page 222)

(3.16) C {|x|1|x|>d(s) * ll«fo < oo}{¢ 1 oo}

. 1 e
C {tlilg) m(|x|1|x|>d(.) * My ) = 0] a.s.
Meanwhile, by the Schwarz inequality we get

x
121 L1x1>d(s) * Vi

1/2
=y x2 xv¥ (llxl>d(8) * VZY)

<X sup/ |x|2*® N, (dx)f 1A(¢ logl+5/2(M)s)_ld(M)s)

1/2

and
DiEL{(X) = o(¢)} C {Jim — (el Loy +#9) =0} a8
This, (3.16) and (3.11) yield the conclusion (3.15). O
PROOF OF THEOREM 3.2. At first, note that by Lemma 3.1.1,
E,CcE;= [w: {N:} <N, /xsz < oo} for some N.
Define d(¢) by (3.14). Then D; C {B = o(d)} and from (3.13) we have
(3.17) D1E, c {B=0(d)}{(X)eo =0} E2 C [tlim D _ 1}.

To prove (3.7), put
(3.18) ¢(2) = v2(X): LLg(X):.
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Thus Proposition 3.4 implies that

(3.19) D\E; C {lim Zt = o} a.s.
to>oo \/2(X); LLg(X),

Meanwhile, according to (3.12)
|AY| < 2d = 2| B|(({M)Y@*®) log"?(M)) v 1).
Write

| ope (X) )}
Gr= {“" B = °(LLg<X><M>2/<2+8> log(M) ) |’

Then from (3.14) and (3.17) we have

_ (X) _ (Y)
DlElGl C DlEl{d—O< m )} C [d—0< m )}

Thus Corollary 2.4 implies

D\E G, C {limsup Y: < 1} a.s.

t—o0 4/ 2(Y)t LLg(Y)t N

"This, (3.17) and (3.19) yield (3.7).
The proof of (3.8) is similar. Take ¢ the same as in (3.18) and

N (X) )}
Gz‘{“" B "O(LLg<X><M>2/<2+8>log<M> '

Since in this case
_ (Y)
DE G5 C {d = 0( TLg(¥) )],

then from Theorem 2.3 we get

D.E G C {limsup Y < oo} a.s.

This, (3.17) and (3.19) yield (3.8).
To prove (3.9), put

o(t) = |/ (X): LLg**(X),.

Then instead of Theorem 2.3, use Theorem 2.5 and the method above.

If we put )
@(t) = /(X)¢log”(X),,

then the proof of (3.10) can proceed also in a similar way. O
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REMARK. If

. (X) _
P(DIEI{B B °(LLg<X><M>2/<2+6> log<M>)}) -

then
X
(3.20) lim sup | X =1 as.

t—00 \/2(X>t LLg(X)t

In fact, in this case we may define d(¢) by (3.14) and
2d(t)
V¥)/LLg(Y);’

Then K = {K(t)} is a predictable process and

[ o
|AY| < K m, tl—lng(t)_O a.s.

Hence from Xu’s result [Xu (1990)] we get

K(t) =

. Y,
lim =1 a.s.
t=oo \/2(Y ), LLg(Y);
This, (3.17) and (3.19) yield (3.20).
THEOREM 3.5. Let M € #2, X =B-M and

loc’

By = {w: (N} <N, fsz(dx) < oo},

(3.21)
Dz = {w: Jim (M), = im(X); = oo, A(M) = o((M))}.
Then:
(i) For v < 1, )
y

E’2D2{B2 = O(~—————————(X) IZ]I;f) (X>>}

(3.22)
{ . | Xl }
C {limsup <1} a.s,
t—o00 \/2(X>tLLg(X)t

(ii) For y>1and B > v,

X)LLg"(X)
EsDy ! B% = 0((———)}
, 5 2 2{ C (M)
(3.23
C {tlim X = O] a.s.
*V(X): LLgh(X),
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The proof of this theorem will proceed in several steps and we will still use
the decomposition (3.11) of X. To begin with, we state the followmg technical
proposition, the proof of which is similar to that of a lemma in the book by
Chow and Teicher [(1978), Section 10.2, Lemma 3, page 350].

PROPOSITION 3.6. Let

(M)¢
LLg?(X),

S d(M), _ ( (M)e )}
DZGSC{/ <M>;-"LLgB<X>s_0 LLg?(x)) ]

PROPOSITION 3.7. Let d = (d(t)):>0 and ¢ = (¢(¢)):0 be two predictable
increasing processes with ¢ > 1 and for some a € [1,2] and constant i > 0 put

Hy(i) = {lim ¢(£) = 0o} n {d(®) > IB(®)| > 0V £ > i}

. 1 B(s)\*
" {imewe i [ (5 e <o)

where A = {s > i: (d(s))/|B(s)| < |x|}. Then

D2G3C[ Tooast-»oo},

(3.24) E;H, (i) C {llm W = 0] a.s.

PROOF. Note that
{limsup 1 /(B(s)) d(M)s<oo}
*JA

|x|—> 00 |x|2_ o(s)

= (e o [, () 20000 < ).

From (3.2) we have

[x|* X
Wlnx»d(s),»i] * Vg,

_ [~1BG)” d()) . .
(3.25) —/i *(s) {(|x| B )”* *N,(dx)

' <k |x|a( 'B(s)'ad<M>s)N<dx> on E; [by (3.4)]
' %=1 A ¢%(s)

<kC / 22N(dx) < 00 a.s. on ExH,(i),
R
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where C is a finite random variable. Write
Z = xligsqe) * (X — %)
(3.26) = x1gt)<pri=or) * (X — %) + s d@vee * (0% —v%)

der+W

Then

(7).

IA

|3’C|2 X
2(3) d(8)<lxl<¢(8) Vo

x® ||* x
22(5) L@ <lxlze(e) xv 4 2a(s) Lii>d(e), s>i] | ¥ 5 < 00

IA

571

a.s. on EyHq(7) [by (3.25)].

Since (1/¢) -V € .#2 _, then

loc?
. 1 .
E.Hq(i) C [(Z . V) < OO]HI(Z)
.1 . . . .
C {thm e V: exists and is ﬁmte]Hl(z)

(3.27)
(by Theorem 8.32 in [6])

Vi
im — = 8. ker 1
- {tl_lglo O] O} a.s. (by the Kronecker lemma)
Meanwhile, since « > 1,

=l epX < (%1% X,
¢(t) Lixisdieyve)] ) * vo < a(t) Lpixi>dieyve)] ) * Voo

then, (3.25) implies

. X
E2H1(l) C {(——l l 1[|x|>d(t)V¢(t)]) * Vo)g < OO}
®(t)
(3.28)

Also by the Kronecker lemma, from (3.28) we have

. . 1.
EzHl(l) C [tllglo (—[(xl,x|>d(.)v¢,(.)) * V;Y] = 0] a.s.,

b

EzHl(i) C {llm ﬁ[(xl[,xpd( Vel )) * Wy ] = } a.s.

C {(% 1[|x|>d(t)vqo(t)]) * [.ng < OO] a.s. (cf. [6], page 222).
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and
t—>00 ¢>(t) Py ¢(t) [lxl>d(-)ve(-)]) * Kt
(3.29) B
i ¢_(t) [(1f1ei>ave(1) * ¥e]

=0 a.s.on EsH;(i).
Now the conclusion (3.24) comes from (3.26), (3.27) and (3.29). O

PROOF OF THEOREM 3.5. Write

[z of (X)LLg"(X)
6= {8t = o SR |

Then
(3.30) D2G4 C Gs
and Proposition 3.6 is applicable on D2G4.
(i) With no loss of generality we can assume
) 0<y<1l
Put 6 =(1-1v)/2 and
¢*(¢) = (2(X); LLg(X)s) v 1,

(X)e
3.31 d¥(t) = — 5 —>
(8.31) (t) L™ X,
. d?(s) _ (1 (M), .
H4(C,l) = {w: Bz(s) > (Em) \% 1, Vs > l],

where ¢, i > 0 are constants. Then
. 2 _
Dy  {im ¢*(t) = eo}.
From (3.31), Proposition 3.6 we have B = o(d) a.s. on DyG4 and

D2G4 C U H4(C,i).

c,i=1
Note that
def . d?(s) 2
R A—{szz. B2(s)<x
. (M)s 2] def .
Cis>ii ——————— <ecx?} = A; as. on DyHy(c,i).
{ 25 T X, 1 2Hy(c, )
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Set
t1 = t1(x) = sup{s > i: (M); LLg~ "+ (X), < cx?}.
Then
(M),,- LLg= "X, _ < ex?,
DyGa C {leliinoo tr(x) = +oo}.
Now take a =1+ vy + 8. Then a € [1,2) and

/ (IB(S)I) dM), < Cf (M);92 LLg™*=""2(X) d(M),
A\ o(s) 4

332 = C(M);*?LLg™-79/2(X), V¢t > T (by Proposition 3.6)

= C((M);,- LLg~ 79 (x), V"% (from a = 1+ y + 8)
< Clx|> VY |x| > U a.s. on DoHy(c,i),

where C, T' and U are random variables, but C may vary in different expres-
sions. By (3.32) and (3.24) we get
®(2)

On the other hand, from (3.12), (3.31) and Proposition 3.3 we have
|AY| <2d as.,

(3.33) E2D3Gy C | D2EsHa(c,i) C {hm B o}

c,i

EsD>G4 C E2{B = o(d) }H{(X)oo = 00}

(Y); .
{‘ll’rg (X)¢ 1}’

. (Y)
(3.34) E3DyGy C [d = K\ o195 }

where K = {K(t)} is a predictable process defined by

(X): LLg(Y),
K =
® \/ (V) LLg"**(X),

and
tlim K(t)=0 a.s.on EgDyGy.
oo :

Therefore, by Corollary 2.4 we have

(3.35) E3;D3Gy C {limsup 1Yl < 1} a.s.
t—o00 2(X)t LLg(X)t
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Now the conclusion (3.22) comes from (3.11), (3.33) and (3.35).
(ii) Put
¢*(s) = ((X)s LLgP(X)s) v 1,
d?(s) = (X)s LLg? (X)),
a=2-B+v,

d?(s) 1 (M) .
> (E——Lng"””/(X)s) vl] Vs> z},

Hs(c,i) = {

B2(s) ~
where c, i > 0 are constants. With no loss of generality we can assume
0<B—-vy=<1
Then
l<a<?

Meanwhile, Proposition 3.6 contains B = o(d) a.s. on DG4 and

D;G4 c | Hsl(c,i),

c,i=1

A def {s > ZZ((Z)) < x2}

. (M)s 2] def .
C 1820 =—F——<cx“t = Ay as. on DyHs(c,i).
24 prgeti 1 sl

Set
t1 = sup{s > i: (M);LLg " *(X), < cx?}.
Then
(M);,- LLg™%(X),— < cx?

and

/ (B(S))admxs C [, (M) LLg* P (X) d (M),
A\ ¢(s) A

<SCM);*PLLg 92Xy, Vi >T
(3.36) (by Proposition 3.6 and a =2 — 8+ )

= C((M);,- LLg™(X),,_)' ™"

<C|x|>** V¥ |x|>U a.s. on DaHj5(c,i),
where C, T and U are random variables, but C may vary in different expres-
sions. By (3.36) and (3.24) we get

(3.37) E;DG4 C UD2E2H5(c,i) C {lim Ze = O] a.s.
Ny N PO
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On the other hand, note that by virtue of Proposition 3.3 and (3.12),

[AY| <2d a.s.,

E3D3G4 C E2{B = o(d)H{(X)o = 00} C {d <ap Y (Y) LLg"‘2<Y)] a.s,;

hence, Theorem 2.5 implies

EsDoGy C llimsup Y] = 0] a.s.
)e

t>oo (X)), LLgP(X

This, (3.11) and (3.37) yield (3.23). O

THEOREM 3.8. Let M € .#%_, X = B-M and D, and E; be defined by (3.5)

loc’

and (8.21), respectively. Then

X)log”(X)
D,E,! B% = O((————)]
, ' 2{ (M)
(3.38) N
c ﬁm———‘——=o} a.s. for y € (0,1],
{Hw J(X), log"(X); Y
B 2 [ (X)1og(X)

{‘X’““”}EZ{B = 0( LLg(X) >}

(3.39)

- {lim ———XL—— = 0] a.s.
t>oo /(X)) log(X):

PROOF. The proof of this-theorem is similar to that of Theorem 8.5 and we
shall adhere to the symbols in the proof of Theorem 3.5.
To prove (3.38), put

X)log"(X)
3.40 Ge¢ = 32=0(<————>},
840 ¢ { (M)

©2(¢) = ((X):log”(X):) V 1,
, d?(t) = k*(X);log”(X):,

2
s =[50 (4

m_ M)3>V1,V82i},



576 J.-G. WANG

where ¢, i,k > 0 are constants. Then B = o(d) a.s. on D;G¢ and

D1Gs | Helc,i),

c,i=1

e . d2(s)
AY {szl: B2(2) <x2}

c {s>i: (M)s < cx?®} def A; a.s.on DiHg(c,i).

Set
t; = sup{s: (M)s < cx?}.
Then
(M), < cx®
and

|B(s)| -1
d(M), <c | (M)7V2d(M),
- (3.42) A o(s) (M) SC[A1< s aiM)

< c’(M)tll/f‘ <c’|x| a.s.on Hg(c,i),

where ¢/, ¢’ are constants depending on ¢ and k. By (3.42) and (3.24) we get

(3.43) D1E2G6 C U D1E2H6(c,i) C [tlilg j—t = O} a.s.

c,i

On the other hand, note that by virtue of Proposition 3.3 and (3.12),
|[AY]| <2d a.s.
D1 E3Ge C Ea{B = o(d)}{(X)e = 00} C [d <p ky/(V)10g"(¥V) | a5

hence Theorem 2.6 implies

D1E;Gg C [limsup 1Y < E}
t=oo /2(X)ilog”(X): Y

Since £ may be an arbitrary positive number, lettihg k | 0 yields

! D1E;Gg C {'hmsup Y 0}.

tooo /2(X)log? (X)y

This, (3.11) and (3.43) yield (3.38).
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To prove (3.39), put

| p2_ of (X)log(X)
G"‘[B ‘0( LLg(X) )}

3(t) = ((X):log(X):) v 1,

d?(t) = k*(X)¢log(X),

d2(s) 1 .
B2(s) > (Z LLg(X)s) vivVs> z],

where c, i, k > 0 are positive constants. Then

Ha(c,i) = {

{(X)oo = 00}Gs C | ) {(X)oo = 00} Ha(c, ),

c,i=1

A def {s >1i: —Zz((z)) < xz}

c {s>i: LLg(X)s <cx?} & A; as. on {(X)oo = 0o} Hs(c, ).

Set
¢, = sup{s: LLg(X), < cx}.
Then
LLg(X);,- < cx?
and

B2(S) d<X)s
—_—d(M s < / —_
(3.44) [ o= [, etz
< ¢'LLg(X);,- < ¢'x® as. on {(X)o = 0o} Hs(c, 1),

where ¢/, ¢ are constants depending on ¢ and k. By (3.44) and (3.24) we get
{{X)oo = 00} E2Gs C | J E2{(X)oo = 00} Hs(c, 1)
(3.45)

On the other hand, note that by virtue of Proposition 3.3 and (3.12),
|A_Y| <2d a.s,,

{{X)oo = 00} E2Gs C E2{B = o(d)}{(X)oo = 00}

C {d <ap B/ (Y)10g(Y)} a.s;
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hence, Theorem 2.6 implies

. |Y|
{{X)oo = 0}E2Gg C [hmsup——-— < k} a.s.
28 too0 /(X); l0g(X);

Since k may be an arbitrary positive number, letting % | 0 yields

Ey{(X) = 00}Gs C {hm ——L— 0] a.s.

t>00 /(X),log(X):

This, (3.11) and (3.45) yield (3.39). O

REMARKS. (1) If

X)LLg”(X)
3.46 P( E;Dy! B2 = o((————)}) =1,
( ) ( 2 2{ )
then
(3.47) lim sup X+ =1 as.

In fact, (3.46) and (3.34) imply

(Y)
LLg(Y)

tlixglo K(t)=0 a.s.

|AY| < 2K

a.s.,

Hence Xu’s result [Xu (1990)] yields (3.47).
(2) If B =1, then (X) = (M) and (3.22) becomes

. M,
Ey{(M)e = 00, AM = o(M)} C |1 <1] as
2{(M)ew = o0, AM = of )}C{lﬁil‘p (), Lig (M), — ] a8

In particular, if

{N;} < N, fxsz <00 a.s.,
(M)oo = 00, AM =o(M) a.s.,

then

. \ M,
lim sup =1 as.
K t—00 2(M)t LLg(M)t

From the discrete version of this result it is easy to get the Hartman—Wintner
law of the iterated logarithm for i.i.d. sequence.
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Let M = {M,,t > 0} be a process with homogeneous independent incre-
ments and

E[Mt] = 0’
(M); = E[M?] =¢.
If we take X = B- M with

(8.48) B%(t) = 1t21%[exp(log tLLg” t)], vy <1,
then

y
(X); ~exp(logtLLg”t) and B%= O(M), y <1,

(M)

hence, (3.47) holds for X = B- M.
Instead of (3.48), if we take B as

B0 = Ly plexpllogtLle’e)], B = o EE) 0y
d X)log”(X
B (1) = Ly elexp((log )/0-")], B2 = 0(‘—’(—3’5)(—)), y€0,1),
N ) A((X) log<X>)
B4(t) = exp(e¥?), B® = 0(—_LLg(X) ,

then (3.23), (3.38) or (3.39) is applicable to get the asymptotic behavior of
X = B - M, respectively.
Furthermore, suppose

E[M2*%] < 0o for some & > 0

and .
d /O LLgY ¢ (X)LLg”(X)
200y — & 2 _ _
B =5 [exp ( log? )] B 0(<M>2/<2+8> log(M)) » ¥> b
d _ (X)log”(X)
205y = & 8/(2+8) 171 2 _ _
B%(t) = .7 [exp(t log t)], B 0((M)2/(2+5) log(M)>’ ve€(0,1)

Statement (3.9) or (3.10) is suitable to get the asymptotic behavior of X = B-M
for these B.

Now we mention the relationship between the discrete-time version of the
above results and some earlier works. Let {&,, £, } be a martingale difference
sequence with

(3.49) En182=1 as.
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and let b = {b,} be a predictable sequence, that is, b, € &,_1. Put

n n
Z 2 2

Sn = bjé‘j, s, = E bj,
Jj=1 Jj=1

(3.50)
M=) ¢j B(t) = by, T = F-

Then M = {M,;, %, t >0} € 4%,

[#]
X;=B-M;=) bjej =8|
=1

J

and the sequence of conditional distributions of £, with respect to &,_1{N;}
is

0
N:(A) = Z 1[t=n]P(8n €A| Fn)

n=1

Therefore, the discrete-time version of (3.7) is as follows:

THEOREM 3.24. Let {&,} be a martingale difference sequence with (3.49),
{b,} be a predictable sequence, S, s2 be defined by (3.50) and

 — R H 2 __ o . 2+6
Dl = [(1). }ll}olosn —_ OO}, 1= [w° Sl-’:p En—l[gn ] < Oo}.
Then
b2 LLg s? Sxl
D.E.12n n — o(n=2/(2+9) (100 1)1 ] c {limsu < 1} a.s.
1 1{ 2 ( (logn)™) nco” V22 LLgsZ
In particular,
2 2
P(D;Eg{b_n% — o(n~%/®+9)(log n)-l)}) ~1
*“n
Then
(3.51) lim sup Sl a.s.

- =1
n—>00 ‘/28% LLg S?L

Equation (3.51) is just the conclusion of Theorem 2 in Zhang (1992). The
discrete versions of the other conclusions (3.8)—(3.10) are similar.

THEOREM 3.54. Let {,} be a martingale difference sequence with (3.49),
" let:{b,} be a predictable sequence, S, s> be defined by (3.50) and

9= {w: {P(en €| Zn_1)} <N, fx2N(dx) < oo}.
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Then:
@{) For vy < 1,

DiEy{nb? = O(s2LLg" s%)} C {limsupﬂ— < 1} a.s.

n—00 ‘/2S%LLgS% -

(ii) For y>1land B > v,

D} Ej{nb% = O(s% LLg" s2)} c Ihm S _0}

"o /282 LLgP 52

For an i.i.d. sequence {¢,} and deterministic {4, }, Chow and Teicher (1978)
and Teicher (1979) first obtained some of the above results. Here we extended
these results to the case of stochastic integrals.

Note that for the discrete-time case,

[t]
B; = by, (X)e = Z b.
k=1

Thus assumption (3.39),

. <X>log<X>>
B _O( LLg(X) )’

is always satisfied and the “global” version of (3.40) improves Corollary 2 in Lai
and Wei (1982) slightly, because from Lemma 3.1, {N;} < N with [ x?dN < oo
is a less restrictive hypothesis than sup, [ *2*® dN; < oo, and the conclusion

S, = O(y/s? log s2) is strengthened.

THEOREM 3.84. Let {&,} be a martingale difference sequence satisfying
(3.49), {b,} be a predictable sequence and S,, s> be defined by (3.50). Then:
For y € (0,1),

Dy Ey{nd; = O(slog” s2)} C [hm =0} a.s for ye(0,1)

n—»oo /82 log S2

D\ E; lhm } a.s.

t—>00 /s2 log 82

4. Some examples. In this section we will give some examples which use
the asymptotic behavior of martingales to get the convergence rates of some
estimators in the statistics of stochastic processes.

The next two examples are borrowed from Zheng (1993) and Fang (1991),
respectively.
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EXAMPLE 4.1 [Zheng (1993)]. Consider the AR(1) model
yn=Byn-—1+6‘m n = 1, y0=0’
where {&,} is a martingale difference sequence such that

En_1[e2] =0? > 0, supE,_1[e2]1 <00 as.
n

Then the least squares estimator B of Bis
= = e
I y?-l

= L)1 Yj-18j
Bn=Bn-p="20

’

n 2 ‘
Jj=1 y Jj~1
Note that {X, = ¥}, yj-16;} € #}, and Theorems 3.5q and 3.84 are appli-
cable to it. For the asymptotic behavior of B it suffices to determine the rate
of increase of ¥_7_; 2.

If |B|] < 1, it may be proved that

n
0<liml

2. 9 .
n—soco n ly-’— ]_—Bz’

j=
“hence, applying Theorem 3.24, (3.7), or Theorem 3.54 (i) yields

l Z;=l yj—lsjl

4.1) lim sup = ; =1 as,

noee \/2 27;1 y? LLg(Z;; yf)
Ty

(4.2) . limsup | ——2—~1—|B,-Bl=1 as.
n—o00 J 2LLg( ‘7:11 yf)

and

. n A
4.3) hﬂil:p m [Brn — Bl <00 a.s.

If | B| = 1, then, borrowing a result in Donsker and Varadhan (1977), we have

n
lim inf Lign Z y? > 0;

hence, (4.1) and (4.2) hold too and
. no oA ~
(4.4) hffl sup mlﬂn - Bl < o0.

If |8] > 1, it may be proved that lim,_, ., B2 "_1 ¥% exists and

n
0 < lim [)"Z”Zﬁ < o0.
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Hence from Theorem 3.8, (3.39), we have
lim | 31 ¥i-185 _
" STt R eg (S v2)

and

(4.5) lim

In fact, (4.2) gives the exact random convergence rate of B, for |B] < 1 and
(4.3)-(4.5) give the convergence order for 8, in terms of n.

EXAMPLE 4.2 [Fang (1991)]. Let X = {X{, ¢ > 0} be a Poisson process with
A: =E[X,] = tP*1/(p+1), where p is a parameter. Based on the observation
X = {X;, 0 <t < T}, the maximum likelihood estimator p(T') of p is the
unique solution of the equation

T T
/Ologtht——/ t?Dlogtdt = 0.
0

By direct calculation, we can prove
lim p(T)=p a.s.,
T—o00

_ Jo logtd (X — Ay)

(T)-p

ST trlog? ¢ dt
where ar ~ by means
. a
lim L =1 a.s
T—o0 by

For the stochastic integral fOT logtd(X;— A;) we can use Theorem 3.2 or The-
orem 3.5 to establish its convergence rate. Since

. T
([0 logtd(X,-At)> =/0 log? ¢ dA; ~ Aplog? T,
T

hence the integrand B(¢) = logt satisfies the assumptions of Theorem 3.2,
(3.37), and Theorem 3.5, (3.22), and therefore

T
1 _
lim sup |f° ogtd(X: At)l
7o [2Ar(log? T) LLg T

. ATlong N
—_— — =1 .S.
hrTn_i}p‘/ SLigT |B(T) — pl a.s

=1 a.s.

.and
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EXAMPLE 4.3. Let X = {X;, t > 0} be a Gamma process; that is, X be a
process with independent increments and

E[lexp(iuX;)] = exp{t/(;oo(ei”" - l)v(dx)},

where
v(dx) = ge"’x dx, x>0, p,9>0.
Based on the observation {X;, 0 < ¢ < 1}, take the following p. as an esti-
mator of p:
. _ N(e)
" logel’
where
N(8)=#{0_<_ t< 1: AXt=Xt—Xt_ > 6'}.

Basawa and Brockwell (1978) proved that p., — p in probability as ¢ | 0

and p, — p is asymptotically Gaussian distributed. Now we will give the a.s.

convergence rate of p,. Let u be the jump measure of X. Then u is a Poisson
.random measure and

E[u([0,s] x B)] = sv(B) V Borel sets B,
N(E) = /'L([O’ 1] S [8’ OO)).

Note that
1 p 1
b p— - _ 1,
La log &1 N(s) log &1 [s x
1 1 poo D ] — e
_ ) dx.
log &1 /(; [a dlw=v) log™le /s x *
Write '

1 poo
Y, = / Al —v).
0 J1/s

Since u is a Poisson random measure, Y = {Y;,s > 0} € & lzoc with

1 poo [+ e—z?x
(Y)s=[ [ dV=p/ dx ~ plegs ass— oo.
0 Ji/s 1/s X

Now applying Theorem 3.2, (3.7), or Theorem 3.5, (3.22), we have

lim su; log &1 |pe — pl=1 as
NPy 9pLlgloget) Lo~ PIT ¢ &%



ASYMPTOTIC MARTINGALE BEHAVIOR 585

Acknowledgment. I am grateful to the referees for a careful reading of
the first version of this paper.

REFERENCES

BASAWA, 1. V. and BROCKWELL, P. J. (1978). Inference for gamma and stable processes. Biometrika
65 129-133.

CHOW, Y. S. and TEICHER, H. (1978). Probability Theory. Springer, New York.

DONSKER, M. D. and VARADHAN, S. R. S. (1977). On law of the iterated logarithm of local times.
Comm. Pure Appl. Math. 30 705-753.

FaNG, X. Z. (1994). The law of the iterated logarithm of maximum likelihood estimators for
Weibull processes. Chinese J. Appl. Probab. Statist. 10 314-319 (in Chinese).

FISHER, E. (1986). An upper class law of the iterated logarithm for supermartingales. Sankhya
Ser. A 48 267-272.

HE, S. W., WANG, J. G. and YAN, J. A. (1992). Semimartingale Theorems and Stochastic Calculus.
CRC Press, Boca Raton, FL.

JACOD, J. and SHIRYAEV, A. N. (1987). Limit Theorems for Stochastic Processes. Springer, Berlin.

Lai, T. L. and WEL C. Z. (1982). Least square estimates in stochastic regression models with
applications to identification and control of dynamic systems. Ann. Statist. 10 154—
166.

LEPINGLE, D. (1976). Sur la Comportement Asymptotique des Martingales Locales. Lecture Notes
in Math. 649 148-161. Springer, Berlin.

SHORACK, G. R. and WELLNER, J. A. (1986). Empirical Processes with Applications to Statistics.
Wiley, New York.

Stout, W. F. (1970). A martingale analogue of Kolmogorov’s law of the iterated logarithm. Z.

. Wahrsch. Verw. Gebiete 15 279-290.

TEICHER, H. (1979). Generalized exponential bounds, iterated logarithm and strong laws. Z.
Wahrsch. Verw. Gebiete 26 87-94.

WANG, J. G. (1993). A law of the iterated logarithm for the stochastic integrals. Stochastic Process
Appl. 47 215-228.

XU, Y. (1990). The law of iterated logarithm for locally square integrable martingales. Chinese oJ.
Appl. Probab. Statist. 6 290-301 (in Chinese).

ZHANG, H. M. (1992). A log log law for unstable ARMA models with applications to time series
analysis. J. Multivariate Anal. 40 173-204.

ZHENG, M. (1993). On Chung’s law of the iterated logarithm for continuous parameter processes
and some problems in the statistics of stochastic processes. Doctoral dissertation, Fu-
dan Univ., Shanghai.

INSTITUTE OF APPLIED MATHEMATICS
EAST CHINA UNIVERSITY OF

SCIENCE AND TECHNOLOGY
SHANGHAI, 200237
CHINA



