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PERTURBATION OF THE EQUILIBRIUM FOR A TOTALLY
ASYMMETRIC STICK PROCESS IN ONE DIMENSION1

By Timo Seppäläinen

Iowa State University

We study the evolution of a small perturbation of the equilibrium of
a totally asymmetric one-dimensional interacting system. The model we
take as an example is Hammersley’s process as seen from a tagged parti-
cle, which can be viewed as a process of interacting positive-valued stick
heights on the sites of Z. It is known that under Euler scaling (space and
time scale n) the empirical stick profile obeys the Burgers equation. We
refine this result in two ways. If the process starts close enough to equi-
librium, then over times nν for 1 ≤ ν < 3, and up to errors that vanish in
hydrodynamic scale, the dynamics merely translates the initial stick con-
figuration. In particular, on the hydrodynamic time scale, diffusive fluctua-
tions are translated rigidly. A time evolution for the perturbation is visible
under a particular family of scalings: over times nν , 1 < ν < 3/2, a pertur-
bation of order n1−ν from equilibrium follows the inviscid Burgers equa-
tion. The results for the stick model are derived from asymptotic results
for tagged particles in Hammersley’s process.

1. Introduction. A number of recent papers have sought various refine-
ments to the basic hydrodynamic limits of interacting particle systems. One
type of refinement is to study the time evolution of a small perturbation of
the equilibrium of the process. For asymmetric exclusion in dimensions 3 and
higher, Esposito, Marra and Yau (1994) proved that under diffusive scaling
(time scale n2 and space scale n) a perturbation of order n−1 follows a conser-
vation law with a diffusion term. The backdrop of this result is the standard
hydrodynamic limit of asymmetric processes, which leads to a conservation law
without diffusion term under Euler scaling (time scale and space scale both
n). A context for the result of Esposito, Marra and Yau is the search for micro-
scopic interpretations of the Navier–Stokes equations. We refer the reader to
pages 185–188 of Kipnis and Landim’s (1999) monograph for a description of
this program and further references.

Our paper looks at the question of Esposito, Marra and Yau in one dimen-
sion. We add a perturbation of order n−β to the equilibrium, β > 0. The
perturbation vanishes in the hydrodynamic limit n → ∞, and we study the
effect of this perturbation under various time scales nνt, ν ≥ 1. We have two
types of results: (1) for β ∈ �0�1/2�, a hydrodynamic limit in the time scale
n1+βt shows that the perturbation obeys macroscopically the Burgers equa-
tion without diffusion term; and (2) for ν ∈ 
1�3� and β close enough to 1, we
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show that the dynamics is simply a translation of the initial configuration, up
to o�n� error terms.

The most popular models for studies of the hydrodynamics of asymmetric
stochastic dynamics are the exclusion and zero-range processes. Instead of
these processes, we prove our results for the so-called stick process, which
can also be regarded as Hammersley’s process as seen from a tagged particle.
This process has nonnegative variables η�i� (stick heights) on the sites of Z
that exchange pieces between each other. The stick process lacks some of the
good properties of the exclusion or zero-range process: the state space is not
compact, the rates are unbounded, and the amount of material that jumps is
also unbounded.

To make up for these complications, the totally asymmetric one-dimensional
process has a beautiful combinatorial structure uncovered by Aldous and
Diaconis (1995). This structure connects Hammersley’s process and the stick
model to the increasing sequences problem on planar Poisson points. A key
ingredient of our proofs are sharp deviation estimates for the increasing
sequences problem from Kim (1996), Seppäläinen (1998b) and Baik, Deift and
Johansson (1999).

We believe that the results of our paper hold also for totally asymmet-
ric exclusion and zero-range processes. The basis for this conjecture is that
these processes possess particle-level variational formulations that involve a
planar growth model, analogous to the increasing sequences connection of
Hammersley’s process [Seppäläinen (1998a, c)]. Johansson (2000) has shown
that the limiting fluctuations for this growth model are the same as for the
increasing sequences model. At the moment our proof cannot be carried out for
exclusion or zero-range processes because estimate (5.5) has not been derived
for these models. See Remark 5.2 in Section 5.

Organization of the paper. In Section 2 we describe the stick model and
state the results mentioned previously. Theorem 1 gives the translation, and
Theorem 2 the hydrodynamic limit of the perturbation. Theorems 1 and 2
are corollaries of corresponding Theorems 3 and 4 for tagged particles in
Hammersley’s process. These are stated in Section 3. The translation
Theorem 3 for Hammersley’s process is compared to a similar result of Ferrari
and Fontes (1994) for asymmetric exclusion. Section 4 addresses briefly the rig-
orous construction of Hammersley’s process and the stick process and the con-
nection with increasing sequences. Sections 5–7 contain the proofs. Section 5
contains lemmas, Section 6 the proof of Theorem 3, and Section 7 the proof of
Theorem 4. A frequently used notation is 
x� = maxn ∈ Z � n ≤ x�.

2. The stick model and the results. Here is an informal description of
the model. A rigorous construction will follow in Section 4. The state of the
process is a configuration η = �η�i� � i ∈ Z�, where each η�i� is a nonnegative
real number. Think of η�i� as the height of a vertical stick attached to site
i ∈ Z. At exponential rate equal to η�i�, the following event takes place: pick
a random quantity u uniformly distributed on 
0� η�i��. Break off a piece of
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length u from the stick at i, and attach this piece to the stick at site i + 1.
Thus, if the neighboring stick lengths before the event were �η�i�� η�i + 1��,
then after the event they would be �η�i�−u�η�i+1�+u�. These events happen
at all sites i independently of each other. In the language of generators, this
dynamics is expressed as

Lf�η� = ∑
i∈Z

∫ η�i�

0

[
f�ηu� i� i+1� − f�η�]du�(2.1)

where ηu� i� i+1 is the configuration after the jump,

ηu� i� i+1�j� =


η�i� − u� j = i,
η�i+ 1� + u� j = i+ 1,
η�j�� j �= i, i+ 1.

In Seppäläinen (1996) a Markov process η�t� = �η�i� t� � i ∈ Z�, t ≥ 0, is
constructed that operates according to the description given previously. The
state space of the process is

Y =
{
η ∈ 
0�∞�Z � lim

N→−∞
N−2

−1∑
i=N

η�i� = 0
}

(2.2)

and the paths of the process are in the Skorohod space D�
0�∞��Y�. Note
that Y is not closed in the product topology, but is given a stronger topology
with a complete, separable metric. L in (2.1) is the generator of the process,
in the sense that

Eη
[
f
(
η�t�)]− f�η� =

∫ t

0
Eη

[
Lf

(
η�s�)]ds(2.3)

for all bounded continuous cylinder functions f on Y and all initial states
η ∈ Y. Here Eη stands for the expectation under the path measure of the
process started at state η. Furthermore, the process has a one-parameter
family of invariant distributions, namely, the i.i.d. exponential distributions
on the variables �η�i� � i ∈ Z�.

We focus now on the hydrodynamic behavior of this process. The basic result
[Seppäläinen (1996)] is that under Euler scaling the empirical stick profile
obeys the Burgers equation. Suppose u�x� t�, �x� t� ∈ R×
0�∞�, is the entropy
solution of the Burgers equation

ut + �u2�x = 0� u�x�0� = u0�x��(2.4)

with nonnegative initial data u0 ∈ L∞�R�. Consider a sequence ηn, n = 1�
2�3� � � � � of stick processes, and assume that a law of large numbers is satisfied
at time t = 0: for all a < b in R,

lim
n→∞n−1


nb�∑
i=
na�+1

ηn�i�0� =
∫ b

a
u0�x�dx in probability.(2.5)
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The theorem is that the law of large numbers continues to hold at all later
times t > 0:

lim
n→∞n−1


nb�∑
i=
na�+1

ηn�i� nt� =
∫ b

a
u�x� t�dx in probability.(2.6)

Euler scaling refers to the scaling in the preceding limit, where the ratio
of macrosopic and microscopic units is the same n for both space and time.
A macroscopic space interval �a� b� corresponds to approximately n�b − a�
microscopic lattice sites, and macrosopic time t corresponds to microscopic
time nt. The derivation of the hydrodynamic limit (2.6) from the hypothe-
sis (2.5) requires some technical assumptions, and the details can be found in
Seppäläinen (1996).

A trivial special case of the hydrodynamic limit is of course the case of a
process in equilibrium: if the sticks are initially i.i.d. exponentially distributed
with common expectation E
η�i�0�� = q, then this situation persists, and the
macroscopic profile is the constant u�x� t� ≡ q.

In the present paper we study the evolution of a small perturbation of the
equilibrium. The initial macroscopic profile is

u0�x� = q+ n−βv0�x��(2.7)

where q > 0 is the fixed equilibrium density, v0 is a bounded measurable func-
tion on R and β ∈ �0�1� is a parameter that we adjust to investigate different
scalings. The function v0 is not assumed to take any particular sign, so to have
nonnegative profiles we consider only n large enough to have q > n−β�v0�∞.
For each n, the initial stick configuration �ηn�i�0� � i ∈ Z� is assumed to
be in local equilibrium with macroscopic profile u0. Precisely speaking, our
assumption is this:

The variables �ηn�i�0� � i ∈ Z� are mutually independent,

exponentially distributed and have expectations

E
[
ηn�i�0�] = q+ n1−β

∫ i/n

�i−1�/n
v0�x�dx�

(2.8)

The perturbation of the expected density is taken to be

n−β · {the average of v0 over the interval (�i− 1�/n� i/n]},
instead of n−β · the point value v0�i/n�� because we make no regularity
assumption on v0. If v0 is Lipschitz continuous, we can substitute v0�i/n� for
n
∫ i/n
�i−1�/n v0�x�dx in (2.8), and all the results remain true. A standing assump-

tion is also that q > 0. In Section 4.1 we explain how the case q = 0 is
reduced to the basic hydrodynamic limit (2.5)–(2.6) when the time scale is
chosen appropriately.

Since �u0 −q�∞ → 0 as n → ∞, the limit (2.6) is valid again with constant
profile u�x� t� ≡ q. To escape the regime of (2.6), we subtract the equilib-
rium density q and speed up time more, beyond the hydrodynamic scale nt.



180 T. SEPPÄLÄINEN

We introduce a second parameter ν ∈ 
1�∞�, and look at the evolution of the
stick profile over times of order nν. The space scaling will be the same as
in (2.5)–(2.6), so the lattice of sites scales as n−1Z. Our object of study is the
empirical perturbation profile∑

i∈Z

{
ηn�i� nνt� − q

}
δi/n�

In other words, we follow either integrals
∑

i∈Z
{
ηn�i� nνt� − q

}
φ�i/n� of com-

pactly supported, continuous test functions φ, or, equivalently, the total stick
mass in macroscopic intervals �x�y�, ∑
ny�

i=
nx�+1 η
n�i� nνt� − nq�y− x�.

Let us derive an easy “benchmark” result against which we can compare
later results. It is proved in Seppäläinen (1996) that the stick process is attrac-
tive. This means that, if η and ζ are two initial states that satisfy η ≥ ζ
[inequalities are interpreted coordinatewise, η�i� ≥ ζ�i� for all i ∈ Z], then it
is possible to construct the processes η�t� and ζ�t� on a common probability
space so that the inequality η�t� ≥ ζ�t� holds at all times t ≥ 0, almost surely.

Fix n for the moment. Let ζ1 and ζ2 be stick processes in equilibrium, with
expectations

E
[
ζ1�i� t�] = q− n−β�v0�∞ and E

[
ζ2�i� t�] = q+ n−β�v0�∞�

In other words, for each fixed time t and for r ∈ 1�2�, the stick heights
�ζr�i� t� � i ∈ Z� are exponentially distributed i.i.d. random variables with
expectations as above. At time t = 0, we can construct the initial configurations
of all three processes ζ1, ηn and ζ2 on a single probability space so that

ζ1�i�0� ≤ ηn�i�0� ≤ ζ2�i�0� for all i, a.s.

To do this, take an i.i.d. sequence of Exp(1) variables Xi� and set

ζr�i�0� = E
[
ζr�i�0�]Xi and

ηn�i�0� = E
[
ηn�i� t�]Xi for r = 1�2 and all i�

We then construct all three processes on a common probability space so that
ζ1�i� t� ≤ ηn�i� t� ≤ ζ2�i� t� for all t and i a.s.

Let Kn� be an arbitrary sequence of integers, to be used as translations
on the lattice. The construction gives these inequalities:


ny�∑
i=
nx�+1

{
ζ1�Kn + i� nνt� −E

[
ζ1�i� nνt�]}− (
ny� − 
nx�)n−β�v0�∞

≤

ny�∑

i=
nx�+1

{
ηn�Kn + i� nνt� − q

}
(2.9)

≤

ny�∑

i=
nx�+1

{
ζ2�Kn + i� nνt� −E

[
ζ2�i� nνt�]}+ (
ny� − 
nx�)n−β�v0�∞ �
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A terminological convention: throughout, we shall say

X = Y+ o�nα� a.s.(2.10)

as a shorthand for

lim
n→∞n−α∣∣X−Y

∣∣ = 0 a.s.(2.11)

The sums of the ζ-terms in (2.9) are almost surely o�n1/2+δ� for any δ > 0
because the variables are i.i.d. and have sufficient moments.

Thus we get the result


ny�∑
i=
nx�+1

ηn�Kn + i� nνt� = nq�y− x� + o
(
n
1/2�∨
1−β�+δ) a.s.(2.12)

for any ν, β > 0 and arbitrarily small δ > 0. The translation Kn was included
in anticipation of later results. Because we are speeding up time beyond the
hydrodynamic scale, a certain translation will appear naturally. The goal of
the paper is to improve on (2.12), by obtaining results that reveal how the
perturbation evolves in time or that have a smaller error term.

As the last preparatory step, we construct the solution of the Burgers equa-
tion (2.4) by the Hopf–Lax formula. The perturbation v0�x� is now the initial
data. Define V0�x� by

V0�0� = 0 and V0�y� −V0�x� =
∫ y

x
v0�z�dz for all x < y�

V0 is a Lipschitz function with a bounded derivative a.e. For �x� t� ∈ R×
0�∞�,
define V�x�0� = V0�x� and, for t > 0,

V�x� t� = inf
y∈R

{
V0�y� +

1
4t

�x− y�2
}
�(2.13)

Then V is the unique viscosity solution of the Hamilton–Jacobi equation

Vt + �Vx�2 = 0� V�x�0� = V0�x��(2.14)

For each fixed t, V�·� t� is again a Lipschitz function, so it has a.e. an x-
derivative v = Vx. This function v�x� t� is the unique entropy solution of (2.4)
with initial data v0. The reader can find a development of these p.d.e. results
in Evans (1998).

Now the results for the stick process. The most general result, valid for all
scalings, does not identify any time evolution, only a translation of the initial
sticks.

Theorem 1. Assume that β > 0 and ν ≥ 1. Let ηn�t� denote the stick process
started from the initial configuration (2.8). Fix x < y in R and t > 0. Then� for
any δ > 0� the following asymptotic equality is valid almost surely as n → ∞:


ny�∑
i=
nx�+1

ηn
(
2nνqt� + i� nνt

) = 
ny�∑
i=
nx�+1

ηn�i�0� + o�n
ν−2β�∨
ν/3�+δ��(2.15)
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Why the translation 
2nνqt� appears naturally is explained in Section 4.2. The
error exponent in the statement (2.15) satisfies


ν − 2β� ∨ 
ν/3� =
{
ν − 2β� ν > 3β,
ν/3� ν ≤ 3β�(2.16)

If ν < 3 and β > �ν − 1�/2 the error in (2.15) is o�n� and so vanishes in
the standard hydrodynamic scaling of (2.6). If ν = 1 and β > 1/4 the error
is o�√n�, and we see that fluctuations in the central limit scale are rigidly
translated by the dynamics.

We find one family of scalings where the perturbation evolves according to
the Burgers equation. For this to happen the perturbation has to be larger
than n−1/2.

Theorem 2. Suppose β ∈ �0�1/2� and set ν = 1 + β� Let ηn�t� denote the
stick process started from the initial configuration (2.8). Let φ be a compactly
supported� continuous test function on R� Then almost surely

lim
n→∞

1
n1−β

∑
i∈Z

{
ηn�
2n1+βqt� + i� n1+βt� − q

}
φ�i/n�

=
∫
R
φ�x�v�x� t�dx�

(2.17)

This result compares directly with Corollary 2.3 in Esposito, Marra and Yau
(1994), where the corresponding result is proved in dimensions d ≥ 3 for an
exclusion process. The deterministic limit (2.17) cannot be valid for β = 1/2
because in equilibrium this would be the central limit theorem scaling.

Remark about construction. The almost sure results of Theorems 1
and 2 are proved for a special construction explained in Section 4. In this con-
struction the processes ηn are defined on one common probability space, and
the variables ηn�i� t� are realized as interparticle distances of Hammersley’s
process. This is not the construction used in (2.9) that makes η attractive. Both
theorems are proved by Borel–Cantelli arguments, and the probability esti-
mates for the arguments are derived with the help of the special construction.
But once derived, the estimates are valid in all constructions because they are
statements about the distributions of the processes. Hence Theorems 1 and 2
are valid for any construction of the stick process.

To compare (2.17) directly with (2.12), we can write it in the form


ny�∑
i=
nx�+1

ηn
(
2n1+βqt� + i� n1+βt

)

= nq�y− x� + n1−β
∫ y

x
v�z� t�dz+ o

(
n1−β)�

(2.18)

A comparison of the errors in (2.12), (2.15) and (2.18) reveals that for ν > 1+β
the easy result (2.12) in fact has the smallest error. For ν = 1 + β (2.18) has
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the smallest error, while for ν < 1+β it can be either one of (2.12) and (2.15),
depending on the exact relation between β and ν.

3. Asymptotics for a tagged particle in Hammersley’s process. In
Hammersley’s process a countable collection of point particles evolves on R
according to the following rule: if x < y are two locations of neighboring
particles, then with rate equal to the distance y − x the particle at y jumps
to a randomly (uniformly) chosen location in the interval �x�y�. All particles
execute jumps independently of each other.

This evolution can be graphically constructed with a rate one, homogeneous
Poisson point process on the space–time plane R × �0�∞�: Suppose �x� t� is
a point of the Poisson process. Then at time t the leftmost particle in 
x�∞�
jumps to x. If the leftmost particle were already at x, or if there were no
leftmost particle in 
x�∞�, no jump would take place. This latter case can
happen if there are infinitely many particles in some bounded interval.

There is an obvious connection between Hammersley’s process and our stick
process. We assume that we can label the particles by integers in an order-
preserving way. Let z�i� t� denote the position of particle i at time t. The
assumption is

z�i− 1� t� ≤ z�i� t� for all i and t.(3.1)

Suppose we have constructed the process z�t� = �z�i� t� � i ∈ Z� that operates
according to the description given previously. Define

η�i� t� = z�i� t� − z�i− 1� t� for i ∈ Z�(3.2)

Then it is clear that η�t� evolves as our stick process. When particle z�i� jumps
to the left, stick η�i� donates a piece to stick η�i+ 1�. In particle system jar-
gon, the stick process is Hammersley’s process as seen from a tagged particle.
What this means is that knowing η�t� and the evolution of one particle z�j� t�
is equivalent to knowing the process z�t�. The simultaneous construction of
Hammersley’s process and the stick process is discussed in Section 4.

Assume that the initial sticks ηn�0� = �ηn�i�0� � i ∈ Z� that satisfy (2.8)
have been defined on some probability space. Initial particle configurations
zn�0� = �zn�i�0� � i ∈ Z� are defined on this same probability space by

zn�0�0� = 0� zn�i�0� =
i∑

j=1
ηn�j�0� for i > 0�

zn�i�0� = −
0∑

j=i+1
ηn�j�0� for i < 0�

(3.3)

Thus zn�i�0� is a sum of independent exponential random variables with uni-
formly bounded expectations, and

E
zn�i�0�� = qi+ n1−βV0�i/n��(3.4)
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The processes zn�t�� are then constructed together on one probability space
where the initial configurations zn�0�� and the space–time Poisson points are
independent. All processes zn�t� use the same realization of the Poisson points
to construct the dynamics. This is not really necessary because our a.s. results
come from Borel–Cantelli arguments. But in the proof it is convenient to work
with a single Poisson process and the family zn�0�� of initial configurations,
instead of giving each process zn�t� its own space–time Poisson process.

Theorem 3. Assume that β > 0 and ν ≥ 1� Let zn�i� t� denote Hammersley’s
process started from the initial configuration described in (3.3) and (2.8). Fix
x ∈ R and t > 0� Then� for any δ > 0� we have the following asymptotic equality
almost surely as n → ∞ �

zn
(
nx� + 
2nνqt�� nνt

) = nνtq2 + zn�
nx��0� + o
(
n
ν−2β�∨
ν/3�+δ)�(3.5)

Theorem 1 is an immediate consequence of (3.2) and Theorem 3.
Ferrari and Fontes (1994) proved a translation result of this type for the

exclusion process. Suppose for the moment that the η�i�’s are occupation vari-
ables of totally asymmetric one-dimensional simple exclusion in equilibrium
at density ρ. Then the jumps of the z-variables correspond to the current of
particles. Statement (1.5) in Theorem 1 of Ferrari and Fontes (1994) implies
that, in the L2 sense as n → ∞,

z�0� nt� = ntρ2 + z�
nth�ρ���0� + o�n1/2��(3.6)

where h�ρ� = 2ρ− 1. This can be compared with our result for Hammersley’s
process: with ν = 1 and β ≥ 1/3, (3.5) implies that

zn�0� nt� = ntq2 + zn
(− 
2tqn��0)+ o�n1/3+δ��(3.7)

The error is smaller in (3.7) than in (3.6), but the Ferrari–Fontes result is
valid for more general asymmetric exclusions, not only for totally asymmetric.

Next we give a result with explicit time evolution. In one of the cases treated
by the next theorem, we will assume that V0�x� has asymptotic slopes in the
sense that these limits exist:

v0�−∞� = lim
x→−∞

V0�x�
x

and v0�+∞� = lim
x→+∞

V0�x�
x

�(3.8)

When this is the case, we define the piecewise linear “asymptotic profile”

V∞�x�0� =


v0�−∞�x� x < 0,
0� x = 0,
v0�+∞�x� x > 0�

(3.9)

and its evolution for t > 0 by

V∞�x� t� = inf
y∈R

{
V∞�y�0� + 1

4t
�x− y�2

}
�(3.10)
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Theorem 4. Assume that ν > 3β, in addition to the basic assumption β > 0
and ν ≥ 1. Let zn�i� t� denote Hammersley’s process started from the initial
configuration zn�i�0� described in (3.3) and (2.8). Fix x ∈ R and t > 0� Then
we have the following asymptotic equalities, each statement valid almost surely
as n → ∞�

Case 1. ν > 1+ β� Assume that the limits in (3.8) exist. Then

zn
(
nx� + 
2nνqt�� nνt

)
= nνtq2 + nxq+ nν−2βV∞�0� t� + o�nν−2β��

(3.11)

Case 2. ν = 1+ β� Then

zn
(
nx� + 
2nνqt�� nνt

)
= nνtq2 + nxq+ n1−βV�x� t� + o�n1−β��

(3.12)

Case 3. 1 ≤ ν < 1+ β� Then, for any δ > 0,

zn
(
nx� + 
2nνqt�� nνt

)
= nνtq2 + nxq+ n1−βV0�x� + o

(
n
1/2�∨
ν−2β�+δ)�(3.13)

Remarks. Recall again (2.10)–(2.11) for the precise meaning of the almost
sure o�nα� error terms. In Case 1, the term nxq in (3.11) may or may not be
included in the error o�nν−2β�, depending on whether ν > 1 + 2β or not. The
statement (3.11) for Case 1 does not improve (2.12) because the error nν−2β is
strictly larger than n1−β in this case. Theorem 2 follows from Case 2.

The remark about construction at end of Section 2 applies here, too. The
proofs of Theorems 3 and 4 are Borel–Cantelli arguments that depend on
estimates of the distributions of the processes, and hence are valid in all
constructions.

The three cases reveal the effect of the time scale on the evolution of the per-
turbation: For fast times ν > 1+β we only see the asymptotic effect V∞�0� t�
which is independent of the reference point x. For slow times ν < 1 + β we
only see the initial perturbation V0�x�. And exactly at ν = 1 + β, we see the
perturbation evolve according to the Burgers equation.

It remains to prove Theorems 3 and 4. This proof uses a special construc-
tion of Hammersley’s process in terms of increasing sequences of space–time
Poisson points.

4. Graphical construction and increasing sequences. Consider a
planar, rate one, homogeneous Poisson point process. A sequence �x1� t1�,
�x2� t2�, � � �, �xm� tm� of Poisson points is increasing if

x1 < x2 < · · · < xm and t1 < t2 < · · · < tm�

For arbitrary �a� s�, �b� t� on the plane, define the random variable L��a� s�,
�b� t�� as the maximal number of Poisson points on an increasing sequence
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contained in the rectangle �a� b� × �s� t�. Abbreviate L�b� t� = L��0�0�� �b� t��
for the case where the lower left corner is the origin.

An inverse to L is defined by

�
(�a� s��m� τ

) = inf
{
h > 0 � L(�a� s�� �a+ h� s+ τ�) ≥ m

}
�(4.1)

In words: ���a� s��m� τ� is the minimal horizontal distance h for which the
rectangle �a� a + h� × �s� s + τ� contains an increasing sequence of m points.
Again abbreviate ��m�τ� = ���0�0��m� τ�.

These random variables satisfy laws of large numbers:

lim
s→∞

1
s
L�sb� st� = 2

√
bt and lim

s→∞
1
s
�
(
sa�� st) = a2

4t
a.s.(4.2)

The existence of the limits follows from the subadditive ergodic theorem. The
exact values were first calculated by Vershik and Kerov (1977).

In the previous section we suggested how to construct Hammersley’s pro-
cess with a rate one space–time Poisson point process. The rule was that the
Poisson point �x� t� pulls the leftmost particle in 
x�∞� to the location x at
time t. As usual in particle system contexts, constructing the process rigor-
ously from this description, on the infinite real line, needs a proof.

We can take an elegant way out with the help of the increasing paths.
Assume given an initial configuration �z�i�0� � i ∈ Z� that satisfies the order-
ing convention (3.1) for t = 0. Given a realization of the Poisson points, define

z�k� t� = inf
i�i≤k

{
z�i�0� + �

(�z�i�0��0)� k− i� t
)}

(4.3)

for all k ∈ Z and t > 0. In words: the potential locations of z�k� t� are all points
x such that the rectangle �z�i�0�� x�×�0� t� contains an increasing sequence of
k− i Poisson points. Of these potential locations z�k� t� chooses the leftmost.

If we permit −∞ as a value for z�k� t�, (4.3) defines a process z�t� = �z�k� t� �
k ∈ Z� that satisfies (3.1). To rule out the possibility of jumping to −∞ in finite
time, define the state space

Z = {
z = (

z�i�) ∈ RZ � z�i− 1� ≤ z�i� for all i�and lim
i→−∞

i−2z�i� = 0
}
�(4.4)

One can check that if �z�i�0�� ∈ Z, then almost surely the infimum in (4.3)
is always attained at some finite i and z�t� ∈ Z for all t. Homogeneity of
the space–time Poisson point process then implies that (4.3) defines a time-
homogeneous Markov process z�t� with state space Z.

Definitions (2.2) and (4.4) show thatYmaps injectively intoZ through (3.3),
and Z back onto Y through (3.2). So given an initial stick configuration
�η�i�0� � i ∈ Z� in Y, we define an initial particle configuration �z�i�0�� ∈ Z
as in (3.3), then define the process z�t� by (4.3), and finally use (3.2) to define
the stick process η�t�.

This is convenient as a rigorous definition of the processes η�t� and z�t�, but
it is not so obvious that the resulting dynamics follows our earlier descriptions.



EVOLUTION OF STICK PROCESS 187

One can prove that when η�t� is defined this way, (2.3) is satisfied so the gen-
erator of η�t� is L. All the facts mentioned here can be found in Sections 3–5
in Seppäläinen (1996).

We can also argue from definition (4.3) that if �x� t� is a space–time Poisson
point, then at time t the leftmost particle in 
x�∞� is at x, if such a particle
exists. Suppose not, so that for some k, z�k−1� t� < x < z�k� t�. Pick i ≤ k−1
so that

z�k− 1� t� = z�i�0� + �
(�z�i�0��0�� k− 1− i� t

)
�

Barring the null event that space–time Poisson points can lie on the same
horizontal line, there must be an increasing sequence of k − 1 − i Poisson
points from �z�i�0��0� to a point �y� s� such that y = z�k − 1� t� < x and
s < t. (In the extreme case i = k − 1, this sequence is empty, and s = 0.)
Consequently, we can append the new point �x� t� to this increasing sequence
to produce a sequence of k− i points from �z�i�0��0� to �x� t�. Then

z�k� t� ≤ z�i�0� + �
(�z�i�0��0�� k− i� t

) ≤ x�

contradicting x < z�k� t�.
The remainder of the paper proves Theorems 3 and 4 through definition (4.3).

The construction of the family of processes zn�t�� is the following. There is
a single probability space �,�� �P� on which are defined the initial locations
zn�0�� and, independently of them, the space–time Poisson point process. On
this probability space define the random variables

Γ n�i�m� t� = �
(�zn�i�0��0��m� t

)
�(4.5)

Then, following (4.3), the processes zn�t�� are defined by

zn�k� t� = inf
i�i≤k

{
zn�i�0� + Γ n

(
i� k− i� t

)}
�(4.6)

Our arguments use distributional bounds on the initial locations zn�i�0� and
the variables Γ n�i�m� t�. In distribution Γ n�i�m� t� is equal to ��m� t�, so we
can ignore the indices n and i and switch to ��m� t� as soon as only distribu-
tional properties are studied.

We close this section with two comments about matters that came up in
Section 2.

4.1. The case q = 0. Theorems 1–4 are proved for the case where the fixed
equilibrium density q is strictly positive. Here we show how the case q = 0
reduces to the standard hydrodynamic setting, through a space–time scaling
of the graphical picture.

Suppose q = 0, and let the initial configurations ηn�0� and zn�0� be as
in (2.8) and (3.3). Define another initial particle configuration by z̃n�0� =
nβzn�0�. Construct the two processes zn�t� and z̃n�t� by formula (4.3), with
these Poisson processes: for zn�t� take a realization / of the rate one, space–
time Poisson points, and for z̃n�t� use the space–time points /̃ obtained by
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mapping the points of / by �x� t� �→ �nβx�n−βt�. By the scaling proper-
ties of Poisson processes, /̃ is again a rate one, homogeneous Poisson point
process. In the graphical construction the difference between the evolu-
tions zn�t� and z̃n�t� is merely a stretching and shrinking of the space and
time axes: zn�i� t� = n−βz̃n�i� n−βt�. By the standard hydrodynamic result
n−1z̃n�
nx�� nt� → V�x� t�, so we get that nβ−1zn�
nx�� n1+βt� → V�x� t�. This
is Case 2 of Theorem 4. And similarly, Theorem 2 holds for the stick model.

4.2. The translation 
2nνqt�. We advance here some explanation for the
spatial translation 
2nνqt� that appears in the theorems.

First, consider the variational formula (4.3). Suppose that the process is in
equilibrium with E
η�i� t�� = q. Equations (4.2) and (4.3) give

z�0� nνt� = inf
y≤0

{
qy+ y2

4nνt
+ [fluctuations]

}
�(4.7)

Neglecting fluctuations, the infimum is attained at y = −2nνqt. So roughly
speaking,

z�0� nνt�= z�−
2nνqt��0� + �
(�z�−
2nνqt��0��0�� 
2nνqt�� nνt

)
+ [fluctuations]�

(4.8)

As a sum of independents the term z�−
2nνqt��0� has fluctuations of order
nν/2, while the �-term has fluctuations of order nν/3 (Lemma 5.2). It is advan-
tageous to move the translation 
2nνqt� to the left-hand side of (4.8), so that
we study the dynamics of z�
2nνqt�� nνt�. Then the minimizer in (4.7) is y = 0,
and we get smaller fluctuations on the right-hand side of (4.8).

Alternatively, we can look at the macroscopic equation to find the right
scaling and translation for nontrivial dynamics. Suppose first that u�x� t� =
q + n−βρ�x� t� satisfies the Burgers equation (2.4). Then ρ�x� t� satisfies the
equation

ρt + 2qρx + n−β�ρ2�x = 0�

In the limit n → ∞ this gives ρt + 2qρx = 0 which is solved by a spatial
translation ρ�x� t� = ρ0�x − 2qt�. To get nontrivial dynamics, we speed up
time and set w�x� t� = ρ�x�nβt� that satisfies

wt + 2nβqwx + �w2�x = 0�

To eliminate the nβ-term, let v�x� t� = w�x + 2nβqt� t�. The function v then
solves Burgers equation vt + �v2�x = 0 again. Working backwards, v�x� t� =
ρ�x+ 2nβqt� nβt�.

To see how v�x� t� should arise microscopically, start with the “hydrody-
namic heuristic” u�x� t� ≈ �2nε�−1∑�i�≤nε η�
nx� + i� nt�. From this,

ρ�x� t� ≈ 1
2ε

· 1
n1−β

∑
�i�≤nε

{
η
(
nx� + i� nt

)− q
}
�
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and then

v�x� t� ≈ 1
2ε

· 1
n1−β

∑
�i�≤nε

{
η
(
nx� + 
2n1+βqt� + i� n1+βt

)− q
}
�

This is exactly what Theorem 2 states, with the right translation 
2n1+βqt�
again.

5. Auxiliary lemmas. Throughout the proofs, C�C1�C2� � � � stand for
constants independent of the important indices of the proof (such as m, n,
i or j). The values of C, C1�C2� � � � may change freely from one inequality to
the next.

We start with an inequality for bounding the initial locations zn�i�0�.

Lemma 5.1. Suppose Xi� are independent exponentially distributed ran-
dom variables with expectations E
Xi� = qi ∈ 
0� b�� where b is a finite con-
stant. Then for all ε ∈ �0�1/2� there is a finite constant C = C�b� ε� > 0 such
that� for large enough m ∈ N�

P

{∣∣∣∣ m∑
i=1

Xi −
m∑
i=1

qi

∣∣∣∣ ≥ εm1/2+ε
}
≤ 2 exp�−Cm2ε� �(5.1)

Proof. The standard exponential Chebyshev argument. Let t ∈ �0�1/b�.
Then

P

{ m∑
i=1

Xi ≥
m∑
i=1

qi + εm1/2+ε
}

≤ exp
{
−t

m∑
i=1

qi − tεm1/2+ε
} m∏

i=1
E
[
etXi

]

= exp
{
−t

m∑
i=1

qi − tεm1/2+ε −
m∑
i=1

log�1− tqi�
}

= exp
{
−tεm1/2+ε +

m∑
i=1

(
q2i t

2

2
+O�t3�

)}

≤ exp
{
−tεm1/2+ε + mb2t2

2
+O�t3m�

}
[choose t = b−2εmε−1/2�

= exp
{−ε2b−2m2ε

2
+O

(
m3ε−1/2)}

≤ exp�−Cm2ε��
The last step is valid for ε < 1/2. In the second equality we expanded log�1−
tqi� = −tqi − q2i t

2/2 +O�t3�, where the O-term is uniform over i because of
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the uniform bound qi ≤ b. The expansion is valid because t = b−2εmε−1/2 can
be made arbitrarily small by restricting m to be large. The same argument
with some sign changes also proves the other inequality. ✷

Next we give bounds on the fluctuations of the increasing paths.

Lemma 5.2. Suppose a� s and h are positive real numbers�

(a) For x ≥ 2� define

I�x� = 2x cosh−1�x/2� − 2
√
x2 − 4�(5.2)

Then� for a ≤ hs < a2/4�

P

{
�
(
a�� s) ≤ a2

4s
− h

}
≤ exp

{
−1
2

√
a2 − 4hs I

(
2+ hs

a2

)}
�(5.3)

When x = hs/a2 is small� we can use the expansion

I�2+ x� ≥ Cx3/2�(5.4)

(b) There are fixed positive constants B0� B1� d0� C0 and C1 such that if
a ≥ B0 and B1a

4/3 ≤ hs ≤ d0a
2� then

P

{
�
(
a�� s) > a2

4s
+ h

}
≤ C0 exp

{
−C1

s3h3

a4

}
�(5.5)

Remark 5.1. In our typical application of Lemma 5.2, a and s are of the
same large order m, and h is of the order m1/3+ε. Then the bound in (5.3) is
C1 exp�−C2m

3ε/2� and in (5.5) C1 exp�−C2m
3ε�.

Remark 5.2. For the growth model associated with the exclusion and zero-
range processes, the lower tail estimate (5.3) is available in Seppäläinen
(1998c) and Johansson (2000). But the upper tail estimate (5.5) has not been
derived at the time of writing this paper.

Proof of Lemma 5.2. Part (a). The random variables L�s� s� are superad-
ditive in the sense that, for any 0 < s < t,

L
(�0�0�� �s� s�)+ L

(�s� s�� �t� t�) ≤ L
(�0�0�� �t� t�) a.s.

It follows that there exists a function I�x� such that

sup
s>0

1
s
logP

{
L�s� s� ≥ sx

} = lim
s→∞

1
s
logP

{
L�s� s� ≥ sx

} = I�x��(5.6)

Since s−1L�s� s� → 2 as s → ∞, I�x� = 0 for x < 2. Kim (1996) proved that
I�x� is bounded below by the expression in (5.2), and Seppäläinen (1998b)
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showed that this expression equals I�x�. By (5.6) and the observation that

L�a� b� d=L�√ab�
√
ab �,

P

{
�
(
a�� s) ≤ a2

4s
− h

}
= P

{
L
(
a2

4s
− h� s

)
≥ 
a�

}

≤ exp
{
−1
2

√
a2 − 4hs I

(
2
a�√

a2 − 4hs

)}
�

The argument of I�·� is estimated below by

2
a�√
a2 − 4hs

≥ 2�1− 1/a�√
1− 4hsa−2 ≥ 2

(
1− 1

a

)(
1+ 2hs

a2

)

≥ 2+ hs

a2
�

provided hs ≥ a.
Part (b) is a consequence of case 4 of Lemma 7.1 in Baik, Deift and

Johansson (1999). We check the assumptions of that lemma. First, we express
the probability (5.5) in terms of L, then convert it to the φn�λ�-notation of
Baik, Deift and Johansson (1999):

P

{
�
(
a�� s) > a2

4s
+ h

}
= P

{
L
(
a2

4s
+ h� s

)
< 
a�

}

= P

{
L
(
a2

4s
+ h� s

)
≤ 
a� − 1

}
= φ
a�−1

(
a2

4
+ hs

)
�

According to case 4 of Lemma 7.1 in Baik, Deift and Johansson (1999), we can
bound

φ
a�−1

(
a2

4
+ hs

)
≤ C0 exp�C1t

3��(5.7)

with t defined by the equation

1− t

21/3
a�2/3 =
√
a2 + 4hs

a� �(5.8)

provided

1+ M7

21/3
a�2/3 ≤
√
a2 + 4hs

a� ≤ 1+ δ6�(5.9)

whereM7 and δ6 are certain positive constants that appear in the development
of Baik, Deift and Johansson.

The first inequality in (5.9) is equivalent to

M7 ≤ 21/3
(√

a2 + 4hs

a�1/3 − 
a�2/3

)
�(5.10)

Provided hs ≤ 2a2, the right-hand side of (5.10) is bounded below by

21/3
(
a+ hs/a

a1/3
− a2/3

)
= 21/3

hs

a4/3
�(5.11)
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Thus the first inequality in (5.9) is satisfied if B1a
4/3 ≤ hs ≤ 2a2 for a large

enough constant B1.
For the second inequality in (5.9) observe that

√
a2 + 4hs

a� ≤ a


a�
(
1+ 4hs

a2

)
�

which is less than or equal to 1+δ6, provided a is large enough and hs ≤ d0a
2

for a small enough d0.
We have verified the conditions of case 4 of Lemma 7.1 in Baik, Deift

and Johansson. Again because (5.11) is below the right-hand side of (5.10),
we see that t defined by (5.8) satisfies −t ≥ 21/3hsa−4/3, so inequality (5.7)
becomes (5.5). ✷

Lemma 5.3. For a > 0� β > 0� ν ≥ 1 and ε ∈ �0�1/2�� define a deterministic
quantity Rn by

Rn = nνtq2 + nxq+ n1−β�v0�∞�x� + a�nν/3+ε + n1/2+ε��(5.12)

Then there are finite constants Ci > 0 such that

P
{
zn

(
nx� + 
2nνqt�� nνt
)
> Rn

} ≤ C1 exp�−C2n
2ε�(5.13)

for all n.

Proof. By the variational formula (4.6) and Lemmas 5.1 and 5.2,

P
{
zn�
nx� + 
2nνqt�� nνt� > Rn

}
≤ P

{
zn�
nx��0� ≥ nxq+ n1−β�v0�∞�x� + an1/2+ε}

+P
{
Γ n�
nx�� 
2nνqt�� nνt� ≥ nνtq2 + anν/3+ε}

≤ C1 exp�−C2n
2ε� +C1 exp�−C2n

3ε�� ✷

The main lemma of this section reduces the range of indices that need to
be considered in the variational formula (4.6).

Lemma 5.4. Suppose β > 0 and ν ≥ 1� and let ξ be any number that
satisfies ξ ≥ ν − β and ξ > 2ν/3. Then if b > 0 is large enough� the following
holds with probability 1� for large enough n�

zn�
nx�+
2nνqt��nνt�
=min

{
zn�i�0�+Γ n

(
i�
nx�+ 
2nνqt�−i�nνt

) � �i−
nx��≤
bnξ�}�(5.14)

Furthermore� ∑
n

P
{
(5.14) fails for n

}
< ∞�(5.15)
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Remark 5.3. It is not hard to understand heuristically why the thresholds
ν−β and 2ν/3 are the correct ones. Take x = 0. To leading order the quantity
minimized in the variational formula (4.6) for zn�
2nνqt�� nνt� is

zn�i�0� + Γ n
(
i� 
2nνqt� − i� nνt

)
= nνq2t+ i2n−ν/�4t� +O�in−β� + [fluctuations]�

The fluctuations of zn�i�0� are of order �i�1/2, and those of Γ n�i� 
2nνqt� −
i� nνt� of order nν/3 + �i�1/3. Which values of i can be safely ignored? Clearly,
if i2n−ν dominates both in−β and the fluctuations, this value of i cannot be a
minimizer. Comparison of i2n−ν with these terms suggests the correct thresh-
olds.

Remark 5.4. The distinction between the weak inequality ξ ≥ ν − β and
the strict inequality ξ > 2ν/3 in the hypothesis is significant. It arises in the
proof of Lemma 5.4 and influences the error terms of our theorems.

Proof of Lemma 5.4. We shall prove (5.14). The reader can accumulate
the estimates as we proceed and observe that (5.15) is also true.

By Lemma 5.3 and Borel–Cantelli, we may suppose that

zn�
nx� + 
2nνqt�� nνt� ≤ Rn�

at the expense of discarding an event of probability 0 and by taking n large
enough. Fix δ0 ∈ �0�1� and take ε small enough in the definition (5.12) of Rn

so that ν/3+ ε < ν and 1/2+ ε < 1. Then, since �zn�
�1+ δ0�nνtq� + 
nx��0��
is a sum of �
�1+ δ0�nνtq� + 
nx�� independent exponential random variables
with expectations in the range q± n−β�v0�∞, basic large-deviation estimates
show that ∑

n

P
{
zn�
�1+ δ0�nνtq� + 
nx��0� ≤ Rn

}
< ∞ �(5.16)

Consequently, we may also assume that

zn
([(

1+ δ0
)
nνtq

]+ 
nx��0) > Rn�(5.17)

It then follows from the variational formula (4.6) that, almost surely,

zn
(
nx� + 
2nνqt�� nνt

)
= inf

{
zn�j�0� + Γ n�j� 
nx� + 
2nνqt� − j� nνt� �

j <
[�1+ δ0�nνtq

]+ 
nx�}
(5.18)

for large enough n.
To conclude the proof, we shall show that indices j outside the range

�j− 
nx�� ≤ 
bnξ� cannot give the infimum in (5.18). This will follow by show-
ing that, almost surely,

zn�
nx�+
bnξ�+i�0�+Γ n�
nx�+
bnξ�+i�
2nνqt�−
bnξ�−i�nνt�
≥ zn�
nx��0�+Γ n�
nx��
2nνqt��nνt�

(5.19)
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for all 0 ≤ i ≤ 
�1+ δ0�nνtq�, and that

zn
(
nx�−
bnξ

]−i�0�+Γ n
(
nx�−
bnξ�−i�
2nνqt�+
bnξ�+i�nνt

)
≥ zn

(
nx��0)+Γ n
(
nx��
2nνqt��nνt

)(5.20)

for all i ≥ 0. The upper bound j < 
�1+ δ0�nνtq� + 
nx� in (5.18) permitted us
to restrict the range of i to i ≤ 
�1+ δ0�nνtq� in (5.19). The benefit is that the
argument 
2nνqt�−
bnξ�−i of Γ n in (5.19) is of order nν throughout the range
of i, which makes the estimation easier because there is no need for separate
arguments for values of smaller order.

We estimate various terms separately in three sublemmas.

Sublemma 5.1. For any fixed b > 0 and δ > 0� the following statements
hold almost surely� for all large enough n�

Γ n
(
nx� + 
bnξ� + i� 
2nνqt� − 
bnξ� − i� nνt

)
>

1
4nνt

(
2nνqt− bnξ − i

)2 − δnν/3+δν(5.21)

for all 0 ≤ i ≤ 
�1+ δ0�nνtq�� and
Γ n

(
nx� − 
bnξ� − i� 
2nνqt� + 
bnξ� + i� nνt
)

>
1

4nνt

(
2nνqt+ bnξ + i

)2 − δ
(
nν/3+δν + i1/3+δ

)(5.22)

for all i ≥ 0.

Proof. We shall prove (5.22) and leave (5.21) to the reader. Their differ-
ence is that in (5.22), due to the unbounded range of i, we need i explicitly in
the estimates and sum over i ≥ 0 in the end. Equation (5.21) is easier because
one estimate uniformly over i is sufficient.

Let An denote the event that (5.22) holds for all i ≥ 0. Our goal is to prove∑
n

P�Ac
n� < ∞(5.23)

so that by Borel–Cantelli An happens for all large enough n a.s. For fixed n
and i, the event that (5.22) fails has the same probability as the event

�
(
2nνqt� + 
bnξ� + i� nνt

)
≤ 1

4nνt

(
2nνqt+ bnξ + i

)2 − δ
(
nν/3+δν + i1/3+δ

)
�

(5.24)

By shrinking b slightly we can discard the integer parts. We bound the prob-
ability of the event (5.24) by (5.3). Now

√
a2 − 4hs =

[(
2nνqt+ bnξ + i

)2 − 4δt
(
n4ν/3+δν + i1/3+δnν

)]1/2
≥ C1�nν + i�
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and

hs

a2
≥ C2

n4ν/3+δν + i1/3+δnν

nν + i
≥ C3n

−2ν/3+δν�

uniformly over i ≥ 0 for all large enough n. Thus the probability of the
event (5.24) is at most

exp
[−C�nν + i�I�2+C1n

−2ν/3+δν�] ≤ exp
(−Cn3δν/2 −Cin−ν+3δν/2)�

where we applied the expansion (5.4). Summing this over i ≥ 0, we get

P�Ac
n� ≤

∑
i≥0

exp
(−Cn3δν/2 −Cin−ν+3δν/2)

≤ C1n
ν�1−3δ/2� exp

(−Cn3δν/2)�
This last expression is summable over n, so (5.23) happens. ✷

Sublemma 5.2. For any fixed δ > 0� this holds almost surely� for all large
enough n�

Γ n
(
nx�� 
2nνqt�� nνt

) ≤ nνtq2 + δnν/3+δν�(5.25)

Proof. Deviation bound (5.5) and Borel–Cantelli. ✷

Sublemma 5.3. For any fixed b > 0 and δ > 0� the following statements
hold almost surely� for all large enough n�

zn�
nx��0� − zn
(
nx� + 
bnξ� + i�0

)
≤ −(

bnξ + i
)(
q− n−β�v0�∞

)+ δ
(
nξ/2+δ + i1/2+δ

)(5.26)

for all 0 ≤ i ≤ 
�1+ δ0�nνtq�� and
zn�
nx��0� − zn

(
nx� − 
bnξ� − i�0
)

≤ (
bnξ + i

)(
q+ n−β�v0�∞

)+ δ
(
nξ/2+δ + i1/2+δ

)(5.27)

for all i ≥ 0.

Proof. This lemma is a consequence of Borel–Cantelli and the distribu-
tion of the increments zn�j+ 1�0� − zn�j�0�. We prove (5.27). The argument
for (5.26) is the same.

We can realize the initial locations zn�j�0� so that the inequalities
�q− n−β�v0�∞�Xj ≤ zn�j�0� − zn�j− 1�0� ≤ �q+ n−β�v0�∞�Xj(5.28)

are valid, where Xj� are i.i.d. exponential random variables with expectation
E
Xj� = 1. For fixed n and i, the probability that (5.27) fails is bounded
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above by

P

{
bnξ�+i∑
j=1

�q+ n−β�v0�∞�Xj >
(
bnξ + i

)(
q+ n−β�v0�∞

)

+ δ
(
nξ/2+δ + i1/2+δ

)}

≤ P

{
bnξ�+i∑
j=1

Xj >
(
bnξ + i

)+ δ
nξ/2+δ + i1/2+δ

q+ n−β�v0�∞

}
�

(5.29)

This probability is bounded above by

exp
{
−(
bnξ� + i

)
κ

(
1+ δ�nξ/2+δ + i1/2+δ�

�q+ n−β�v0�∞��bnξ + i�
)}

�(5.30)

where κ�x� = x − 1 − log x is the Cramér rate function for the Exp(1)-
distribution. In case the reader is used to thinking of large deviation rate func-
tions only asymptotically valid, note that the inequality P�∑m

1 Xj ≥ ma� ≤
exp−mκ�a�� for a > 1, and its lower tail counterpart, are valid for finite
m due to the supermultiplicativity P�∑l+m

1 Xj ≥ �l + m�a� ≥ P�∑l
1Xj ≥

la� ·P�∑m
1 Xj ≥ ma�.

For small x we have the quadratic lower bound κ�1+ x� ≥ Cx2, so (5.30) is
further bounded above by

exp
{
−Cnξ+2δ + i1+2δ

bnξ + i

}
�(5.31)

Summing the quantities in (5.31) over i ≥ 0, we bound the probability that,
for a fixed n, (5.27) fails for some i ≥ 0, by

∑
i≥0

exp
{
−Cnξ+2δ + i1+2δ

bnξ + i

}
≤ ∑

0≤i≤nξ

exp�−Cn2δ� + ∑
i>nξ

exp�−Ci2δ��

The last line is summable over n. Hence, by Borel–Cantelli, it is almost surely
true that, for large enough n, (5.27) holds for all i ≥ 0. ✷

We return to complete the proof of Lemma 5.4. By (5.21), (5.25) and (5.26),
inequality (5.19) will hold for large enough n if we can show that

1
4nνt

(
2nνqt− bnξ − i

)2 − nνtq2 − 2δnν/3+δν

≥ −(
bnξ + i

)(
q− n−β�v0�∞

)+ δ
(
nξ/2+δ + i1/2+δ

)(5.32)

holds for all 0 ≤ i ≤ 
�1+ δ0�nνtq�. Equation (5.32) simplifies to

b2

4t
n2ξ−ν + b

2t
inξ−ν + i2

4nνt
− 2δnν/3+δν

≥ b�v0�∞nξ−β + �v0�∞in−β + δ
(
nξ/2+δ + i1/2+δ

)
�

(5.33)
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Now suppose ξ ≥ ν − β so that n2ξ−ν ≥ nξ−β and nξ−ν ≥ n−β. Then (5.33)
follows from (

b

4t
− �v0�∞

)
bn2ξ−ν +

(
b

2t
− �v0�∞

)
inξ−ν + i2

4nνt

≥ δ
(
2nν/3+δν + nξ/2+δ + i1/2+δ

)
�

Now choose b > 4t�v0�∞ so that the two coefficients in parentheses on the left-
hand side are positive and large. The condition ξ > 2ν/3 is exactly what is
needed to have n2ξ−ν > nν/3+δν +nξ/2+δ for all large enough n, if δ > 0 is small
enough. The i-term on the right-hand side is controlled by the observation

δi1/2+δ ≤ C
(
n2ξ−ν + inξ−ν)

for all i ≥ 0, provided n is large enough.
The argument for (5.20) goes exactly the same way. This completes the proof

of Lemma 5.4. ✷

6. Proof of Theorem 3. Let ξ satisfy ξ > 2ν/3 and ν − β ≤ ξ ≤ ν − ε for
some small ε > 0. Let M < ∞ be a large finite constant, to be chosen later.
Define the events

An = {∣∣zn(
nx� + 
2nνqt�� nνt
)− zn

(
nx��0)− nνtq2
∣∣ > 2Mn2ξ−ν}�

By Borel–Cantelli, Theorem 3 will follow by proving the summability∑
n

P�An� < ∞�(6.1)

To see this, compare 2ξ− ν with the exponent in the error of (3.5): in the case
ν ≤ 3β, take ξ = 2ν/3+ δ/3, so that 2ξ − ν < ν/3+ δ. In the case ν > 3β, we
can take ξ = ν − β so that 2ξ − ν = ν − 2β < ν − 2β+ δ.

Now we shall prove (6.1). By Lemma 5.4, for large enough n it is the case
that

zn
(
nx� + 
2nνqt�� nνt

)− zn�
nx��0� − nνtq2

= inf
�i�≤bnξ

{
zn

(
nx� − i�0
)− zn

(
nx��0)+ qi

+Γ n
(
nx� − i� 
2nνqt� + i� nνt

)− nνtq2 − qi
}
�

(6.2)

The probability P�An� is bounded above by∑
�i�≤bnξ

P
{∣∣zn(
nx� − i�0

)− zn
(
nx��0)+ qi

∣∣ ≥ Mn2ξ−ν}
+ ∑

�i�≤bnξ

P
{∣∣�(
2nνqt� + i� nνt

)− nνtq2 − qi
∣∣ ≥ Mn2ξ−ν}

+P
{
(6.2) fails for n

}
�

(6.3)
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To bound the first probability in (6.3), apply (5.28) to get, for each i,

P
{∣∣zn(
nx� − i�0

)− zn
(
nx��0)+ qi

∣∣ ≥ Mn2ξ−ν}
≤ P

{ �i�∑
j=1

�q− n−β�v0�∞�Xj ≤ q�i� −Mn2ξ−ν
}

+P

{ �i�∑
j=1

�q+ n−β�v0�∞�Xj ≥ q�i� +Mn2ξ−ν
}

≤ P

{ �i�∑
j=1

Xj ≤ �i� +C1n
−β�i� −M1n

2ξ−ν
}

+P

{ �i�∑
j=1

Xj ≥ �i� −C1n
−β�i� +M1n

2ξ−ν
}
�

In the second inequality, C1 is a new constant, and M1 = M/�q+ 1� accounts
for the effect of dividing M by �q± n−β�v0�∞� when n is large enough.

Since n−β�i� ≤ bnξ−β and ξ ≥ ν − β ⇒ 2ξ − ν ≥ ξ − β, by choosing M
large enough at the outset we have a further constant M2 > 0 such that
M1n

2ξ−ν −C1n
−β�i� ≥ M2n

2ξ−ν. Next, apply the large-deviation rate function
κ for Exp(1)-variables as in (5.29)–(5.30). The new upper bound becomes

P

{ �i�∑
j=1

Xj ≤ �i� −M2n
2ξ−ν

}
+P

{ �i�∑
j=1

Xj ≥ �i� +M2n
2ξ−ν

}

≤ exp
{−�i�κ(1−M2n

2ξ−ν�i�−1)}
+ exp

{−�i�κ(1+M2n
2ξ−ν�i�−1)}

≤ exp
{
M2n

2ξ−ν + �i� log(1−M2n
2ξ−ν�i�−1)}

+ exp
{−M2n

2ξ−ν + �i� log(1+M2n
2ξ−ν�i�−1)}�

(6.4)

Check that the functions �1/x� log�1 ± x� are maximized by taking x > 0
as small as possible. Thus we get an upper bound for (6.4) by replacing
�i� by its upper bound bnξ. Expanding the log then gives the upper bound
2 exp�−Cn3ξ−2ν� for (6.4) (here the assumption ξ ≤ ν becomes useful). Tracing
backwards, we conclude that

[the first sum in (6.3)] ≤ C1n
ξ exp�−Cn3ξ−2ν��(6.5)

Now we shall bound the second probability in (6.3). Again because �i� =
O�nξ�,

P
{∣∣�(
2nνqt� + i� nνt

)− nνtq2 − qi
∣∣ ≥ Mn2ξ−ν}

≤ P

{∣∣∣∣�(
2nνqt� + i� nνt
)− 1

4nνt

(
2nνqt+ i

)2∣∣∣∣ > M1n
2ξ−ν

}(6.6)
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for a constant M1 > 0, provided M was chosen large enough. Since �i� ≤
Cnξ ≤ Cnν−ε, Lemma 5.2 implies that the probability in (6.6) is at most
C1 exp�−C2n

3ξ−2ν�. It follows that the bound in (6.5) works also for the second
sum in (6.3). Thus the sum in (6.1) has the following bound:∑

n

P�An� ≤
∑
n

C1n
ξ exp�−Cn3ξ−2ν� +∑

n

P
{
(6.2) fails for n

}
< ∞�

The summability is a consequence of the assumption ξ > 2ν/3 and (5.15).
Equation (6.1) holds, and we have proved Theorem 3.

7. Proof of Theorem 4. The proofs for the different cases are Borel–
Cantelli estimates for the distribution of the random variable zn�
nx�+
2nνqt�,
nνt�. For the sake of readability, we do not formulate explicit probability esti-
mates and instead write statements of the type (2.10)–(2.11). Behind each a.s.
error estimate is a summable deviation probability, as the reader can verify
from the arguments.

Case 3 can be proved quickly from Theorem 3: in (3.5) replace the term
zn�
nx��0� by its expectation (3.4) plus fluctuation o�n1/2+δ�. We concentrate
on proving Cases 1 and 2.

Proof of Theorem 4, Case 1. Assuming ν > 1 + β, the goal is to show
that

lim
n→∞n2β−ν{zn(
nx� + 
2nνqt�� nνt

)− nνtq2 − nxq
} = V∞�0� t��(7.1)

Let y be a number that achieves the infimum in (3.10) for x = 0. Set i =

nν−βy� in the expression inside the braces on the right-hand side of (5.14).
For large n, we get the upper bound

zn
(
nx� + 
2nνqt�� nνt

)
≤ zn

(
nν−βy��0)+ Γ n
(
nν−βy�� 
nx� + 
2nνqt� − 
nν−βy�� nνt

)
≤ nν−βyq+ n1−βV0

(
n−1
nν−βy�)

+nνtq2 + y2

4t
nν−2β + nxq− nν−βyq+ o�nν−2β�

≤ nνtq2 + nxq+ nν−2β
{
n1−ν+βV0�nν−β−1y� + y2

4t

}
+ o�nν−2β��

(7.2)

The following steps were taken previously: for small ε > 0, it is almost surely
true that, for large enough n,

zn
(
nν−βy��0)
≤ E

{
zn

(
nν−βy��0)}+ εn�ν−β�/2+ε

= 
nν−βy�q+ n1−βV0
(
n−1
nν−βy�)+ εn�ν−β�/2+ε

≤ nν−βyq+ n1−βV0�nν−β−1y� + o�nν−2β��

(7.3)
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The first step above is by Lemma 5.1. The assumption ν > 3β guarantees that
n�ν−β�/2+ε = o�nν−2β� if ε > 0 is small enough.

Similarly by (5.5), for large enough n,

Γ n
(
nν−βy�� 
nx� + 
2nνqt� − 
nν−βy�� nνt

)
≤ 1

4nνt

(
nx� + 
2nνqt� − 
nν−βy�)2 + εnν/3+ε

≤ nνtq2 + y2

4t
nν−2β + nxq− nν−βyq+C1 +C2n

1−β + εnν/3+ε�

(7.4)

The term C1 +C2n
1−β accounts for terms left out after expanding the square

and for removal of integer parts 
·�. The assumptions ν > 1 + β and ν > 3β
guarantee that C1 +C2n

1−β + εnν/3+ε = o�nν−2β� if ε > 0 is small enough.
Equations (7.3) and (7.4) justify the validity of (7.2) for large enough n,

almost surely. Now we can prove one half of (7.1):

lim sup
n→∞

n2β−ν{zn(
nx� + 
2nνqt�� nνt
)− nνtq2 − nxq

}

≤ lim sup
n→∞

{
n1−ν+βV0�nν−β−1y� + y2

4t

}
= V∞�y�0� + y2

4t
= V∞�0� t��

(7.5)

The second last equality follows from

lim
m→∞m−1V0�my� = V∞�y�0��(7.6)

It remains to bound the lim inf in (7.1) from below. By the assumptions
ν > 3β and ν > 1+ β, we can choose a number ? that satisfies

1− β < ? < ν − 2β� ? > ν/3 > β� ? > �ν − β�/2�(7.7)

Define a sequence of deterministic numbers by

rn = nνtq2 + nxq+ min
�i�≤bnν−β

{
n1−βV0

(
i

n

)
+ i2

4nνt

}
− 2n?�

Lemma 7.1. Almost surely� the inequality zn�
nx�+
2nνqt�� nνt� ≥ rn holds
for large enough n�

Before proving the lemma, let us use it to finish the proof of Case 1 of
Theorem 4:

lim inf
n→∞ n2β−ν{zn(
nx� + 
2nνqt�� nνt

)− nνtq2 − nxq
}

≥ lim inf
n→∞ min

�i�≤bnν−β

{
n1−ν+βV0

(
i

n

)
+ i2

4n2ν−2βt

}
[change of variable i = nν−βy]

≥ lim inf
n→∞ inf

�y�≤b

{
n1−ν+βV0�nν−1−βy� + y2

4t

}
≥ V∞�0� t��

(7.8)
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To check the last inequality, let nj be a subsequence along which the
lim infn→∞ is realized. For each j pick ynj

that realizes the infimum, pass
to a further convergent subsequence ynj

→ y, and now consider different
cases: if ynj

stays bounded away from 0, it follows from (7.6) that

lim
j→∞

{
n
1−ν+β
j V0�nν−1−β

j ynj
� +

y2
nj

4t

}
= V∞�y�0� + y2

4t
≥ V∞�0� t��(7.9)

And if y = 0, Lipschitz continuity of V0 gives∣∣n1−ν+β
j V0�nν−1−β

j ynj
�∣∣ ≤ �v0�∞�ynj

� −→ 0�

so in this case, too, the limit in (7.9) is V∞�y�0� + y2/4t = 0.
Equations (7.5) and (7.8) together imply (7.1), and thereby prove Case 1 of

Theorem 4. Before moving on to Case 2, we check Lemma 7.1.

Proof of Lemma 7.1. Abbreviate temporarily

Zn = min
{
zn�i�0� + Γ n�i� 
nx� + 
2nνqt� − i� nνt� � �i� ≤ bnν−β}�(7.10)

The assumption ν > 3β permits us to set ξ = ν−β in Lemma 5.4, so zn�
nx�+

2nνqt�� nνt� = Zn for large enough n. The difference between �i� ≤ bnν−β

in (7.10) and �i − 
nx�� ≤ bnν−β in (5.14) is irrelevant now because ν − β > 1
and we can always increase b. To prove Lemma 7.1, we show that

Zn ≥ rn holds for large enough n.(7.11)

The complementary probability PZn < rn� is bounded above by the sum∑
�i�≤bnν−β

P

{
zn�i�0� < qi+ n1−βV0

(
i

n

)
− n?

}

+ ∑
�i�≤bnν−β

P

{
Γ n

(
i� 
nx� + 
2nνqt� − i� nνt

)

< nνtq2 + nxq− qi+ i2

4nνt
− n?

}
�

(7.12)

In the first sum in (7.12) the term for i = 0 vanishes because by construction
zn�0�0� = V0�0� = 0 with probability 1. We bound the sum over 1 ≤ i ≤ bnν−β

and leave the matching argument for negative i’s to the reader. Let Xj� be
as in (5.28). First, split the sum:∑

1≤i≤bnν−β
P

{
zn�i�0� < qi+ n1−βV0

(
i

n

)
− n?

}

≤ ∑
1≤i≤ε1n?+β

P

{i−1∑
j=0

�q− n−β�v0�∞�Xj < qi+ n1−βV0

(
i

n

)
− n?

}

+ ∑
ε1n

?+β<i≤bnν−β
P

{
zn�i�0� < qi+ n1−βV0

(
i

n

)
− n?

}
�

(7.13)
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To the first sum in (7.13) apply a large-deviation argument as in (5.29)–
(5.30). Pick ε1� ε2 > 0 small enough and take n large enough so that(

q− n−β�v0�∞
)−1(

qi+ n1−βV0�i/n� − n?
) ≤ i− ε2n

?

for all 1 ≤ i ≤ ε1n
?+β. Then

P

{i−1∑
j=0

�q− n−β�v0�∞�Xj < qi+ n1−βV0

(
i

n

)
− n?

}

≤ P

{i−1∑
j=0

Xj < i− ε2n
?

}
≤ exp

{−iκ�1− ε2n
?i−1�}

≤ exp
(−Cn2?i−1

) ≤ exp
(−C1n

?−β)�
To the last sum in (7.13) we apply Lemma 5.1. Pick 0 < ε < ?/�ν−β�−1/2

so that ε ∈ �0�1/2�. Then, for this range of i’s,
P
{
zn�i�0� < qi+ n1−βV0�i/n� − n?

}
≤ P

{
zn�i�0� < qi+ n1−βV0�i/n� − εi1/2+ε

}
≤ C2 exp

(−C3i
2ε) ≤ C2 exp

(−C3n
2ε�?+β�)�

Combining the estimates gives∑
1≤i≤bnν−β

P
{
zn�i�0� < qi+ n1−βV0�i/n� − n?

} ≤ C1n
ν−β exp�−C2n

γ��

where γ > 0 is a new exponent that depends on the earlier constants. The
same bound is valid for the entire first sum in (7.12).

By Lemma 5.2, the probability in the second sum in (7.12) is at most

P

{
��
nx� + 
2nνqt� − i� nνt� < 1

4nνt

(
nx+ 2nνqt− i

)2 −C3n
?

}

≤ exp�−C4n
�3/2��?−ν/3���

(7.14)

The constant C3 ∈ �0�1� appeared in front of n? to subsume the difference
between nνtq2 + nxq − qi + i2/�4nνt� in (7.12) and �nx + 2nνqt − i�2/�4nνt�
in (7.14). Combining the estimates, we get∑

n

PZn < rn� < ∞�

Borel–Cantelli now gives (7.11) and completes the proof of Lemma 7.1. ✷

Proof of Theorem 4, Case 2. Assuming ν = 1+ β, the goal is now

lim
n→∞nβ−1{zn(
nx� + 
2nνqt�� nνt

)− nνtq2 − nxq
} = V�x� t��(7.15)

Let y be a number that achieves the infimum in (2.13) so that V�x� t� =
V0�y� + �x − y�2/4t. Set i = 
ny� in the expression inside the braces on the
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right-hand side of (5.14). Repeat the calculation in (7.2) to get an upper bound
for large n:

zn
(
nx� + 
2nνqt�� nνt�
≤ zn�
ny��0� + Γ n

(
ny�� 
nx� − 
ny� + 
2nνqt�� nνt
)

≤ nyq+ n1−βV0�y� + n1/2+ε

+nνtq2 + �x− y�2
4t

n1−β + nxq− nyq+ n�1+β�/3+ε

≤ nνtq2 + nxq+ n1−βV�x� t� + o�n1−β��

(7.16)

The preceding steps are justified by Lemmas 5.1 and 5.2, as was done in (7.3)–
(7.4). Again ε > 0 needs to be small enough. The estimate n1/2+ε+n�1+β�/3+ε =
o�n1−β� follows from β < 1/2, which itself is a consequence of the assumptions
ν = 1+ β and ν > 3β. This gives one half of the goal (7.15).

For the other half of the proof we can also follow the argument of Case 1.
Since β < 1/2, we can choose ? so that

1+ β

3
<

1
2
< ? < 1− β�

By the variational formula (2.13), for all i,

nνtq2 + nxq+ n1−βV�x� t� − 2n?

≤ nνtq2 + nxq+ n1−βV0

(
i

n

)
+ n1−β �x− i/n�2

4t
− 2n?

=
[
qi+ n1−βV0

(
i

n

)
− n?

]
+

[
1

4nνt

(
nx+ 2nνqt− i

)2 − n?

]
�

Now the argument of Lemma 7.1 can be repeated to conclude that almost
surely, for large enough n,

zn
(
nx� + 
2nνqt�� nνt

) ≥ nνtq2 + nxq+ n1−βV�x� t� − 2n?�

which together with (7.16) implies (7.15). Case 2 is proved, and thereby
Theorem 4. ✷
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