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CENTRAL LIMIT THEOREM IN NEGATIVE CURVATURE

By FRrRANGOIS LEDRAPPIER

Ecole Polytechnique

We prove a central limit theorem for the distance of the Brownian
point on the universal cover of a compact negatively curved Riemannian
manifold. The technical point is a contraction property for the leafwise
Brownian motion along the stable foliation.

Let M be a closed Riemannian manifold with negative sectional curvature,
and consider the Brownian motion (&,),., on the universal cover M of M.
Natural geometric quantities have a linear asymptotic growth along the
trajectories. For instance, there are positive numbers ! and A such that for
a.e @

lim —d(x @,) =1 (see[8]),

t—o +x

lim — — log G(x,a,) =h (see[13]),
t— +o
where d is the distance on M and G is the Green function on M. Geometri-
cally these numbers give some information about the harmonic measure on
the boundary of M (see [13] and [14]). In this paper we are interested in the
following central limit theorem for the same processes.

THEOREM 1. There are positive numbers o, and o such that the distribu-
tion of the variables

1
(m¢z[d(x,ag — ]

and

1
log G(x, @,) + th
—[Iog G(x,3,) + 0t
are asymptotically close to the normal distribution when t goes to infinity.

In a more explicit form, the statement of Theorem 1 is that there exists a
positive number o, such that for any real r, any x in M,

lim P,{(d(x, &,) - &) < ooV} = ‘/_j exp( u)du,
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1220 F. LEDRAPPIER

where P, is the probability measure on the space C (R, M) of continuous
paths (®,),,, with @, =x which describes the Brownian motion on M
starting from x. There is an analogous statement for P {(log G(x, ®,) + th) <
ot} 5

In the case when M is a symmetric space of negative curvature, direct
computations yield of = 2 and of = 2h. One of these relations has a geo-
metric meaning.

THEOREM 2. Consider the number o, obtained in Theorem 1. Then ol >
2h, with equality if and only if the manifold M is asymptotically harmonic.

Recall that we say that M is asymptotically harmonic if the mean curva-
ture of the horospheres in M is constant (see [5] for the properties of
asymptotically harmonic manifolds).

The main tool in the proof of Theorems 1 and 2 is to introduce leafwise
Brownian motion on the stable foliation associated with geodesic flow. We can
replace our processes by semi-Markovian processes driven by this leafwise
Brownian motion, and the main point is to show that there is enough
contraction in this process. Following [4], [9] and [19], we show that there is
contraction in spaces of Holder continuous functions of sufficiently small
exponent (Theorem 3). Our general result below is a central limit theorem for
leafwise 1-forms evaluated on leafwise Brownian paths when the codifferen-
tial of the form is Holder continuous (see Section 5 for a more precise
statement).

This formulation was introduced by Le Jan [18] and will be investigated
further in a companion paper. Here we follow the ideas and the work of
Guivarc’h [8].

1. Brownian motion along the stable foliation. Let M be a closed
Riemannian manifold with negative sectional curvature, SM be the unit
tangent bundle to M, (¢,),.r be the geodesic flow on SM and W*(v) be the
stable manifold of the element v in SM:

W (v) = {w: 35 € Rso that lim d(¢,,,v, buw) = o}.

The sets W* form a continous foliation of SM, and a neighborhood of v in
W*(v) is canonically diffeomorphic to a neighborhood in M of the footpoint of
v. Fix v and the leaf W*(v). This family of diffeomorphisms defines a metric
g, on the leaf W*(v). The associated Laplacian A, is defined on C? functions
on the leaf. We still denote by A, the operator on functions on SM given by A,
applied to the restriction of the function to the ambient leaf whenever it
makes sense. We shall consider the leafwise Brownian motion (w,), < g,, that
is, the Markov process with continuous trajectories on SM and with genera-
tor A, (see [6]).

We shall write probability transitions of the leafwise Brownian motion as
follows. Recall that geodesics in M are said to be equivalent if they remain a
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bounded distance apart and that the space of equivalent classes of unit-speed
geodesics is the boundary dM. For each point x in M and each point £ in
M, there is a unique unit-speed geodesic starting from x in the class of §.
We use this property to identify the unit sphere at x with the sphere at
infinity M. Then if (x, ¢) is the lift of some v in SM, the trajectories of w,
starting from v can be obtained by projecting on SM the trajectories
(@, £),cn,, Where (@,),cg, is the Brownian motion on M starting at x.
Choose a fundamental domain M, and identify as above SM with M, X dM.
The transition densities of w, are given by

q,((x,€),d(y,m) = ;[pt(x,y)ﬂf’y(v) dy 8,-1,(m)],

where p,(x, y) is the heat kernel on M, §, is the Dirac measure at { and for
all ¢, x, y, u®? is the probability measure on the deck transformation group
I' such that

Pi(x,vy) =p(x, y) i ()

defines the heat kernel p,(x,) on M.
Let f be a continuous function on SM. We write @,f for the continuous
function on SM defined by

Q. f(x,€) =E, ¢ f(w)
= [f(y;ma((x, £),d(y,m)

~ [ pdx) dy[Zuf’y(v)f(M"f) -
M, T

By [6] (see also [15]), there is a unique Q-invariant probability measure w on
SM. That is, there is a unique probability measure » on satisfying, for all
continuous f, all positive ¢,

[fdw = thfdw.

We shall use a slightly stronger result. Define on M, X OM X oM the
probability transitions q?((x, &, &), d(y, 11, 1)) by

qZ((x, €1, 6),d(y,m,me)) = Z;, [ P2, Y) 87 (v) Ay 8,16 (m) 8,1, (M2)]

and the corresponding operator Q? on continuous functions on M, X oM X
oM

Qtzf(x, £,&) = ff(y, M 772)%2((35, fl; £),d(y,m, 772))'

PROPOSITION 1. There is a unique probability measure w® on M, X oM x
oM satisfying

J@ifde? = [fdo’
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for all continuous functions f and all positive t. The measure w? is given by
Jfdo? = [ f(x,¢,¢)do(x, ¢).
SM

PROOF. Let u be a @2 invariant probability measure and f be a continu-

ous function on M, X dM X dM.

We write m, = dx/vol M|, for the probability invariant under the Brown-
ian motion on M, and (u,),c,, for a family of disintegrations for u
associated with the projection on M,,. We have for all continuous functions f
on My, X oM X oM,

[ran=] ([f(v,fl,fz)dux(fl,fz))dmo(x).

Write 7 for the I'-covariant projection on M X dM x M and set f=f- .
We write

Jfdu = lim [@}fdpu

dlL(x’ §1’ §2)

- lim [fMopt(x, ) dy(%‘,u;"y(v)f(y, Y €Ly lfz))

t—> o

= lim [fM p(x,5) dy(XFZMf’y(Y)f(vy, €1 fz))]

t—> o

Xdp, (€1, &) dmo(x)
= 1imj dmo(x)[[ﬁt(x,&)f"(&,il,52) d&dux(fl,fz)]

t—> MO

= hm[ dmo(x)Ex(ff(&)t’ 61’ 62) dl“‘x(fl’ 52))
t—>oJpr,
We obtained the last line by exchanging the order of integration of the
variables ¥ and (¢, &,).

For x,y in M, denote by V,® the unit vector in S, M pointing toward x.
Then [A(§, &, &) du, (&, &) 1s close to f(y, vz, x) as soon as ¥y is suffi-
ciently far from x and not too close in direction to fl or &,. Since as ¢ goes to
1nﬁn1ty, d(x, @,) goes to infinity a.e. and the limit distribution of the direction
of @, is continuous, [f(®,, &, &) du, (£, &) is close to f(wt,th Vi) with
probability close to 1. Therefore, we may write

[fdp = lim - E.f(@,, Vs, Vi) dmo(x)

t—> o ]u0

= [f(x,€ ) do(x, §).
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To obtain the last equality, observe that, setting F(x, &) = f(x, &, &), we
have, in the same way,

Jf(x, €, 6) do(x, €) = lim [Q,F(x,¢) dw(x, £)

= lim [ E,F(&,,VS)dmg(x). u|
t—> o MO

Write N for the operator on continuous functions on SM which associates
with f the constant [fdw. From the above argument it also follows that for
all continuous f, lim, ,.Q,f = Nf. In the next section, we introduce sub-
spaces of functions where this convergence is exponential. The central limit
theorem-——and other limit theorems—will follow by standard arguments.

2. Holder continuous functions and contraction. We shall define’
Hélder norms on C(SM). We first recall some definitions from hyperbolic
geometry (see, e.g., [7]). For p in M and &,7m in dM, we denote (¢[n), the
quantity

(€M), = iigzé(d(p,x) +d(p,y) —d(x,y)).
yon
For 7 small enough, d,(¢,n) == exp(—7(£In),) defines a distance on oM. If
p,q are points in M, then the distances d, and d, are conformally equiva-

lent. Also as ¢ — m, the following limit exists and defines the Busemann
function ¢, ,(q):

¥p,n(g) = lim ((£In)g = (£m),).

We let L, be for the space of bounded continuous functions f on SM such
that || £, is finite, where

”f”r = su?lf(x7 g)l + S;Pg If(x7 gl) _f(x9 §2)Iexp(7(§1|§2)x)'

The main result of this paper is the following theorem:
THEOREM 3. For every T small enough, there exist C > 0 and { < 1 such
that, for all t > 0,
I1Q, - Nl < C¢*.

We shall prove Theorem 3 in Section 3. We first discuss consequences of
 Theorem 3. ’

COROLLARY 1. Let f be a function in L., [fdw = 0. Then there exists a
unique, up to an additive constant function, u in L, such that Aju = —f.
Moreover, the function u is C? along the leaves of the stable foliation.
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Proor. We set u = [§Q,fdt. By Theorem 3 the integral makes sensein [,
and is the uniform limit of [J@,fdt. We claim that on each stable leaf W*,
the limit u is a weak solution of the elliptic equation A ,u = —f. In fact, we
have, for any g in C2(W*),

) T
[8.gu= Jim [ag( [ qura]
. T
- 1im [e(a["qurat]
= lim [¢Q,f~ [ef = - [af.
It follows that u is C? along the leaves and is a strong solution of A,u = —f.

The uniqueness of u follows from Theorem 3, since if A,u = 0, then Q,u = u
and u is constant. Further regularity of the function u will be discussed in
Section 4. O

Let o be a section of the bundle C(TW;*) of 1-forms on W*, and assume
that on each leaf, a is of class C' and closed. We can define [, ;,  in the
following way:

Choose (p, £) in M X M which projects to w,. Consider on M the lifted
traJectory (0, t) with @(0) = p. Consider also the 1-form & on M such that
m*@, = ., ¢ The form & is closed and let A be a function on M such that
& = dA. Deﬁne then, for all ¢ > 0, [, »a = A(®,) — A(d,).

This process ([, ;)@);»o does not depend on the choices of the lifted
trajectory or on the primitive A. Observe also that the function A is of class
C? on M and that

AA =divgrad A = —6dA = —éda.

A direct application of Itd’s formula (see [12]) shows that (M,),., is a
martingale for the filtration of the Brownian motion, where M, is given by

M, =/;)(0’t)a+ fotﬁsa(w,)dr.

Here 6, denotes the codifferential of a associated with the metric along the
leaves. That is, 8, = —div, a¥, where a* is the vector field associated with
a by gs-duallty in TW? and d1v is the divergence along Ws defined by the
.metric g,. The increasing process of M, is given by 2|Ia(wt)|| dt.

COROLLARY 2. Let a: SM — (TW,)* be a section of the bundle of closed
1-forms a along the stable leaves, such that « is C' along the leaves and such
that the function 6,a is globally Holder continuous on SM. Define [, , o as
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above. Then there exists a Holder continuous function u, which is C* along the
leaves, such that

(f a+tf8sadw+u(wt)—u(w0)
(0, t) t

>0

is a real-valued martingale with increasing process 2|la + dull*(w,) dt.

PROOF. The function —8,a + [§,a dw is Hélder continuous and has 0
integral. By Corollary 1, there exists a Holder continuous function u such
that A,u = 8,a — [8,a dw. Consider [, ,(a + du). We get that the process
(M,), , is a martingale with increasing process 2[/a + dul*(w,) dt, where M,
is given by '

M= [ (a+du)+ [8(a+du)(w,)dr
w(0,8) 0

=fw(0’t)a+ L(O,t)du + j:(szadw) dr. O

We can apply Corollary 2 to particular 1-forms. For (x, ¢) in M consider
i, ¢(y) the Busemann function on M at ¢ and & ¢(x, ) the Poisson kernel at
£ Set ay =di, , and a; = dlog k,(x,). The 1-forms @, and «, are closed
along the stable leaves, C* along the leaves and such that 8 «; is Holder
continuous, i = 0,1. In fact, for i = 0 we have that 5,0, = —A, ¥, , is the
mean curvature of the stable horosphere, which is Hélder continuous [3, 11].
For i = 1, we have §,a, = ||d log k,(x, )12, which is Hélder continuous ([10],
Lemma 3.2). We conclude the next corollary.

COROLLARY 3. There exist Holder continuous functions u,, u; on SM such
that for any &, the process (M), , [respectively, (M}),. o],

MY = Y, 6( @) =t + uom( @, ) — um( o, £)
[ respectively,

M}=log k, (@, @)+ th+um(@,, £) —um( &, &)]
is a martingale with increasing process

201& + Vu,ll*(@,) dt [ respectively, 21V log k(x,°) + Vuyll*(&,) dt|.

In the statement of Corollary 3, we used that [ = — [8,apdw and h =
J1IV log I* dw [13].

We can now achieve the proof of Theorem 1. Fix (x,, £) arbitrarily. Then
the martingales (M?),. , and (M}),. , are continuous and have moments of
all orders. The respective variances (1/1)E, ./s2[¢+ Vu,l*(&,) dr and
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(1/DE,, f§21IV log k,(x,-) + Vu,|I*(&,) dr converge to, respectively, of and
o, where

op = 2fll&+ Vul® do,

o =2[IVlog ke(x,) + Vuyl* do.

Observe that o- >0, i = 0,1, for otherwise we would get £ = ~Vu, and ¢, ,
bounded on M [respectively, Vlog k,(x,) = —Vu, and k.(x,-) bounded on
M], which is impossible. Therefore, we can write that the dlstrlbutlons under
P,, ¢ of Mp/ 00\/_ and of M}/o,Vt converge to the normal distribution as ¢
goes to 1nﬁn1ty We observe now that when ¢ goes to infinity, the process
(¢, (&) — d(x, @,)) converges P, , a.e. to the a.e. finite number ({[&,),. It
follows that

1 1
'_“"0_0‘/; (lﬁx,g( @) — d(x, &)t)) + 00‘/; (uo( @) — uo( @))
converges a.e. to 0 so that the distribution of [1/(oyVt)(d(x, ®,) — #) is
asymptotically normal as well.

Analogously let z, be the point on the geodesic ray (&,, £) closest to x. We
have P, , a.e. that sup, d(x, z,) is finite. By the boundary Harnack inequal-
ity [1, 2] as soon as ¥, (&,) > 1, we make a bounded error when replacing
ki (z,, ) by G(z,, &,). Altogether we may write that P, , a.e. we have

lim supllog G( x, @,) — log k,(x, &,)| < —c°.
t—>
We conclude as above that the distribution of [1/(o;Vt)(log G(x, &,) + th) is

asymptotically normal.
To prove Theorem 2, we use the expression for o2 that we obtained above,

ol = 2f||v log k(x,°) + Vuyll* dw.

Recall that 2 = [||V log % (x )II? d w and that for any continuous function u,
which is C? along the stable leaves, we have

[(Viegk(x,"),Vu)dw =~ [Audw=0

(see [15] and [20)).
Substituting in the above expression, we get

i

2=2h +2[IVu|® do.

Th1s proves the inequality o > 2h and that we have equality only if u, is
constant, that is, if ||V log k. (x,- )I? is constant and equal to A. This is
possible only when M is asymptotlcally harmonic (see, e.g., [16]).
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(The argument in [16] is to consider the measure w of maximal entropy H
for the geodesic flow and to write the inequalities

h<lIH< lelogkd;us Wh <h.
(1) (2) (3) (4
(1) and (4) are in [13], (2) is in [14] for any invariant measure and (3) is
Cauchy—-Schwarz. Equality in (3) or (4) implies asymptotically harmonic.)

3. Proof of Theorem 3. (Compare with the proofs of [19], Proposition 4,
[4], Théoréme 3.7, or [17], Proposition 4.28.) The main ingredient is the
property of average contraction:

PROPOSITION 2. For T large enough, we have for all x in M, all ¢,m, &+ n
in 3M,
1 1 l
?Ex,g((YT Elyr 7’)3’7‘ - (fln)x) 2 Z’

where we write &, = v,y,, ¥; € M,.

ProOF. Assume not. Then there exist numbers T,, T, - «, and points
x,,&,, M, &, # 7,, such that
1 l
—-T:[Exn,gn((y;:fnw;:n,,)m = (&lm)s,) < 5

Observe that for all ¢ # 0, y €T, x,y in M, we have the a priori bound
|(v €1y ™), — (£ln) .| < 2d(x, yx) + 2diam M,.

Hence we can find ¢, so small that

!
(*) sup sup supk, J(vr'€ly, )y, — (ém).| < 7.

O<t<ty x,& n+é

By using (%) and suitably relabelling x,, ¢,,7,, we find a sequence of
integers N; — « and points x;, {;, n; such that, for all j,

1 l
Fji;lEx,j,fj(('Y&}tonjl’Y&jlto fj)ytho - (’flj|§j)xj) < 9"

Write now ¢ for the function on M, X M X M defined for x,n # £ by
1 .
8(x,€,m) = +-En (v el n),,, = (1l€).)

+ and observe that ¢ has a continuous extension to the diagonal, which we will
still write as ¢, given by

1
d(x,6,6) = t_O‘IEx,g(‘//x,g('Ytoyto))'
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Our assumption says that there exists a sequence of integers N;, N; — «, and
points x;, §;, n; with the property that, for all j,

1 Nt

l
ﬁ kgo [Exj»fj(d)(ykto’ ’Y;tlo, fj’y;t})nj)) < E;

J

in other words, we have
- I\Ele d( x5 &,m) i
AT k X, &,M) < -
]Vj Py’ to J2 552 2

Now take a weak limit u of a subsequence of the sequence of probability
measures u; on the compact space M, X dM X oM defined by

N-1
/’LJ = ﬁ Z ngto((xj’ §j’ ﬂj),d(, ) ))
J k=0
The measure u is Qtzo-invariant and satisfies [¢p du < 1/2.
Let u' = (1/t,)[¢(Q?)u ds. The measure p' is @* invariant. By Proposi-
tion 1, u' coincides with w?. Using again (*) we find that

3l

f([)dwzﬁ'z.

On the other hand, we can write

1 ~ . 1 o~
[¢dw? = Ef'Ex,é((/j(x,f)(wto)) do = lim ‘[flEx,g(‘/’(x,n( @))do=1,
a contradiction. O

PROPOSITION 3. There is a number 7, > 0 such that for any 7,0 < 7 < 7,
there exists {(t) < 1, such that for t large enough, x in M and all &,n, & # 7,
we have

exp(—*r(vilflvfln)yt)) ,
'Ex’f( exp(—r(Emy) |

PrOOF. Observe that, if we write u(x, £, 1, t) for

exp(— (v %1% 'n),,) )
exp(—7(€M),) )’

u(x, £, ﬂ,t) = —Ex,g(

¥

we have, using the Markov property,

sup u(x’ g’ 77,'51 + t2) < sup u(x’ §, 77,t1) Sup u(x’ g, 772’t2)
x,&,m x,&,m x,€,m
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so that it is sufficient to prove the statement of Proposition 3 for a fixed time
T. More precisely, we prove Proposition 3 if we find for a fixed T and 7
sufficiently small numbers Cy(7) > 0 and £,(7) < 1 such that (a) and (b) hold:

(a) sup sup u(x, £, 77,'5) = Co(")’
x,&,m0ct<T

(b) sup u(x,&,m,T) < {o(7).
x,&,m

Choose T given by Proposition 2 and write

exp(—r(%_ Elyy "7)yt) <1- T((Vt_lglv{lﬂ)y, _ (§|77)x)

exp(—7(&m).)

+ 272[(2d(x,'ytx) + 01)2 exp(2d(x,v,x) + Cl)],

where C, = 2diam M,,.
Comparison with a space of constant negative curvature ([12], Theorem
VI1.5.1) gives that for a fixed T we can find C such that for all £, 0 <¢ < T,

E.((2d(x, &,) + 3C,)" exp(2d(x, &,) + 3C;)) < C.
We get, using Proposition 2,
l
u(x,€é,1mT)<1- Ly + 27%2C

and for t < T,
u(x,&,m,t) <1+ 7C + 272C.

For 7 sufficiently small, we have
l
Lo(T) =1~— L +272C <1
and this proves properties (a) and (b). O

We now prove Theorem 3. Consider f in L, with 7 small enough that
Proposition 3 applies. We have to estimate

1Q.f ~ [fdwl..
We first have for ¢ large enough, and for all x, &, &,,
[(Qf(x, &) — Qf (%, &) exp(r(£4116,),)]

< [ 2o ) dy( S (3, 77%6) = £, )| x4l a).)

p(—7(7*1§1|7_1§2)y) )
exp(—7(£&1€;),)

< IIfII,fM p(x,y) dy| Xud? () =
0 T

< {Llfll; by Proposition 3.
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In particular, we can write, for ¢ large enough,

1Qf(%, &) — [@u(x, &) dw,(£)| < EflIfll..

Set F(x) = [Q,f(x, £)dw,(&). The function F, is continuous on M, |F}| <
lI£ll. and by the Doeblin property of the Brownian motion on M, we can find a
number {,, {, < 1, such that for ¢ large enough, all x in M,

[ P 3 Fi5) dy = [ Fi(x) dm()

1
p(x,y) — VolM’vly

< I

< &fl..
Combining the two estimates, we get
Qs f — th dm| <|Q(Q.f— F,)I +|Q.F, — th dml

< (& + &)Ifl.

Theorem 3 follows if we observe that

[F.dm = [@,fdw = [fdw
by the invariance of w. O

4. Regularity of the potential in Corollary 1. Recall that for a func-
tion f in L, such that [fdw = 0, we constructed a Holder continuous function
u, which is C? along the stable leaves, such that A,u = —f. In this section we
study the regularity of u. Since the stable foliation is Hélder continuous, we
expect that if f is C* along stable leaves and that all leafwise jets of f are
Holder continuous, then u will have the same regularity. The proof we give
below is standard; we have chosen to express it using the Brownian motion
on M since we use this construction anyway in the _next section. So we first
recall the construction of the Brownian motion on M ([12], Section V.4).

We are given an n-dimensional Euclidean Brownian motion
{w'(@),...,w" ()} g, startingat(0,0,...,0) (in this paper we differ from [12]
in that our Euchdean Brownian motlon has for infinitesimal generator the
Laplacan A and not 3A), and we consider on the orthonormal frame bundle
O(M) the canonical horizontal vector fields L,,..., L,. That is,
L (x,eq,...,e,) is the horizontal lift of e;.

The canomcal Brownian motion on the orthonormal bundle O(M) is given
byv the solution r(w, ) of the Stratonovich SDE:

dr(t) = ZLk(r(t)) o dw"(t),
r(0) =r.

The Brownian motion (&,),c g, is defined as the projection on M of r(w,t)
for any choice of r(0) which projects in @,.
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The process (&,),cr, has continuous trajectories and the strong Markov
property.

Let C7(SM) denote the space of functions on SM which are C* along the
stable leaves and such that the jets of all degrees are Holder continuous.

PROPOSITION 4. Let f be a function in C; with [fdw = 0, and let u be such
that A,u = —f. Then u € C}.

ProOF. We have

u(x, )

hmf fpt(x F)fm(y,€)dydt

lim E ([ fr (@, €) dt)

where 7: SM — SM is the prOJectlon Fix a ball B in M centered at x, in
M, and such that d(MO, dB) > 0 and write Ty for the entrance time of the
Brownian motion & in M \ B. We have

u(x, &) = lim lEx(f " qur(&)t,g) dt) + E,

where T, Ty = min(T', Tp).
The ﬁrst expectation converges to

fBgB(x,&)fw(&, ¢€) dy,

where gg is the Green function inside B.
Using the strong Markov property, we may write the second term as

f(IEszT_TfW(&)t, £) dt) del(z,7),

where ¢! is the distribution of the variable (&7, .7, Tg A T).
By Theorem 3, we may write, uniformly in z, 7,

T-7, , . —r
[Ezj; fr(@,, £)dt =um(z, &) +0(LT7).
As T goes to infinity, we have
: T -
71{1)1;4[1477(2, &)de, (z,7) = fuﬂ'(z, &)de(z),
where &, is the distribution of &7, because u is continuous and

lim [¢7""del(z,7) = lm E, ({7 7547) =0

T—

by the Lebesgue dominated convergence theorem. Hence we may write
u(x,£) = [ga(%,5)fn(5,€)d5 + [ um(z,§) dey(2).
B 9B

The regularity of u follows from the regularity of gz and from the regularity
of the density of &, with respect to the Lebesgue measure on ¢B. O

I fw((bt,g)dt),
T, Ty



1232 F. LEDRAPPIER

5. Central limit theorem for integrals of 1-forms. In this section, we
state a more general form of Corollary 2 above. We consider «, a section of
the bundle (TW,)* of 1-forms which are of class C* along the leaves and
globally Hélder continuous on SM. We want to define [,q . By lifting to
SM, thls amounts to defining [, ;, @, where & is the 1-form on M such that
TR, = 0, ¢

We follow [12] Section VI.6. The Brownian motion be1ng constructed as
above, we consider the scalarization @, ..., @, of the form & on O(M). That
is, {@; (z e)} is a system of components of a, read in the frame e. Since & is of
class C*, the functions @;(z,e) are of class C® on O(M). We define then
Jato,;@& by the following Stratonovich stochastic integral:

[0 o8 = T [F(r()2 dut(s).

The process ([z0,4%);cr, 15 @ real valued process with continuous trajecto-
ries defined on the same probability space as the Brownian motion
{w'(@),...,w"(#)}; g, From [12], Theorem VI. 6.1, we recall that the process
M, deﬁned by
t
M, = a+ | 8,a(@,)ds
o= [, 5t [aa(a)

is a real-valued martingale with respect to the natural filtration of {w’}, with
associated increasing process 2|| a(wt)II dt.

COROLLARY 4. Let a: SM — (TW,)* be a section of the bundle of 1-forms
along the stable leaves, which is of class C* along the leaves and such that the
function 8,a is globally Holder continuous on SM. Define [, ;@ as above.
Then there exists a Holder continuous function u such that

(fw(o,t)“ + tfﬁsadw + u(w,) — u(wo))

is a real-valued martingale with increasing process 2|la + dul*(wt) dt.
In particular, there is a number o such that the variable

1
W('[w(o,t)a + tfﬁsa dw)

is asymptotically distributed like N(0, c%). We have o* = 0 if and only if
a= —du.

The proof is the same as the proof of Corollary 2. By Theorem 3 again, we
have o? = 2 [l + dul> dw and the last conclusion follows.

+We write the conclusion of Corollary 4 more explicitly in the case when
o2 > 0: With the above notation, there is a number o2 such that for all real
r, all (x,, £),

2
lim P +t|dadw < t d
tme, ([ et efowdozont) - =) o~ e
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