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MEASURING THE MAGNITUDE OF SUMS OF
INDEPENDENT RANDOM VARIABLES

By PaweŁ Hitczenko1 and Stephen Montgomery-Smith2

Drexel University and University of Missouri–Columbia

This paper considers how to measure the magnitude of the sum of
independent random variables in several ways. We give a formula for the
tail distribution for sequences that satisfy the so called Lévy property. We
then give a connection between the tail distribution and the pth moment,
and between the pth moment and the rearrangement invariant norms.

1. Introduction. This paper is about the following type of problem: given
independent (not necessarily identically distributed) random variables X1,
X2� � � � � XN, find the “size” of �S�, where

S =
N∑
n=1
Xn�

We will examine several ways to measure this size. The first will be through
tail distributions, that is, Pr��S� > t�. Finding an exact solution to this prob-
lem would be a dream of probabilists, so we have to temper our desires in
some manner. In fact, this problem goes back to the foundations of proba-
bility in the following form: if the sequence �Xn� consists of random vari-
ables that are mean zero, identically distributed and have finite variance,
find the asymptotic value of Pr��S� > √

Nt� as N → ∞. This is answered,
of course, by the central limit theorem, which tells us that the answer is
the Gaussian distribution. There has been a tremendous amount of work
on generalizing this. We refer the reader to almost any advanced work on
probability.

Our approach is different. Instead of seeking asymptotic solutions, we will
look for approximate solutions. That is, we seek a function f�t�, computed
from �Xn�, such that there is a positive constant c with

c−1f�ct� ≤ Pr��S� > t� ≤ cf�c−1t��
The second measurement of the size of �S� will be through the pth moments,


S
p = �Ɛ∣∣S∣∣p�1/p. Again, we shall be searching for approximate solutions,
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that is, finding a quantity A such that there is a positive constant c so that

c−1A ≤ 
S
p ≤ cA�
While this may seem like quite a different problem, in fact, as we will show,
there is a precise connection between the two, in that obtaining an approxi-
mate formula for 
S
p with constants that are uniform as p→ ∞ is equivalent
to obtaining an approximate formula for the tail distribution.

The third way that we shall look at is to find the size of �S� in a rear-
rangement invariant space. This line of research was began by Carothers and
Dilworth (1988) who obtained results for Lorentz spaces, and was completed
by Johnson and Schechtman (1989). Our results will give a comparison of the
size of �S� in the rearrangement invariant space with 
S
p, obtaining a greater
control on the sizes of the constants involved than the previous works.

Many of the results of this paper will be true for all sums of independent
random variables, even those that are vector valued, with the following pro-
viso. Instead of considering the sum S =∑

n Xn, we will consider the maximal
function U = supn

∣∣∑n
k=1Xk

∣∣. We will define a property for sequences called
the Lévy property, which will imply that U is comparable to S. Sequences
with this Lévy property will include positive random variables, symmetric
random variables, and identically distributed random variables. The result of
this paper that gives the tail distribution for S is only valid for real valued
sequences of random variables that satisfy the Lévy property. However the
results connecting the Lp and the rearrangement invariant norms to the tail
distributions of U are valid for all sequences of vector valued independent
random variables. (Since this paper was submitted, Mark Rudelson pointed
out to us that some of the inequalities can be extended from U to S by a
simple symmetrization argument. We give details at the end of each relevant
section.)

Let us first give the historical context for these results, considering first the
problem of approximate formulae for the tail distribution. Perhaps the earliest
works are the Paley-Zygmund inequality [see, e.g., Kahane (1968), Theorem 3,
Chapter 2)], and Kolmogorov’s reverse maximal inequality (see, e.g., Shiryaev
(1980,) Chapter 4, Section 2]. Both give (under an extra assumption) a lower
bound on the probability that a sum of independent, mean zero random vari-
ables exceeds a fraction of its standard deviation and both may be regarded
as a sort of converse to the Chebyshev’s inequality. Next, in 1929, Kolmogorov,
proved a two-sided exponential inequality for sums of independent, mean-zero,
uniformly bounded, random variables [see, e.g., Stout (1974), Theorem 5.2.2,
or Ledoux and Talagrand (1991), Lemma 8.1]. All of these results require some
restriction on the nature of the sequence �Xn�, and on the size of the level t.

Hahn and Klass (1997) obtained very good bounds on one sided tail prob-
abilities for sums of independent, identically distributed, real valued random
variables. Their result had no restrictions on the nature of the random vari-
able, or on the size of the level t. In effect, their result worked by removing
the very large parts of the random variables, and then using an exponential
estimate on the rest. We will take a similar approach in this paper.
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Let us next look at the pth moments. Khintchine (1923) gave an inequal-
ity for Rademacher (Bernoulli) sums. This very important formula has found
extensive applications in analysis and probability. Khintchine’s result was ex-
tended to any sequence of positive or mean zero random variables by the cel-
ebrated result of Rosenthal (1970). The order of the best constants as p→ ∞
was obtained by Johnson, Schechtman and Zinn (1985) and Pinelis (1994)
refined this still further. Now even more precise results are known, and we
refer the reader to Figiel, Hitczenko, Johnson, Schechtman and Zinn (1997)
[see also Ibragimov and Sharakhmetov (1997)]. However, the problem with all
these results is that the constants were not uniformly bounded as p→ ∞.

Khintchine’s inequality was generalized independently by Montgomery and
Odlyzko (1988) and Montgomery-Smith (1990). They were able to give approx-
imate bounds on the tail probability for Rademacher sums, with no restriction
on the level t. Hitczenko (1993) obtained an approximate formula for the Lp
norm of Rademacher sums, where the constants were uniformly bounded as
p→ ∞. [A more precise version of this last result was obtained in Hitczenko-
Kwapień (1994) and it was used to give a simple proof of the lower bound in
Kolmogorov’s exponential inequality.]

Continuing in the direction of Montgomery and Odlyzko, and Montgomery-
Smith and Hitczenko, Gluskin and Kwapień (1995) extended tail and mo-
ment estimates from Rademacher sums to weighted sums of random vari-
ables with logarithmically concave tails [i.e., P�∣∣X∣∣ ≥ t� = exp�−φ�t��, where
φ � 0�∞� → 0�∞� is convex]. After that, Hitczenko, Montgomery-Smith, and
Oleszkiewicz (1997) treated the case of logarithmically convex tails (i.e., the
φ above is concave rather than convex). It should be emphasized that in the
last paper, the result of Hahn and Klass (1997) played a critical role.

The breakthrough came with the paper of Latała (1997), who solved the
problem of finding upper and lower bounds for general sums of positive or
symmetric random variables, with uniform constants as p→ ∞. His method
made beautiful use of special properties of the function t �→ tp. In a short note,
Hitczenko and Montgomery-Smith (1999) showed how to use Latała’s result
to derive upper and lower bounds on tail probabilities. Latała’s result is the
primary motivation for this paper.

The main tool we will use is the Hoffmann-Jørgensen Inequality. In fact, we
will use a stronger form of this inequality, due to Klass and Nowicki (2000).
The principle in many of our proofs is the following idea. Given a sequence of
random variables �Xn�, we choose an appropriate level s > 0. Each random
variable Xn is split into the sum X

�≤s�
n +X�>s�

n , where X�≤s�
n =XnI|Xn|≤s, and

X
�>s�
n =XnI|Xn|>s. It turns out that the quantity �X�>s�

n � can either be disre-
garded, or it can be considered as a sequence of disjoint random variables. (By
“disjoint” we mean that the random variables are disjointly supported as func-
tions on the underlying probability space.) As for the quantity

∑
n X

�≤s�
n , it will

turn out that the level s allows one to apply the Hoffmann-Jørgensen/Klass-
Nowicki Inequality so that it may be compared with quantities that we un-
derstand rather better.
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Let us give an outline of this paper. In Section 2, we will give definitions.
This will include the notion of decreasing rearrangement, that is, the inverse
to the distribution function. Many results of this paper will be written in terms
of the decreasing rearrangement. Section 3 is devoted to the Klass-Nowicki
Inequality. Since our result is slightly stronger than that currently in the
literature, we will include a full proof. In Section 4, we will introduce and
discuss the Lévy property. This will include a “reduced comparison principle”
for sequences with this property. Section 5 contains the formula for the tail
distribution of sums of real valued random variables. Then in Section 6, we
demonstrate the connection between Lp-norms of such sums and their tail dis-
tributions. In Section 7 we will discuss sums of independent random variables
in rearrangement invariant spaces.

2. Notation and definitions. Throughout this paper, a random variable
will be a measurable function from a probability space to some Banach space
(often the real line). The norm in the implicit Banach space will always be
denoted by � · �.

Suppose that f � 0�∞� → 0�∞� is a non-increasing function. Define the
left continuous inverse to be

f−1�x−� = sup�y � f�y� ≥ x��
and the right continuous inverse to be

f−1�x+� = sup�y � f�y� > x��
In describing the tail distribution of a random variable X, instead of con-

sidering the function t �→ Pr��X� > t�, we will consider its right continuous
inverse, which we will denote by X∗�t�. In fact, this quantity appears very
much in the literature, and is more commonly referred to as the decreasing
rearrangement (or more correctly the non-increasing rearrangement) of �X�.
Notice that if one considers X∗ to be a random variable on the probability
space 0�1� (with Lebesgue measure), then X∗ has exactly the same law as
�X�. We might also consider the left continuous inverse t �→ X∗�t−�. Notice
that X∗�t� ≤ x ≤X∗�t−� if and only if Pr��X� > x� ≤ t ≤ Pr��X� ≥ x�.

If A and B are two quantities (that may depend upon certain parameters),
we will write A ≈ B to mean that there exist positive constants c1 and c2 such
that c−11 A ≤ B ≤ c2A. We will call c1 and c2 the constants of approximation.
If f�t� and g�t� are two (usually non-increasing) functions on 0�∞�, we will
write f�t� ≈

t
g�t� if there exist positive constants c1, c2, c3 and c4 such that

c−11 f�c2t� ≤ g�t� ≤ c3f�c−14 t� for all t ≥ 0. Again, we will call c1, c2, c3 and c4
the constants of approximation.

Suppose thatX and Y are random variables. Then the statement Pr��X� >
t� ≈

t
Pr��Y� > t� is the same as the statement X∗�t� ≈

t
Y∗�t�. Since X∗�t� =

0 for t ≥ 1 the latter statement is equivalent to the existence of positive
constants c1, c2, c3, c4 and c5 such that c−11 X

∗�c2t� ≤ Y∗�t� ≤ c3X∗�c−14 t� for
t ≤ c−15 .
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To avoid bothersome convergence problems, we will always suppose that
our sequence of independent random variables �Xn� is of finite length. Given
a sequence of independent random variables �Xn�, when no confusion will
arise, we will use the following notations. If A is a finite subset of �, we
will let SA = ∑

n∈AXn, and MA = supn∈A �Xn�. If k is a positive integer,
then Sk = S�1�����k� and Mk = M�1�����k�. We will define the maximal function
Uk = sup1≤n≤k

∣∣Sn∣∣. Furthermore, S = SN, M =MN, and U = UN, where N
is the length of the sequence �Xn�.

If s is a real number, we will writeX�>s�
n =XnI�Xn�>s andX

�≤s�
n =XnI�Xn�≤s

=Xn−X�>s�
n . ForA ⊂ �, we will write S�≤s�

A =∑
n∈AX

�≤s�
n . Similarly we define

S
�>s�
A , S�≤s�

k , etc.
Another quantity that we shall care about is the decreasing rearrangement

of the disjoint sum of random variables. This notion was used by Johnson,
Maurey, Schechtman and Tzafriri (1979), Carothers and Dilworth (1988) and
Johnson and Schechtman (1989), all in the context of sums of independent
random variables. The disjoint sum of the sequence �Xn� is the measurable
function on the measure space � × � that takes �ω�n� to Xn�ω�. We shall
denote the decreasing rearrangement of the disjoint sum by �̃ � 0�∞� →
0�∞�, that is, �̃�t� is the least number such that∑

n

Pr��Xn� > �̃�t�� ≤ t�

Define ��t� to be �̃�t� if 0 ≤ t ≤ 1, and 0 otherwise. Since ��t� is only non-
zero when 0 ≤ t ≤ 1, we will think of � as being a random variable on the
probability space 0�1� with Lebesgue measure. The quantity � is effectively
M in disguise. This next result (and its proof) essentially appears in Giné and
Zinn (1983).

Proposition 1. If 0 < t < 1, then
��2t� ≤ ��t/�1− t�� ≤M∗�t� ≤ ��t��

Proof. The first inequality follows easily once one notices that both sides
of this inequality are zero if t > 1/2.

To get the second inequality, note that, by an easy argument, if α1, α2� � � � ≥
0 with

∑
n αn ≤ 1, then

1−∑
n

αn ≤∏
n

�1− αn� ≤ 1−
∑
n αn

1+∑
n αn
�

So, if Pr�� > x� =∑
n Pr��Xn� > x� ≤ 1, then

Pr�M> x� = 1−∏
n

�1− Pr��Xn� > x���

and hence
Pr�� > x�

1+ Pr�� > x� ≤ Pr�M> x� ≤ Pr�� > x��

Taking inverses, the result follows. ✷
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3. The Klass-Nowicki inequality. This section is devoted to the follow-
ing result: the Klass-Nowicki inequality.

Theorem 1. Let �Xn� be a sequence of Banach valued independent random
variables. Then for all positive integers K we have

Pr�U > 2Kt+ �K− 1�s� ≤ 1
K!

(
Pr�U > t�

1− Pr�U > t�
)K

+ Pr�M> s��

whenever Pr�U > t� < 1.

The original inequality of this form was for Rademacher (or Bernoulli) sums
and K = 2, and was due to Kahane (1968). This was extended by Hoffmann-
Jørgensen (1974) to general sums, at least for positive or symmetric random
variables, for the case K = 2. Indeed, if one wants Theorem 1 for K > 2,
but without the K! factor, this may be obtained by iterating the Hoffmann-
Jørgensen inequality, as was done by Johnson and Schechtman [(1989), Lem-
mas 6 and 7]. [Both Kahane and Hoffmann-Jørgensen obtained slightly differ-
ent constants than those we have presented. Also, in neither case did a factor
like �1− Pr�U > t�� appear in their formulae.]

Klass and Nowicki (2000) were able to obtain Theorem 1, at least in the
case when the random variables are positive or symmetric. (However their
constants are better than ours.) Removing the positive or symmetric condition
is really not so hard, but because it does not appear in the literature in this
manner, we will give a complete proof of Theorem 1.

We also note that this inequality has some comparison with a result that
appears in Ledoux and Talagrand [(1991), Theorem 6.17.]

Proof of Theorem 1. Let N be the length of the sequence �Xn�. During
this proof, let us write �m�n� for the set of integers greater than m and not
greater than n.

We start with the observation

Pr�U > 2Kt+ �K− 1�s� ≤ Pr�U > 2Kt+ �K− 1�s andM ≤ s� + Pr�M> s��
Now, if we have that both U > 2Kt + �K − 1�s and M ≤ s, then we ensure
the existence of an increasing sequence of non-negative integers m0� � � � � mK,
bounded byN, and defined as follows. Set m0 = 0. If we have picked ml−1, let
ml be the smallest positive integer greater than ml−1 such that �S�ml−1�ml�� >
2t. For l = 1, it is clear that such an integer exists. Let us explain why the
integer ml ≤N exists if 2 ≤ l ≤K.

For 1 ≤ l′ ≤ l− 1, and ml′−1 < k ≤ml′ − 1, we have that �S�ml′−1�k�� ≤ 2t and
�Xml′ � ≤ s. Hence for 1 ≤ l′ ≤ l− 1

�Sml′ � =
∣∣∣∣∣
l′∑
j=1

�S�mj−1�mj−1� +Xmj�
∣∣∣∣∣ ≤ 2l′t+ l′s�
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and for ml′−1 < k ≤ml′ − 1

�Sk� =
∣∣∣∣∣
(
l′−1∑
j=1

�S�mj−1�mj−1� +Xmj�
)
+S�ml′−1�k�

∣∣∣∣∣ ≤ 2l′t+ �l′ − 1�s�

But we know that there exists a number m such that �Sm� > 2Kt+ �K− 1�s.
Hence, we must have that m > ml−1, and that �S�ml−1�m�� > 2Kt+ �K− 1�s−
2�l− 1�t− �l− 1�s ≥ 2t.

Therefore

Pr�U > 2Kt+ �K− 1�s andM ≤ s� ≤ ∑
1≤m1<···<mK≤N

p0�m1
pm1�m2

· · ·pmK−1�mK�

where

pm�n = Pr��S�m�k�� ≤ 2t for m ≤ k < n, and �S�m�n�� > 2t��
Now let us show the following inequality:

n∑
k=m+1

pm�k ≤
1

1− Pr�U > t�
n∑

k=m+1
p̃k�

where

p̃n = Pr��Sk� ≤ t for 1 ≤ k < n, and �Sn� > t��
Using independence, we have that

n∑
k=m+1

pm�k = Pr� sup
m<k≤n

�Sk −Sm� > 2t�

= Pr� sup
m<k≤n

�Sk −Sm� > 2t
∣∣Um ≤ t�

≤ Pr� sup
m<k≤n

�Sk� > t
∣∣Um ≤ t�

= Pr�supm<k≤n �Sk� > t and sup1≤k≤m �Sk� ≤ t�
Pr�Um ≤ t�

≤ 1
1−Pr�U > t�

n∑
k=m+1

p̃k�

as required.
Now we rearrange the sum as follows:∑

1≤m1<···<mK≤N
p0�m1

pm1�m2
· · ·pmK−1�mK

= ∑
1≤m1<···<mK−1≤N

p0�m1
pm1�m2

· · ·pmK−2�mK−1

N∑
mK=mK−1+1

pmK−1�mK

≤ 1
1− Pr�U > t�

∑
1≤m1<···<mK−1≤N

p0�m1
pm1�m2

· · ·pmK−2�mK−1

N∑
mK=mK−1+1

p̃mK�
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Now we rearrange this last quantity to get∑
1≤m1<···<mK≤N

p0�m1
pm1�m2

· · ·pmK−1�mK

≤ 1
1− Pr�U > t�

∑
1≤m1<···<mK−2<mK≤N

p0�m1
pm1�m2

· · ·pmK−3�mK−2p̃mK

×
mK∑

mK−1=mK−2+1
pmK−2�mK−1

≤ 1
�1− Pr�U > t��2

∑
1≤m1<···<mK−2<mK≤N

p0�m1
pm1�m2

· · ·pmK−3�mK−2p̃mK

×
mK∑

mK−1=mK−2+1
p̃mK−1 �

Repeating this argument �K− 2� more times, we eventually see that∑
1≤m1<···<mK≤N

p0�m1
pm1�m2

· · ·pmK−1�mK

≤ 1
�1− Pr�U > t��K

∑
1≤m1<···<mK≤N

p̃m1
p̃m2

· · · p̃mK�

Now, since K distinct numbers may be rearranged in K! different ways, we
have that ∑

1≤m1<···<mK≤N
p̃m1
p̃m2

· · · p̃mK

= 1
K!

∑
1≤m1�m2�����mK≤Nm1�m2�����mK distinct

p̃m1
p̃m2

· · · p̃mK

≤ 1
K!

∑
1≤m1�m2�����mK≤N

p̃m1
p̃m2

· · · p̃mK

= 1
K!

(
N∑
k=1
p̃k

)K
�

Since
N∑
k=1
p̃k = Pr�U > t��

we obtain the result. ✷

Let us now understand what this result means in terms of the decreasing
rearrangement.
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Corollary 1. There exists a universal positive constant c1 such that for
any sequence of Banach valued independent random variables �Xn�, and for
0 < t ≤ s ≤ 1/2 we have

U∗�t� ≤ c1
log�1/t�

max�log�1/s�� log log�4/t��
(
U∗�s� +M∗�t/2�)�

Proof. Notice that if f�g � 0�∞� → 0�∞� are non-increasing functions,
then �max�f�g��−1 = max�f−1� g−1�, and if f ≤ g, then f−1 ≤ g−1, where
here f−1 denotes either the left or right continuous inverse of f. SinceA+B ≤
2max�A�B� for any two positive numbers A and B, from Theorem 1, and
setting s= t, we have that if Pr�U>t� ≤ 1/2, then for all positive integers K,

Pr�U > �3K− 1�t� ≤ 2max
{

1
K!

(
2Pr�U > t�)K�Pr�M> t�} �

Taking inverses, we see that if �K!t/2�1/K ≤ 1/2, then

1
3K− 1

U∗�t� ≤ max

{
U∗

(
1
2

(
K!t
2

)1/K
)
�M∗

(
t

2

)}
�

Now, using the fact that max�A�B� ≤ A+B for any positive numbers A and
B, and by choosingK to be the smallest integer such that s ≤ �K!t/2�1/K, and
by some elementary but tedious algebra, the result follows. ✷

Since this paper was submitted, Mark Rudelson pointed out to us a couple of
ways that Theorem 1 can be improved. First, we may obtain a result closer to
that of Ledoux and Talagrand (1991), Theorem 6.17. Let �∣∣Xn∣∣∗� be the order
statistics of �∣∣Xn∣∣�, that is, the values of �∣∣Xn∣∣� rearranged in decreasing order.
Then exactly the same proofs gives the following strengthening: for all positive
integers K

Pr�U > 2Kt+�K−1�s� ≤ 1
K!

(
Pr�U > t�

1− Pr�U > t�
)K

+Pr

(
K∑
n=1

∣∣Xn∣∣∗ > �K− 1�s
)
�

whenever Pr�U > t� < 1.
Second, a similar result is also true if we replace U by

∣∣S∣∣. This is certainly
the case if the sequence �Xn� consists of symmetric random variables, since
they satisfy the Lévy property. Now let �X̄n� be an independent copy of �Xn�,
and let X̃n = Xn − X̄n. Let S̄ and S̃ respectively denote the sums formed
from these two sequences of random variables. Thus we have the result for
�S̃�� since it is a sum of symmetric random variables. But

Pr
(∣∣∣S̃∣∣∣ > ct) ≥ Pr�∣∣S∣∣ > �c+ 1�t and ∣∣S̄∣∣ ≤ t� = Pr�∣∣S∣∣ > �c+ 1�t�Pr�∣∣S∣∣ ≤ t��

Arguing in this way, we quickly see that there are constants c1, c2, and c3 such
that

Pr�S > c1K�s+ t�� ≤ Pr�S > t�K
K!�1− c2 Pr�S > c3t��K+1 + Pr�M> s��

whenever Pr�S > c3t� < c−12 .
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Thus a version of Corollary 1 is also true when U is replaced by
∣∣S∣∣.

4. The Lévy property. Let �Xn� be a sequence of independent random
variables. We will say that �Xn� satisfies the Lévy property with constants c1
and c2 if whenever A ⊆ B ⊆ �, with A and B finite, then for t > 0,

Pr��SA� > c1t� ≤ c2 Pr��SB� > t��
The casual reader should beware that this property has nothing to do with
Lévy processes.

The sequence �Xn� has the strong Lévy property with constants c1 and c2
if for all s > 0 the sequence �X�≤s�

n � has the Lévy property with constants c1
and c2.

Here are examples of sequences with the strong Lévy property. (It may be
easily seen that in all these cases it is sufficient to show that they have the
Lévy property.)

(i) Positive sequences, with constants 1 and 1.
(ii) Sequences of symmetric random variables with constants 1 and 2. This

“reflection property” plays a major role in results attributed to Lévy, hence the
name of the property.

(iii) Sequences of identically distributed random variables. This was shown
independently by Montgomery-Smith (1993) with constants 10 and 3, and by
Latała (1993) with constants 5 and 4, or 7 and 2.

We see that sequences with the Lévy property satisfy a maximal inequality.

Proposition 2. Let �Xn� be a sequence of independent random satisfying
the Lévy property with constants c1 and c2. Then for all t > 0,

Pr�U > 3c1t� ≤ 3c2 Pr��S� > t��
ThusM∗�t� ≤ 6c1S∗�t/3c2�.

Proof. The first statement is an immediate corollary of the following re-
sult known as Lévy-Ottaviani inequality:

Pr�UN > 3t� ≤ 3 sup
1≤k≤N

Pr��Sk� > t��

[Billingsley (1995), Theorem 22.5, page 288, attributes this result to Etemadi
(1985) who proved it with constants 4 in both places, but the same proof gives
constants 3; see, e.g., Billingsley. However the first named author learned this
result from Kwapień in 1980.]

The second statement follows from the first, sinceM ≤ 2U. ✷

We end with a lemma that lists some elementary properties. Part 1 of the
lemma might be thought of as a kind of reduced comparison principle.



MAGNITUDE OF SUMS OF RANDOM VARIABLES 457

Lemma 1. Let �Xn� be a sequence of random variables satisfying the strong
Lévy property.

(i) There exist positive constants c1 and c2, depending only upon the Lévy
constants of �Xn�, such that if s ≤ 1/2 and 0 ≤ t ≤ 1, then(

S�≤M∗�s��
)∗

�t� ≤ c1S∗ (c−12 t) �
(ii) There exist positive constants c1 and c2, depending only upon the strong

Lévy constants of �Xn�, such that if r ≤ s ≤ 1/2, and if 0 ≤ t ≤ 1, then
�S�≤M∗�s���∗�t� ≤ c1�S�≤M∗�r���∗�c−12 t�.

(iii) If 0 ≤ s ≤ t ≤ 1, then S∗�t� ≤ �S�≤M∗�s���∗�t − s�, and �S�≤M∗�s���∗�t� ≤
S∗�t − s�. In particular, S∗�t� ≤ �S�≤M∗�t/2���∗�t/2�, and �S�≤M∗�t/2���∗�t� ≤
S∗�t/2�.

(iv) For α�β > 0, we have that(
S�≤M∗�t��

)∗
�t� ≈

t

(
S�≤M∗�αt��

)∗
�βt�

where the constants of approximation depend only upon α, β and the strong
Lévy constants of �Xn�.

(v) We have that

S∗�t� ≈
t

(
S�≤M∗�t��

)∗
�t� ≈

t

(
S�≤��t��

)∗
�t��

where the constants of approximation depend only upon the strong Lévy con-
stants of �Xn�.
Proof. Let us start with part (i). For each set A ⊆ �, define the event

EA = ��Xn� ≤M∗�s� if and only if n ∈ A��
Note that the whole probability space is the disjoint union of these events.
Also {

�S�≤M∗�s��� > x
}
∩EA = ��SA� > x� ∩EA�

Furthermore, by independence, we see that

Pr��SA� > x and EA�
= Pr��SA� > x and �Xn� ≤M∗�s� for n ∈ A�Pr��Xn� >M∗�s� for n /∈ A��

Hence

Pr��S�≤M∗�s��� > x�
= ∑
A⊆�

Pr��SA� > x and �Xn� ≤M∗�s� for n ∈ A�

× Pr��Xn� >M∗�s� for n /∈ A�
≤ 2

∑
A⊆�

Pr��SA� > x�Pr��Xn� ≤M∗�s� for n ∈ A�

× Pr��Xn� >M∗�s� for n /∈ A�
≤ c2 Pr��S� > c−11 x��
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where in the first inequality we have used the fact that

Pr��Xn� ≤M∗�s� for n ∈ A� ≥ Pr�M ≤M∗�s�� ≥ 1− s ≥ 1/2�

Part (ii) follows by applying part (i) to S�≤M∗�r��.
Part (iii) follows from the observation that

Pr
(
S �= S�≤M∗�s��

)
≤ Pr�M>M∗�s�� ≤ s�

Hence, if Pr�S > α� ≥ t, then Pr�S�≤M∗�s�� > α� ≥ t − s, and conversely, if
Pr�S�≤M∗�s�� > α� > t then Pr�S > α� ≥ t− s.

To show part (iv), we may suppose without loss of generality that α = 1 and
β > 1. Clearly S�≤M∗�t���t� ≥ S�≤M∗�t���βt�, so we need only show an opposite
inequality. From part (ii), there are positive constants c1 and c2, depending
only upon the strong Lévy constants of �Xn�, such that for 0 ≤ t ≤ 1/2

S�≤M∗�t���t� ≤ c1S�≤M∗�c−12 β−1�t��c−12 t� ≤ c1S�≤M∗�c−13 t��c−13 βt��
where c3 = c2β.

Part (v) follows easily by combining part (iii), part (iv) and Proposition 1. ✷

5. Tail distributions. In this section, we will state and prove the for-
mula for the tail distribution of the sum of independent, real valued, random
variables that satisfy the Lévy Property.

If one restricts the formula to the case of sums of independent, identically
distributed random variables, one obtains a formula very similar to the main
result of Hahn and Klass (1997). The main differences are that their inequality
involves one sided inequalities, and also that their inequality is more precise.

This formula also has a strong resemblance to the result of Latała. As we
shall show in Section 6, computing the Lp norm of U is effectively equivalent
to computing U∗�e−p�. Then if one notices that �1 + x�p is very close to exp

for small positive x, one can see that this result and the result of Latała are
very closely related. Presumably one could derive Latała’s result by combining
Theorem 2 with Theorem 3. However the technical difficulties are quite tricky,
and since Latała’s proof is elegant, we will not carry out this program here.

Theorem 2. Let �Xn� be a sequence of real valued independent random
variables satisfying the strong Lévy property. Define the functions F1�t� and
F2�t� to be 0 if t > 1, and if 0 ≤ t ≤ 1,

F1�t� = inf

{
λ> 0 �∏

n

Ɛ�tX�≤��t��
n /λ� ≤ t−1 and ∏

n

Ɛ�t−X�≤��t��
n /λ� ≤ t−1

}
�

F2�t� = inf

{
λ> 0 �∏

n

Ɛ�tX�≤M∗�t��
n /λ� ≤ t−1 and ∏

n

Ɛ�t−X�≤M∗�t��
n /λ� ≤ t−1

}
�

Then

S∗�t� ≈
t
F1�t� ≈

t
F2�t��
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where the constants of approximation depend only upon the strong Lévy con-
stants of �Xn�.

Let us start with gaining some understanding of Orlicz spaces. There is a
huge literature on Orlicz spaces; see, for example, Lindenstrauss and Tzafriri
(1977). Suppose that * � 0�∞� → 0�∞� is an increasing function [usually
convex with *�0� = 0]. Then the Orlicz norm of a random variableX is defined
according to the formula


X
* = inf�λ > 0 � Ɛ *��X�/λ� ≤ 1��
We will be concerned with the special functions

*t�x� =
t−x − 1
t−1 − 1

�

The following is a special case of results that appear in Montgomery-Smith
(1992).

Lemma 2. For any random variable X, and for t ≤ 1/4, we have that


X
*t ≈ sup
0≤x≤1

log�t�
log�xt�X

∗�x��

with constants of approximation bounded by 2.

Proof. Suppose first that 
X
*t ≤ 1. Then Ɛ*t�X� ≤ 1, which implies
that

xt−X
∗�x� ≤

∫ 1

0
t−X

∗�y� dy ≤ Ɛ�t−�X�� ≤ t−1�

that is, X∗�x� ≤ log�xt�/ log�t�.
Conversely, suppose that X∗�x� ≤ log�xt�/ log�t� for 0 ≤ x ≤ 1. Then

E*t�X/2� ≤
∫ 1

0
*t

(
log�xt�
2 log�t�

)
dx = 2t−1/2 − 1

t−1 − 1
≤ 1�

✷

Proof of Theorem 2. Let us start with the proof thatS∗�t� ≈
t
F1�t�. Since

the random variables X�≤��t��
n are independent, we have that

F1�t� = inf
{
λ > 0 � Ɛ�tS�≤��t��/λ� ≤ t−1 and Ɛ�t−S�≤��t��/λ� ≤ t−1

}
�

Now we notice that for any random variable Y and 0 ≤ t ≤ 1 we have that
1
2Ɛ�t−�Y�� ≤ max�Ɛ�tY��Ɛ�t−Y�� ≤ Ɛ�t−�Y���

Hence

F1�t� ≤ inf
{
λ > 0 � Ɛ�t−�S�≤��t��/λ�� ≤ t−1

}
= 
S�≤��t��
*t
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and

F1�t� ≥ inf
{
λ > 0 � Ɛ�t−�S�≤��t��/λ�� ≤ 2t−1

}
= 
S�≤��t��
,t�

where

,t�x� =
t−x − 1
2t−1 − 1

�

However, we quickly see that for x ≥ 0 that if t ≤ 1/2 then ,t�x� ≥ 1
3*t�x� ≥

*t�x/3�, since *t is a convex function. Hence

F1�t� ≈ 
S�≤��t��
*t
with constants of approximation bounded by 3.

Next we apply Lemma 2 and see that

F1�t� ≈ sup
0≤x≤1

log�t�
log�xt��S

�≤��t���∗�x��

Taking x = t, we see that the right hand side is bounded below by
1
2�S�≤��t���∗�t�. Also, if t ≤ x ≤ 1, then

log�t�
log�xt��S

�≤��t���∗�x� ≤ �S�≤��t���∗�t��

Further, by Corollary 1 combined with Proposition 2, there exist constants c1
and c2, depending only on the Lévy constants of �Xn�, such that if 0 ≤ x ≤
t ≤ c−11 , then

log�t�
log�xt��S

�≤��t���∗�x� ≤ c2
log�x�
log�xt�

(�S�≤��t���∗�t� + �M���t���∗�x/2�)
≤ c2

(�S�≤��t���∗�t� + ��t�)�
Now, applying Proposition 1, Proposition 2 and Lemma 1 part (v), we finally
obtain the desired result.

To show that S∗�t� ≈
t
F2�t� is an almost identical proof. ✷

6. Lp norms. The main result of this section establishes the relationship
between the Lp norm of sums of random variables and their tail distributions.

Theorem 3. Given p0 > 0, if p ≥ p0, and �Xn� is a sequence of Banach
valued independent random variables, then


U
p ≈ U∗�e−p/4� + 
�
p ≈ �U�≤��e−p/8���∗�e−p/4� + 
�
p�
where the constants of approximation depend only upon p0.
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We should note that we are not able to get universal control over the con-
stants as p0 → 0, as is shown by simple examples once one understands that

Y
p converges to the geometric mean of �Y� as p→ 0.

Combining this with Corollary 1, we immediately obtain the following re-
sult that compares 
S
q to 
S
p. This result extends results of Talagrand
[see Ledoux and Talagrand (1991), Theorem 6.20, Kwapień and Woyczyński
(1992), Proposition 1.4.2 and comments following it; see also Hitczenko (1994),
Proposition 4.1] and Johnson, Schechtman and Zinn (1985). If this result is
specialized to symmetric or positive real valued random variables, then by
considering the cases p = 2 or p = 1, it implies the inequality of Rosen-
thal (1970), including the result of Johnson, Schechtman and Zinn (1985) that
gives correct order of the constants as p→ ∞. Note that 
�
q ≤ 21/q
M
q by
Proposition 1.

Theorem 4. Let �Xn� be a sequence of Banach valued independent random
variables and let p0 > 0. Then there exist positive constants c1, c2 and c3,
depending only upon p0, such that for q ≥ p ≥ p0 we have


U
q ≤ c1
q

max�p� log�e+ q��
(
U
p +M∗�c−12 e−q�

)+ c1
M
q

≤ c3
q

max�p� log�e+ q��
(
U
p + 
M
q

)
�

Let us proceed with the proofs. First we need a lemma that allows us to
deal with the “large” parts of U, so that they might be effectively considered
as a sum of disjoint random variables.

Lemma 3. Let �Xn� be a sequence of Banach valued independent random
variables, and let 0 < r < 1. Then we may express U�>��r�� = ∑∞

k=1Vk, where
the random variables Vk are disjoint, and V

∗
k�t� ≤ k�

(
t�k− 1�!/rk−1).

Proof. In proving this result, we may suppose without loss of generality
that Xn =X�>��r��

n , that is, we may suppose that
∑
n Pr�Xn �= 0� ≤ r.

If A is a finite subset of �, define the event

EA = �Xn �= 0 if and only if n ∈ A��

For each positive integer k, let Ek = ⋃
A⊆� �A�=k EA. Set Vk = UIEk . Notice

that if �A� = k, then

Pr�UIEA > x� ≤
∑
n∈A

Pr��Xn� > x/k and EA�

= ∑
n∈A

Pr��Xn� > x/k�
∏

m∈A\�n�
Pr�Xm �= 0��
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Hence,

Pr�Vk > x� =
∑

A⊆� �A�=k
Pr�UIEA > x�

≤ ∑
i1<···<ik

k∑
j=1

Pr��Xij � > x/k�
k∏

l=1 l�=j
Pr�Xil �= 0�

≤ 1
k!

∑
i1

� � �
∑
ik

k∑
j=1

Pr��Xij � > x/k�
k∏

l=1 l�=j
Pr�Xil �= 0�

= k
k!

∑
i1

� � �
∑
ik

Pr��Xi1 � > x/k�
k∏
l=2

Pr�Xil �= 0�

= k
k!

(∑
n

Pr��Xn� > x/k�
)(∑

n

Pr�Xn �= 0�
)k−1

≤ rk−1

�k− 1�! Pr�� > x/k��
✷

Corollary 2. Let �Xn� be a sequence of Banach valued independent ran-
dom variables, let 0 < r < 1, and let 0 < p <∞. Then


U�>��r��
p ≤ 2e2
pr/p
�
p�

Proof. Apply Lemma 3 to obtain the Vk. Using the fact that k ≤ 2k, we
obtain that


Vk
pp ≤ kp rk−1

�k− 1�!
�

p
p ≤ 2p

�2pr�k−1
�k− 1�! 
�


p
p�

Thus


U�>��r��
pp =
∞∑
k=1


Vk
pp ≤ 2p
�
pp
∞∑
k=1

�2pr�k−1
�k− 1�! = 2pe2

pr
�
pp� ✷

Proof of Theorem 3. Applying Proposition 1, we see that


U
p ≥ 1
2
M
p ≥ 2−1−1/p
�
p�

Also, we have that


U
pp =
∫ 1

0
�U∗�t��p dt ≥ 8−1e−p�U∗�e−p/8��p�

that is, 
U
p ≥ 8−1/pe−1U∗�e−p/8� ≥ 8−1/pe−1U∗�e−p/4�. Hence we have shown
that there exists a constant c1, depending only upon p0, such that


U
p ≥ c−11 �U∗�e−p/4� + 
�
p��
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Furthermore, by Proposition 1,

Pr�U �= U�≤��e−p/8��� ≤ Pr�M> ��e−p/8�� ≤ Pr�M>M∗�e−p/8�� ≤ e−p/8�
Hence U∗�e−p/8� ≥ �U�≤��e−p/8���∗�e−p/4�, and so we have shown that there is
a constant c2 > 0, depending only upon p0, such that


U
p ≥ c−12 ��U�≤��e−p/8���∗�e−p/4� + 
�
p��
Now let us derive the converse inequalities. Corollary 1 tells us that for t ≤
e−p/2 that(

U�≤��e−p/8��
)∗

�t� ≤ c2
log�1/t�
p+ log�2�

(
�U�≤��e−p/8���∗�e−p/2� + ��e−p/8�

)
�

Thus


U�≤��e−p/8��
pp ≤
∫ e−p/2
0

((
U�≤��e−p/8��

)∗
�t�
)p
dt

+�1− e−p/2�
(
U�≤��e−p/8��

)∗
�e−p/2�

≤ 1
�p+ log�2��p

∫ 1

0
�log�1/t��p

× dt
((
U�≤��e−p/8��

)∗
�e−p/2� + ��e−p/8�

)p
+
(
U�≤��e−p/8��

)∗
�e−p/2�

≤ cp3
((
U�≤��e−p/8��

)∗
�e−p/2� + ��e−p/8�

)p
�

where c3 > 0 depends only upon p0. Furthermore,

��e−p/8�p ≤ 8ep
∫ 1

0
��t�p dt = 8ep
�
pp�

Hence, applying Corollary 2 and the (quasi-)triangle inequality for Lp, we
deduce that there exists a constant c4, depending only upon p0, such that


U
p ≤ c4��U�≤��e−p/8���∗�e−p/2� + 
�
p��
Finally the result follows by noticing that(

U�≤��e−p/8��
)∗

�e−p/2� ≤
(
U�≤��e−p/8��

)∗
�e−p/4��

and also, by an argument similar to one presented above, that

�U�≤��e−p/8���∗�e−p/2� ≤ U∗�3e−p/8� ≤ U∗�e−p/4�� ✷

Finally we remark that from the results mentioned at the end of Section 3
we can obtain one sided versions of Theorem 3 with

∣∣S∣∣ in place of U, for
example, given p ≥ p0,


S
p ≤ cS∗�e−p/c� + c
�
p�
where the constants depend only upon p0.
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Obviously if the sequence of random variables satisfy the Lévy property,
then we can obtain the two sided inequality, but otherwise the other side of
the inequality need not hold, as is shown by the example X1 = 1, X2 = −1,
Xn = 0 (n > 2).

7. Rearrangement invariant spaces. Rearrangement invariant spaces
are studied in much of the literature; see, for example, Lindenstrauss and
Tzafriri (1977). However, we will work with a definition that is a little less
restrictive. A rearrangement invariant space on the random variables is a
quasi-normed Banach space � of random variables such that 1 ∈ � , and if
X∗ ≤ Y∗ and Y ∈ � , then X ∈ � and 
X
� ≤ 
Y
� . Obviously the spaces
Lp for 0 < p ≤ ∞ are rearrangement invariant spaces.

Given a rearrangement invariant space � , we define the quasi-constant of
� to be the least constantK > 0 such that 
X+Y
� ≤K�
X
� +
Y
� � for
allX�Y ∈ � . Notice that ifX∗�2t� ≤ Y∗�t� andY ∈ � , thenXmay be written
as the sum of two disjoint random variables Y1 and Y2 with Y∗

1�t��Y∗
2�t� ≤

Y∗�t�, and hence 
X
� ≤ 2K
Y
� .
Given two rearrangement invariant spaces � and � , we will say that �

embeds into � if there is a positive constant c such that if X ∈ � , then
X ∈ � and 
X
� ≤ c
X
� . We will call the least such c the embedding
constant of � into � .

Theorem 5. Let p0 > 0, and let � be a rearrangement invariant space
such that � embeds into Lp, and Lq embeds into � , where q ≥ p ≥ p0. Then
there is a positive constant c, depending only upon the quasi-constant of � ,
the embedding constants, p0 and q/p, such that for any sequence of Banach
valued independent random variables �Xn�,

c−1
(

U
p + 
�
�

)
≤ 
U
� ≤ c

(

U
p + 
�
�

)
�

Proof. Let us first obtain the left hand side inequality. It follows by hy-
pothesis that 
U
� ≥ c−11 
U
p, where c1 is the embedding constant of �

into Lp. Furthermore, U ≥ 1
2M, and by Proposition 2.1, ��t� ≤M∗�2t�. Hence


U
� ≥ �4K�−1
�
� , where K is the quasi-constant of � .
Now let us obtain the right-hand inequality. By Corollary 1, we have that

there is a universal positive c2 for 0 ≤ t ≤ 1,

U∗�t�I0≤t≤2−2q/p ≤ c2
2q
p

(
U∗�tp/2q� +M∗�t/2�) �

Now U∗�t�I0≤t≤2−2q/p ≥ U∗�22q/pt� and hence


U
� ≤ �2K�!2q/p"c2K
2q
p

(
t �→ U∗�tp/2q�
� + 
M
�
)
�
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To complete the proof, suppose that 
U
p = λ. Then it is easily seen that
U∗�t� ≤ λt−1/p. Thus, if c3 is the embedding constant of Lq into � , then


t �→ U∗�tp/2q�
� ≤ c3
t �→ U∗�tp/2q�
q

= c3
(∫ 1

0
�U∗�tp/2q��q dt

)1/q

≤ c3λ
(∫ 1

0
t−1/2 dt

)1/q

= 21/qc3λ� ✷
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