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SYMMETRIC TWO-PARTICLE EXCLUSION-EATING
PROCESSES!

By XwujiaN Liu

Jackson State University

We consider infinite particle systems on a countable set S with
two-particle exclusion-eating motion determined by a symmetric transi-
tion function p(x, y). This is, in a certain sense, a mixture of the exclusion
process and the voter model. We discuss the dual process of this process
and use the dual process to give a description of the set of invariant
measures and to prove an ergodic theorem.

1. Introduction. The exclusion process was introduced by Spitzer (1970).
Let p(x, y) be the transition function for a Markov chain on a countable set
S. There is at most one particle per site. That is, the set of configurations is
X, = {0,1)5. Each particle waits an exponential time with parameter 1 and
then attempts a transition to another site in S chosen according to the
probability p(x, y). It makes the transition if that site is vacant, while if it is
occupied, the particle remains where it was. A series of papers with rather
complete results have been written on exclusion processes in the past two
decades [see Chapter 8 of Liggett (1985); also see Saada (1987), Andjel,
Bramson and Liggett (1988), Kipnis, Olla and Varadhan (1989)].

Motivated by the two-particle contact process of Durrett and Swindle
(1991) and the cyclic particle systems of Bramson and Griffeath (1989), we
consider two-particle motion with exclusion-eating interaction. Let X =
{0,1,2}5 be the set of configurations. Each site of S may be occupied by a
particle, either type 1 or type 2, or be vacant. Each particle waits an
exponential time with parameter 1 and then attempts a transition to another
site in S chosen according to the probability p(x, y). It makes the transition
if that site is vacant. No transition is made if that site is occupied by a
particle of the same type. When a type 2 particle attempts a move to a site
occupied by a type 1 particle, the type 2 particle eats the type 1 particle, that
is, both sites become occupied by type 2 particles. A type 1 particle eats a type
2 particle in a similar manner.

The generator of the process is the closure of the operator:

Qf(n)= X p(x9)[f(n._,) - ()],

n(x)#0
(1.1) ()% n(y)

f depends on finitely many sites,
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1440 X. LIU

where 7, _, , is defined as

n(z), when z # x, y,
Mo y(2) = n(x), when z =y,
[2n(y)] A n(x), when z =x.

Note that the last expression above means 7, _, ,(x) = n(y) if 7(y) = 0 and
Mo (%) = n(x) if n(y) # 0.

When there are no 1’s or no 2’s, this is the exclusion process, whereas when
there are no 0’s, it is equivalent to the voter model.

Throughout this paper, we assume that p(x, y) = p(y, x) and that p(x, y)
is irreducible. The invariant measures of the symmetric two-particle exclu-
sion-eating process are closely related to the bounded harmonic functions for

p(x, y). Let

x = {a: S — [0,1] such that ) p(x,y)a(y) = a(x) for all x}
y

Let X,(¢),i =1,...,n, be independent copies of the continuous time Markov
chain with transition probabilities

tn

(12) Pz ) =et L —p™(x,y),
n=0 T

where p™(x,y) are the n-step transition probabilities associated with
p(x, y). Let

& = {there exists ¢, 1 such that X,(¢,) = X,(¢,)}-

For o €7, a(X,(t)) is a bounded martingale, so lim, ., a(X,(¢)) exists with
probability 1. Now let

7' ={(ay, ay) EFXZ ay(x) > ay(x) for all x}
and
A* = {(al, ay) €7
th_)mx ay(X,(2))[ar(X,(2)) — ay(Xi(2))] = 0as.on g}

Let
T,={¥e8" x;, #xforall1 <i+j<n}.

¥

Define a function g on U,_, S" as follows: if ¥ € S”, then

g(x%) = P¥[(Xy(t),..., X,(¢)) & T, for some ¢ > 0].
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For (aq, ay) €#', define v, to be the product measure on X with

1, Qg

marginals
ay(x), when i = 2,
V“l,az{n: n(x) = l} = al(x) - az(x), when i =1,
1 - ay(x), when i = 0.

In other words,
Ve ad (%) # 0} = ay(x), v, o {n(x) =2} = ay(x).

Let .# be the set of invariant measures of the process and let .%, be the set of
its extreme points. We now state the main results of this paper.

THEOREM 1. (a) For (ay, ay) €7, lim, . v, ,,S() = p, ., exists and
isin S
(0) 7, = {1y, o, (a1, @)) €77}

When S = Z% and p(x, y) = p(0, y — x), it is known [see Corollary 1.7.2 of
Liggett (1985)] that .# consists of constants. If g = 1, then P(&) = 1, 7™ =
{(2,0),(a,a),0 <a<1land 7 ={y, ¢,¥, 0<a<1)Ifg#1, then P(&)
=0 and Z* =7 = {(ay, ay): 0 < ay < a; < 1}. Let % be the set of transla-
tion invariant measures on X and let ., be the set of its extreme points.

THEOREM 2. Suppose S = Z¢, p(x,y) =p(0,y — x) and p €.%,. Let a; =
wn(x) # 0} and ay, = p{n(x) = 2}.

(a) Ifg = 1, then

. 3 ay
LmuS(t) = 1= — v 0% — V. o
o 1 al 1, ©1

t—>
(b) If g # 1, then
lim uS(t) = Mo, -
t—

It is known that the symmetric exclusion process and the voter model have
dual processes which are exclusion process and coalescing random walk,
respectively [Liggett (1985)]. So it is natural to ask whether the two-particle
exclusion-eating process has a dual process. Duality theory for this process is
developed in Section 2. It turns out that its dual process can be represented
by a coupling of an exclusion process and a coalescing random walk. This
makes it possible to employ the techniques for voter models and for exclusion
processes for the two-particle exclusion-eating process. However, unlike the
voter model and the exclusion process, the two-particle exclusion-eating
process is not a monotone process. It also loses certain monotonicity proper-
ties possessed by the voter model or the exclusion process [see Lemma V.1.32
and Proposition VIII.1.7 of Liggett (1985)]. The proofs of the main theorems
will be given in Section 4.
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2. Duality. Let
Y = { A: A is a finite subset of S}.

ForneXandi=0,1,2, let
() = {

For A, B €Y, define a duality function
H(n, A, B) = [1.m(x) [T [1-on(2)].
yE

x€EA

1, whenn(x) =i,
0, otherwise.

For BEY, let B,,=B when x,y €B or x,y € B; B,, = B\ {x} U {y}
when x € B, y € B; B,, = B\ {y} U {x} when y € B, x ¢ B.

LemMma 2.1. IfA,B € Yand A C B, then

‘QH("A’B)('U)
= X p(x,9)[H(n, A\{(x} U {3}, B.,) - H(n, A, B)]
(2.2) yes
+ Z p(x,y)[H("ﬂ,A,Bxy)—H(H,A,B)]~
x€B\A
y¢B

ProOOF. It is convenient to use the notation 7,, of the exclusion process
and 7, of the spin-flip process. Let 7,,(2) = 7(z), when z #x, y, 7,,(x) =
n(y) and 7,,(y) = n(x); n,(2) = 7(2), when z # x and 7n,(x) = [3 — n(x)] X
[1 —¢n(x)]. By (1.1),

QH(’),A,B)-_— Z P(x,y)[H("?xy,A,B)—H(’O’A,B)]

n(x)#0
7(y)=0

+ Y p(x,y)[H(n,A,B) —H(n, A, B)]
n(xIn(y)=2
=0,H(n,A,B) + Q,H(n, A, B).
Then
Q,H(n, A, B)

=3 X p(x)[H(n,, A, B) - H(n, A, B)]
n(x)n(y)=0

= X p(x9)[H(n A\{x} U{5},B,,) —H(n, A, B)]

(2.3) ;gg

' n(xIn(y)=0

+ Z p(x’y)[H(n,A,Bxy)_H(n’A’B)],
x€B\A
y&B
n(x)n(y)=0
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whereas
‘QZH(W’A’B) = Z P(x,y)[H(nx,A,B) —H(n,A,B)]
n(xgcne(?)=2
= Y p(x9)H(m,A B)- ¥ p(x,y)H(n A,B)
ngcxe)gl nfxe)éz
n(y)=2 n(y)=1
= ¥ p(x,y)H(n, A\ {x} U {5}, B, )im(x)
<8
= X p(xy)[H(m A\{x} U {y},B,,)[1 —2n(x)]
n(xfne(?)aﬁo

—H(n, A, B)[1 —yn(»)]]
Y p(x,9)[H(n A\{x} U {5}, B,,) —H(n, A, B)].

x€A
n(xm(y)#0

It is easy to see that

(2.5) Y p(x,y)[H(n A B,)-H(n, A B)| =0

x€B\A

yé&B

n(x)n(y)+#0
and
26 ¥ plx,y)[H(n, A\{x} U {y},B,,) — H(n, A, B)|=0.

*<%
n(x)n(y)=0

By (2.3), (2.4), (2.5) and (2.6), we have (2.2). O

Let (A,, B,) be the finite process with A, C B, €Y and the following
transition matrix: (A, B) — (A, B,,) at rate p(x,y) if x €B\A, y & B;
(A, B) » (A\{x} U {y}, B,,) at rate p(x, y) if x €A, y €S. Note that its

first and second marginals are coalescing random walks and the finite
exclusion process, respectively, and A, C B, for all ¢ > 0.

THEOREM 2.7. Ifn€ X, A,B €Y and A C B, then
P'[m,=20nA,n,#00onB] =P*B[n=20nA,,n+0onB,]

forall t > 0.
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ProOF. Let
u,(t,A,B) =P"[n,=2o0n A, n, # Oon B] =S(t)H(-, A, B)(n).
By (2.2),

—u,(t, A, B) = S(t) QH(", A, B)()
= ZAp(x,y)[S(t)H(',A\{x} U {5}, B,,)(n)
TS

~S(¢)H(:, A, B)(n)]

+ L p(x,9)[S()H(-, A, B,,)(n)
x€B\A

y€B
—S(¢)H(, A, B)(n)]
= ¥ p(x,9)[u,(t, A\ {2} U {5}, B,,) — u,(¢, A, B)]

x€A
yeS

+ Y p(x, y)[un(t, A,B,,) —u,(t, A, B)]
xGBgA
yé&

The unique solution to these differential equations with initial condition
H(n,A, B) is

E4BH(7m,A,,B,)=P*B8[n=20n A,,n# 0on B,].
This proves the theorem. O

For any probability measure on X, define
i(A,B) = [H(n,A,B)u(dn) = p{n:n=20n A, 7 +0on B)
for A, B € Y. Then we have the following corollary.

COROLLARY 2.8. For any probability measure u on X, let p, = uS(t). Then
p.(A,B) =E*%u(A,, B,)
forall A,B€Yand A CB.

3. Some results on finite exclusion processes. Let B () and B,(t) be
two finite simple exclusion processes with B;(0) C B,(0). By basic coupling,
they can be constructed such that By(¢) C B,(¢) for all ¢ > 0. We denote such
a pair of finite simple exclusion processes by (B(t), By(t)).

' Assume m < n. Let

S, .= {(9?,5’) €8™ X S™: {xy,..., %y} ;{yl,...,yn}}
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and
T, .= {(3?,5’) eT, XT,:{xq,...,x,} C {yl,...,yn}}.
For (x,%) € S,, ,, define

fm,n(g_c)’y) = /l({xlw-',xm},{yla“"yn})
and

m n
hm,n(g_c)’ &') = l—Il [az(xi)/al(xi)] l_Ilal(yj)a
i= j=
where u is a probability measure on X and (a;, a;) €7'. For y € S, define

r’n,n(y) =fm,n((yl’""ym)’(yla'“’.)"n))
and
h/m,n(y) = hm,n((yl"“’ym)’(yl""’yn))'

Let V,, ,(¢) be the semigroup of (B,(¢), By(¢)) on T, , and let U,(¢) be the
semigroup of independent walks (X,(¢),..., X,(¢)) on S™.

LEMMA 3.1. Assume g # 1.

(@) The limit lim, .V, (h, ,=h, ,existson T, , forallm <n.
_ ) lim, . U,®)f;, , =k, , on S" is equivalent to lim, .V, ()fy , =
R nonT, .

ProoF. (a) By reordering if necessary, we need only to prove the limit
exists on

R, .= {(3?, Y)ET, %, =y;,i= 1,...,m}.
Assume (%,y) € R, ,. Take By(0) = {x,,...,x,}, B,(0) = {x,,...,x,} and
X0 =x,i=1,...,n. Let
({Xi(8)s- s X()}, (Xa(2), -, X,(8))),
and (B,(2), B,(¢)) move together before (X,(¢),..., X, (#)) hits S\ 7T,, and
then let them move independently. We have
Vi n(8) (%, ) = Un(8) o n(3)] < £0(5)

on R where g, is the restriction of g to S". Since U ()K',, , = k', ,, we

have

m,n’

Vi n(E) P, (2, 5) = Vi (Ve (2, 9)]
<[V (8 P (%, 5) = U)Wy (9]
UL B () = V() P, o %, 7))
<2g,(%)



1446 X. LIU

on R, . Take t},¢t; T such that

F, .= hm Von(8e) P
and

F;){L,n = gim Vm n(t )hm n

exist on 7, ,. By Lemma V.1.26 of Liggett (1985), V,, ()F,, , = F, , and
Vo (OF, , =F, . Thus
|7, ~ Fyo(2.9)] < 22.(5)
on R, .. Notice that V (t)gn(i) = V ' (t)g,(¥), when y € T,, where V,(¢) is
the semlgroup of B2(t) on T,. By Lemma VIIIL.1.23 of nggett (1985)
hmV A(D)eg(y)=0, YeET,

Hence F,, , = F;, , on R, . This proves (a).

Part (b) can be proved usmg the same technique. For detail see the proof of
Theorem VIII.1.24 of Liggett (1985). O

LEMMA 3.2. Suppose that g # 1. Let (ay, ay) €7’ and let u be a proba-
bility measure on X. Then

lim E4 2| a(By(t), By(t)) — T1 ag(x) I  a(y)|=0

= xeB(t) yEBy(tI\B ()
forall AC B, A,B €Y, if and only if
(3-3) lim Yp(x,u) (D, {u}) = ay(x),
(34) lim ¥ p,(x, u)i({u}, (1)) = au(x),
(3.5) lim Y p(x,u) p,(%,0) M(D,{u,v}) = af(x)
and ,
(3.6) Lim Zpt(x u)p,(x,v) a({u,v},{u,v}) = af(x).

PrOOF. The first statement of the lemma is equivalent to
hmV n(t)fm n = hm n

on T, , for each m <n. On the other hand, conditions (3.3)-(3.6) together
are equivalent to the assertion that

(3.7) lim Y p,(x,5)¢n(y) = en(x)
Yy

and

(38) lim 3 p(x, y)ym(y) = a(x),
y
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in probability relative to u for each x € S, where ¢n =1 — (n, and ym = 7.
It follows that they are in turn equivalent to ‘

1im U,(8) fr = Fo o
on S™ for each n > 1. Hence the lemma follows from Lemma 3.1(b). O

4. Ergodic theorem. In this section, we prove the main theorems.
Theorem 1 is implied by Theorem 4.3, Lemma 4.8 and Theorem 4.19 [note
that when g = 1, Theorem 1(a) follows from Corollary 2.8, Lemma 4.1 and
Theorem VIII.1.12 in Liggett (1985)]. Theorem 2 is given by Theorem 4.5 and
Theorem 4.28. In this section, A,, A}, A? denote coalescing random walks,
while B,, B|(¢), B,(t) denote simple exclusion processes. We use extensive
coupling throughout the section. For two processes X, and Y, in Y, the pair
(X,,Y,) means that they are coupled in such a way that X, CY,.

Let ¢ and ¢ be defined as those of (3.7) and (3.8). Then

n = ¢n + y¥n.
Let u¢~! be the measure on X defined by
pe ) = ui{n: ¢n € };
wy~ ! is defined similarly.
We first consider the case g = 1.

LEMMA 4.1. Suppose g = 1. Then for any probability measure yu on X,
(4.2) lim uS(#){n(x) = 2,n(y) =1} =0. -

PROOF. Let x # y. Take A} = {x} and A% = B, = {x, y}. Construct (A}, B,)
and (A2, B,) such that A} c A? for all ¢ > 0. It is easy to see that

E@ = ( A}, B,) — E® & 4( A%, B,) < P(1>t),
where 7 is the first time that Al = A%, Hence
lim [ E® (= 9( AL, B,) — E®9-=( A2, B,)] = 0

t—

since g = 1. By Corollary 2.8, we have (4.2). O

Let
X' = {n(x) # 2, for all x or n(x) # 1 forall x}.

By Lemma 4.1, if u €. and g = 1, then uw(X’) = 1. On the other hand, when
restricted to the set X', the two-particle exclusion-eating process is the
simple exclusion process. By the result of the set of the invariant measures of
the simple exclusion process [see Theorem VIII.1.12 of Liggett (1985)] and by
the fact that u{n # 2} =1 or u{n # 1} = 1 if u €7, we have the following
theorem.
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THEOREM 4.3. Suppose g = 1. Then

L}Ie = {Va,O’Va,a’O fa=x< 1}'

LEMMA 4.4. Let S = Z¢, p(x,y) = p(0,y — x) and u €. Then
wS(t){n(x) =i} = u{n(x) =i}, i=0,1,2.

Proor. Follows from translation invariance and Corollary 2.8 by taking
A =, B ={x} and by taking A = B = {x}. O

THEOREM 4.5. Suppose that g =1, S = Z% and p(x, y) = p(0, y — x). For
€%, let a; = u{n(0) # 0} > 0 and a, = u{n(0) = 2}. Then

. Qg Qg
(4.6) lm uS(t) = — v, o T {1 — — |V 0-
t— o a; ’

Proor. Take a sequence ¢, such that
lim uS(¢t,) = v

n—©

exists. Then v €.%. We need to prove v equals the right side of (4.6). Notice
that ¢m, is the simple exclusion process and that u¢~' is ergodic since u is
ergodic. Applying the ergodic theorem of the exclusion process [see Theorem
VIII.1.47 of Liggett (1985)] and using the fact that ¢! commutes with S(¢),
we see that

lim udp 'S(t,) = v ™' =, ,-

n—o
On the other hand, by Lemma 4.1, we have »{X'} = 1. Let v,(*) = v(‘In # 2),
v(-) = v(:|n # 1) and ¢ = v(n # 2). Then we have v, v, €.7,

vi(n#2)=1, vo(n#1) =1
and
(4.7) v=cvy + (1 -c)v,.
Hence

Val,o = V¢_1 = chd)_l + (1 - C)Vzd)_l.
Assume 0 < ¢ < 1. Since v, ( €%, and v,¢ ', v,y "' €, we have
¢t =ved Tt =, .

Thus, .
’ ! Vl = Val,o and V2 = Val»al.

By Lemma 4.4 and (4.7), we have
cvi{n(x) =1} = v{n(x) =1} = &y — a,.
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Hence,

This proves v equals the right side of (4.6). O
Now we turn to the case g # 1.

LEmMMA 4.8. For any (aq, ay) €77,
}i_)lli Val,aZS(t) = #’al, a9

exists and is in 5.

ProoF. By Corollary 2.8, we need to prove
(4.9) limE4 By, (A, B,) existswhen ACB,A,BeY.
t—

Valaz

We use induction on |Al. When |A| < 1, (4,, B,) is a pair of simple exclusion

processes. By Corollary 2.8 and Lemma 3.1(a), the limit in (4.9) exists.

Suppose that the limit in (4.9) exists for |A| < m. Take an A with |A] = m.

Let 7 be the first time that | A| < m. Then, by the strong Markov property,
limE4%[3, (A, B,),7<|

t—>

(4.10)
= t]i_)n;EA,B[EA”B,,’)aI,QZ(A“ B,), 1< oo],
The limit in (4.10) exists by induction hypothesis, since |A,| < m on 7 < . On
the other hand, let (B,(¢), B,(t)) be the simple exclusion process constructed
on the same probability space as (A,, B,) in such a way that B,(0) = A,,
B,(0) = By, A, C B|(t), B, = By(t) and B,(¢) C B,(¢). We have By(t) = A, on
7= Then
imE42[7, .(A;,B,), 7=

t—>

lim B4 2[#,, o, (By(£), By()), 7= =]
t—
limEA’B[f/al,ag(Bl(t)’ B2(t))]

t—> o

— Lim E4 B[ BB By, (B\(t), By(t)), T <.

t—> o

(4.11)

By Lemma 3.1(a), (4.10) and (4.11), the limit in (4.9) exists for |A| = m. By
Lemma V.1.26 of Liggett (1985), lim, _,, », ,,S(¢) converges. Hence u, ., €
%, because we are dealing with a Feller process. O

. LEMMA 4.12. Assume g # 1. Let u be a probability measure on X. Sup-
pose that (a,, ay) €2 satisfies (3.3)—(3.6). Then

tliII; ,"LS(t) = Mal,az’

where u, ., is as defined in Lemma 4.8.
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PrROOF. By definition of u, ,, and Corollary 2.8, it suffices to show that,
for AABeY, ACB,

(413)  JmE?| A4, B) - Tl a(x) TT ()| =0

Let A = AO = BI(O) = {xl, ceey xm}, B = BO = B2(O) = {xl, ceey xn} With diS-
tinct x,,..., x, and m < n. Let 7 be the first time that | A,| < m. Let (A,, B,)
and (B,(t), B,(t)) move together before 7. Then, by Lemma 3.2,

LimE4 B[ 4(A,, B,), 7= ]

t— 00
= limEA’B[ a(By(t), By(t)), r= 00]
t—>
= lim E4 Bu(B,(t), By(t)) — lim E4 B[ iu(By(t), By(t)), 7 < =]
t—o t— oo
= }i_)I?OEA’BfL(Bl(t),BJt))
— E4B[ lim EB™ Bx(B,(t), By(t)), T<oo]
>
= limE4? l_[ ay(x) l—[ a(y)
to» xeB () y€By(t)\B ()
- A’B{“’“EBI‘”’B?‘” [1 a(x) TI () ,T<°°}
o x€ By(t) yeBy(t)\By(t)
= ImE4B| [] ay(x) l_[ a;(y), =00
t>® x€By(¢) yeBy(t)\B(?)
- limEA’B[ I1 (%) 11 al(y),1'=0°].
tox x€A, BN\A,
Hence
(4.14) tlimEA*B[ﬁ,(At,Bt) - Hax) IT al(y),7=°°]=0.
- x€A yEBN\A,

Now we prove (4.13) by induction on |Al. When |A| < 1, (4.13) follows from
Lemma 3.2. Assume that (4.13) is true for |A| < m. Take | A| = m. Then

}irriEA’B[ﬁ(At,Bt) 1‘[a2(x) H al(y)]

x€A, BA\A,

- limEA’B{EAT’Bf[[L(At,Bt)— IT ax(x) T1 al(y)],7'<0°}

tox xE€A, yeB\A,
+1imEA’B[ﬁ<At,Bt>' [T exx) T1 a1<y),f=w].
tox xEA, yEBN\A,

The first term is zero by the induction hypothesis since |A,| < m. The second
term is zero by (4.14). Hence (4.13) is true. O
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THEOREM 4.15. Suppose that (a,, ay) €#* and that p is a probability
measure on X. Then lim, . uS(t) = p, . if and only if (3.3)~(3.6) are true.

Proor. Sufficiency has been proved in Lemma 4.12. Now let lim, _, .. uS(¢)
= Mg, o, Then (3.3) and (3.4) follow from Corollary 2.8 applied to A = &,

B ={x} and to A = B = {x}. (3.5) follows from the fact that ¢n, is the simple
exclusion process, that lim, . u¢ 1S(t) = V0 and Theorem VIII.1.24 of
Liggett (1985). To prove (3.6), we use the same technique as that in the proof
of Theorem V.1.9 of Liggett (1985). Notice that lim, ,, uS(¢) = Koy, o, implies
(4.13) is true. Thus,

lim X9 4(A,, B,) - 3,

t—>x

Notice that when |A | = 1, (A,, B,) have the same distribution as the simple
exclusion processes. By Lemma 3.1(b),

lim E* Y[ a({X(t)},{X(¢),Y(2)})
(4.16)  t==
—ay(X(8))ay(Y())] =0, x,y€8,

where X(¢) and Y(¢) are independent walks with transition probability (1.2).
Let 77 = inf{t: X(¢) # Y(¢)} and 7, = inf{ > 7: X(¢) = Y(¢)}. By (4.16) and
strong Markov property,

lim E-[ A({X(1)}, {X(8), ¥(1)}) = an(X(8)) ar(¥(2)), 7y < =] = 0,
x,y €S.

(A, Bt)] =0.

1, @

Repeating this idea, we see that

Lim E= [ 4({X(2)}, {X(2), Y(£)}) — ap(X(8)) ay(¥(2)),&°] = 0.
So that, by (4.16),

lim 4] 5({X(1)), (X(£), ¥(£)}) — an(X (1)) a(¥(1)), &] = 0.

Since a({u, v}, {u, v) < au}, {u, v)), it follows that
limsup B[ A({X (1), Y(2)}, (X(2), ¥Y(£)}) — ap(X(£)) ar(¥(2)), €] < 0.

t—x

Since (a,, ay) €.7*, taking X,(¢) = X(¢) and X,(¢) = Y(¢) and noting that
az(X(t))[al(Y(t)) - az(Y(t))]

must converge since it is the product of two bounded martingales, we deduce

that .

lim a,( X(2))[ (Y (2)) — @5(Y(¢))] =0 a.s.on &,

t—> o R

> hence

limsup E*7[ a({X(t),Y(2)},{X(¢),Y(¢)})
(4.17) toeo
—ay(X(1)) ay(Y(2)),&] <0.
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By (4.13) and the strong Markov property, we have

lim EC &N B(A,,B,) — T] ey(x) T1 ai(y), 7 <»|[=0, x #y.
tox | x€A, YEB\A, |

Hence

lim E® = G(A, B, — T] as(x) T1 a(y),71=o|=0, x#y.

to xE€EA, YEBNA, ]
Let (A,, B,) and (X(¢), Y(¢)) move together before X(¢) = Y(¢). We have
lim E*2[ A({X(2), Y (1)}, (X(£), Y(2)}) — an(X(£)) ax(¥(1)), 71 = =]

= lim Bl (A, B) = TT ao(x) T an(9),m =] =0,
ke x*€A, YyEBN\A,
xXFYy.
By the strong Markov property using 7;, we have
tim [ A((X (1), Y(6)), (X (1), Y(9)))
—ay(X(t)) ay(Y(2)), 7, = =] =0, x,y €S.

Define 7;,, = inf{t > 7;: X(¢) # Y(®)}, 7, =inflt > 7/, : X(©) =Y}, i =
1,2,3,..., iteratively. Applying the strong Markov property with 7,, we see
that

m E*7[ a({X(2),Y(2)},{X(2),Y(2)})
(4.18) toe
—ay(X(2))ay(Y(2)),&°] =0
for x, y € S. Combining (4.17) and (4.18), we have
limsup B[ A({X(£), Y(£)}, (X(£), Y(£)}) ~ ap(X(£)) an(¥(£))] < 0.

t— o

On the other hand, we have
2
0 sf[zpt(x,ywn(y) — ay(x)| du
y

= Y p(x,u)px,0) b({u, v}, {u,v}) + af(x)

u,v

— 2ay(x) X (%, ) ({5}, {¥})--

y
. Thus, by (3.4), we have

limint ¥ p,(x, 1) p,(x,0) ({u, 0}, {u,0}) > ad(x).

This proves (3.6). O



TWO-PARTICLE EXCLUSION-EATING PROCESS 1453

THEOREM 4.19. Assume g # 1. Then
‘fe = {/’Lal,azz (al’ a2) E%*}

Proor. Take (ay, ay) €7*. By Lemma 4.8, u, , €. Let

(4.20) Moy, ay = Ay + (1 = A) g,
where 0 < A < 1 and u,, uy €7 Then
lim Y p,(%, y)én(y) = e(x) C
y
and

tlil?o 2o, (%, y)ym(y) = ay(x)
Y

in probability relative to w, ,, by Theorem 4.15 and by the equivalence
of conditions (3.3)~(3.6) and statements (3.7) and (3.8). By (4.20), the same
is true relative to u; and u,. By Theorem 4.15 again, we have u; = u, =
Koy, o, Hence w, , €.%. For the converse, take u €.%, and define a,(x) =
;u,{n(x) # 0} and az(x) w{n(x) = 2}. Then, (a;, ay) €#’. By Corollary 2.8,
we have (3.3) and (3.4). Conditions (3.5) and (3.6) can be verified using the
. same procedure as that of proving Lemma VIII.1.36 of Liggett (1985). Here
we give an outline of the proof of (3.6). Slmﬂar to (VIII.1.38) of Liggett (1985),
we have

(421) lim Y p(y,2)a({x, 2}, {x, 2}) = aa(x) @a(y)-

Let V(¢) be the semigroup of (A,, B, on T = {(X, %) € S2 X S2: {x,, x,} C
{y1, ¥2}, y1 #¥5). Let f,, and f; , be defined as those in Section 3. By a
natural coupling, we have

V($) foro(, ) = Un(D) foo(D)| <£0(5), €T
Let A be the limit of U,(#)f; , along any sequence of times which tend to .
Since u €.7, we have

(4.22) |f2,0(%, %) - h(2)| <£4(%), XeTy,
and U,(¢)h = h for all ¢t by Lemma V.1.26 of Liggett (1985). Therefore,
(4.23) L (%, 9)h(y,2) = h(x,2)

y

by Corollary I1.7.3 of Liggett (1985). Combining (4.21), (4.22), (4.23) and
(VIII.1.40) of Liggett (1985), we have (3.6). By Theorem 4.15,

k= /’Lﬂpaz'

Let X(¢) and Y(¢) be independent Markov chains with transition probability
(1.2). We wish to prove

(4.24) tlgg ay(X(8))[ay(X(t)) — ay(X(¢))] =0 as.on &.
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By (8.8)—(3.6) (which are equivalent to lim, ., U, f,, , = &), ,; see Section 3),
we have

tim £57[ 4({X(1)), (X(2), ¥(1)}) ~ a(X(1)) ay(¥(1))] = 0
and
tim B[ 4({X(£), Y(1)}, {X (), Y(1)}) = ep(X(1)) ax(¥(1))] = 0.
By the strong Markov property using {r,}, we have

(4.25) lim E* [ p({X(@0)}{X(@®), YD) — ax(X(#)ay(Y (), &1 =0

t—>x

and
lim =7 A({X(£), Y(2)}, {X(1), Y(1)})
(4.26) e
—ay(X(1)) ay(Y(1)), &] = 0.
On the other hand, by the invariance of u and coupling, we have
0 < a({x},{x,5}) — &({x, y},{x,5})
— EW@9(A,, B,) — E=M =0 A,, B,)
< P®(JA] = 2).
Passing to the limit as ¢ — o, this gives
0 < p({x},{x,9}) — &({x, 9}, {x,9}) <1-g(x,5).
Therefore,
tim [ A({X(6)}, {X(£), Y(2)})
(4.27) e
—({X(t),Y(t)},{X(?),Y(¢)})] =0 as.on&.
Combining (4.25), (4.26) and (4.27), we have
lim B *{ay(X(1) [ax( ¥ (1)) = ax(¥(1))], &) = 0

Since ay(X(¢)) and «,(Y(2)), i = 1,2, are bounded martingales, by conver-
gence theorem of martingales, with probability 1, the limit

lim ay(X(2)) [ ey(Y(2)) = ea(Y(2))]

exists. This limit equals the left side of (4.24) almost surely on &. Hence
(4.24) is true. O

" When S =29 p(x,y)=p0,y —x) and g # 1, it is known that [see
Liggett (1985)] # consists of constants and P(&) = 0. Hence,

Z' ={(a;,2,):0 <y <a; <1}
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THEOREM 4.28. Suppose that S = Z%, p(x,y) =p(0,y —x), g # 1 and
wES. Let ay = p{n(x) # 0} and ay, = p{n(x) = 2}. Then

tll)n; /’Ls(t) = I’Lal,az‘

Proor. Follows from Theorem 4.15, Corollary I1.8.20 of Liggett (1985) and
the note following that corollary. O
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