THE USE OF LINEAR FUNCTIONS TO DETECT
HIDDEN PERIODS IN DATA SEPARATED
INTO SMALL SETS

By

Epwarp J.. Dobp

I.—INTRODUCTION

Readers who have access to the Handbook of Mathematical
Statistics' will ind in chapter XI a synopsis of a periodogram
analysis by W. L. Crum, with references to some of the important
papers on period testing.

My own interest 1n this subject was aroused several years
ago by Dr. J. A. Udden,? Director of the Bureau of Economic
Geology at the University of Texas, who had in his possession
measurements of the thicknesses of successive layers of anhydrite
(CaSO ) taken from a Texas oil well. The material, Dr. Udden
noted, was ‘“‘suggestive of cycles” (p. 351); but one difficulty was
mentioned: “Probably 2 per cent of the layers are indistinct.” It
was not always possible to tell whether the number recorded as
the thickness of a layer represents a single deposit or two or more
deposits insufficiently separated by the usual bituminous demarca-
tion. The analogous difficulty in distinguishing consecutive rings
of big trees® was met by comparison of the rings of tre€s from the
same forest. But such companion records were not available for
the rock lamina.

A little reflection will show that the usual method of testing

1 Rietz, Houghton Mifflin Co., 1924,

2 “Laminated Anhydrite in Texas.” Bulletin of the Geological Socicty of Amer-
ica, Vol. 35 (1924), pp. 347-354.

3 A. E. Douglass, “Climatic Cycles and Tree Growth,” Carnegie Institution of
Washington, Publication No. 289 (1919).
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206 LINEAR FUNCTIONS TO DETECT HIDDEN PERIODS

for cycles, from data arranged in columns becomes vitiated if in
several instances merging of layers has taken place—not so much
because of the exaggerated size of certain items, but because the
items get into the wrong columns. When a step is lost, all subse-
quent items are misplaced.

My purpose is then to explain how tests for periods can be
made by first using the data in small sets—thus minimizing the
vicious effects of a merger—and then by suitably combining the
results obtained from these small sets.

We might as well admit at the start that a demonstration
of a periodicity is in general impossible. Perhaps the revolution
of the earth on its axis represents a demonstrated periodicity.
But for the most part, announced periodicities are merely improb-
able or probable. There is no absolute proof that they exist. We
know that what we call “pure chance,” typified by the throws of
a coin, will sometimes yield irregularities of oscillation between
two states, the minimum and the maximum, which to all appear-
ances is a “periodicity.” The question arises: About how often
will pure chance thus deceive us? All we can do is to compute
certain relative frequencies or probabilities. If the probability
found is very, very small, that the apparent periodicity had its
origin in pure chance, we assert with some assurance that a real
periodicity exists. In this mode of approach, this paper will fol-
low rather closely Arthur Schuster,’ whose work is fundamental.

Although Schuster’s main interest was in the quadratic func-
tion, “intensity”—at first, in the square root of intensity, Terres-
trial Magnetism, loc. cit.—he pointed out (p. 27) how certain con-

1 “On the investigation of hidden periodicities with application to a supposed 26-
day period of meteorological phenomena.” Terrestrial Magnetism, Vol. 3 (1898),
pp. 13-41. In my paper, “The probability law for the intensity of a trial period,
with data subject to the Gaussian law,” Bulletin of the American Mathematical
Society, Vol. 33 (1927), pp. 681-684, 1 referred to Schuster’s paper in the
Proceediags of the Royal Society of London. Reference should have been made
also to the above paper in Terrestrial Magnetism, where the probability law
is given for the square root of intensity’(p. 21), which can easily be thrown
into the form given in my paper. Schuster, however, postulated (p. 20) that
“21r p is a submultiple of a right angle”—a condition which would not always
be satisfied—also (p. 21) that the vectors be distributed according to the law
of errors centered at the origin, an inconvenient restriction, and his method did
not bring out the different law of distribution needed for the case when the
period is equal to two.
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clusions could be reached through integrals—substantially linear
functions, if integration is regarded as summation. It is this ap-
proach to period testing through linear functions that I am setting
forth in his paper.. Some special attention must be given to phase
in the application of this methdd.

Most of the methods for detecting periodicities make use of
the trigonometric functions, with their well known properties, in
particular, use is made of the Sines and cosines of an angle and
its multiples, as in harmonic analysis and Fourier series. With
the aid of these harmonic multipliers, linear functions are first
formed; and from these, by squaring and adding, a quadratic
function, which plays the central role, as “intensity.” In the
method set forth in this paper, however, the linear functions them-
selves are the most important, not merely for graphical repre-
sentation, but for determining probabilities.

Suppose, then, that a set of numbers is furnished us—perhaps
from an unknown source—for example a set of ten numbers con-
sisting of 5’s and l’s alternating:

51,515 1,5 1,5 1

Has this set of numbers the period two? If this question
means: Is there a function of period two which takes on these
ten values, the answer is: Yes, namely—

3+2cos mr r=012....9

Here, as usual, 77 means 180 ¢ obtained from a complete revo-
lution of 360° by dividing by two. Tf, in place of an integer - ,
we take a continuous variable » , and plot

y=3+2 cosmrx

from x= 0to x=10,a wave curve is formed with each upper
crest at 5, and each dcpression at 1.

But usually in period testing, something is desired beyond
the mere possibility of making a mathematical curve fit the data.
Perhaps a farmer on each 10 acres of his farm has raised 5 bales
of cotton, 1 bale of cotton, 5 bales of cotton, etc., alternately for
10 years, under apparently the same conditions as to labor, fer-
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tilizer, etc. He would like to know whether this is due to mere
chance or to some recurrence at two-year intervals of droughts,
pests, or adverse conditions. Stranger events do, indeed, occur
by pure chance than the foregoing hypothetical yield of cotton.
But the regularity postulated above would strike almost anyone
as exceptional, and it would be prudent for our farmer to believe
that there was some non-fortuitous cause of the regularity, and
to try to discover it.

Let us, indeed, set up a chance situation to correspond to the
foregoing yield of cotton. If the two faces of a coin are marked
5 and 1, and are recorded as such, the probability for ten throws
starting with 5 and alternating between 1 and 5 is only 1/ 1024.
A bet of $1,023 against $1 would measure the unusualness of the
specified succession of 5’s and 1’s.

That this occurrence is unusual may be signalized by another
test and method of approach. Let X, denote the result of the
r th trial of an independent chance variable, which with equal
likelihood ( p,=//2 = p, ) takes on the values 5 or 1, and can
take on no other value. The “mean value” of X, is then, by
definition,

P 5) + pa(1)=14(5)+14(1)=3
This would, indeed, be also the average value of the five 5's

and five I’s in the illustration. The “mean error” & of £ would
be found from

e*=L(5-9) " +4 -3 =4, -2

This would be also the standard deviation & of the numbers
in the illustration—that is

a*=,—g—[(5—a) -3 R 5-3 %+ k- 3) ‘]-4 , 6=2
Now let

X=X-XFX- =X,

Since the signs alternate, the mean value of X is zero; since
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there are ten terms, the mean error of X is 470 = 2(3.16)=6.32.
If now X, should take on alternately the values of 5 and 1, then
X would become 20. It would thus exceed its mean value zero
by more than three times its mean error, or more than four and
one-half times its “probable error.” This is commonly regarded
as “significant.”

- To see a little more clearly into the mechanism of the above
result, let us pass from the numbers X, to their deviations from
their mean value 3.

Let
1:=X/—3 ) .Z'"Xz“j, ety .r,-X,.—J, cee

Then the mean value of &, is zero, and its mean error is 2.
Now let

X=X~ T X5 =X,

Then the mean value of x is zero and its meanerroris «/70;
in both respects it resembles X . Furthermore it takes on the
same value 20 that X takes on when the 5 and 1 alternate; since
X-x,= (X-A-(X,-3)=X- X, , etc. And here
again 20 is a remarkable value for x since it represents an excess
of more than three times its mean error. But let us now find x
directly from the values taken on by x,, when X, alternates
between 5 and 1.

2=1(2)—1(=2) +1(@2)—...—1(—2)=20

The feature to be noted is that the successive values of x,
and of cos w (r —1) match in sign, for »=1,2,3...10.

x’=2’_2, 2‘-2,....'—2
cosm(r-N=l, -1y, I, —/, « ..., =]
Each product x,cos 7 (n—1) is then positive; and this
accounts for the large value of . This matching in sign of the

deviations of the data with the successive terms of a test function
cos 27 (r —1)/ k or perhaps cos 2 77~ /4 when & is given
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a particular value—here A= 2—is, indeed, fundamental. Also
the similarity between the properties of X and & will be found
to be maintained in more general cases.

The foregoing illustrates the method of period testing to be
set forth in this paper. A general assumption is at first made, that
the data contain no periodic constituent, but on the contrary rep-
resent mere chance fluctuations. Certain linear functions of the
data are found with coefficients which are the cosines or sines of
multiples of the angle associated with a given period. For these
functions, the fluctuations usually to be expected are to be com-
puted—assuming that the measurements represent chance data.
If the actual values which these functions take on are greatly in
excess of what is expected of them, the initial assumption that the
data are due to chance is called into question. It may be more
reasonable to suppose that to some extent the data conform to
the period associated with the cosine multipliers involved in the
test. These “harmonic” multipliers, indeed, pass through a suc-
cession of positive and negative values in a regular way. If the
positive and negative fluctuations of the measurements from their
average value are well “timed” with those of the harmonic mul-
tipliers, we get a sum of products nearly all positive, thus a much
larger result than if positive numbers were not matched with pos-
itive, negative with negative numbers,

As preliminary to all tests. the data may be divided into fairly
large groups of consecutive measurements—say with 120 measure-
ments in a group; for 120 is a multiple of 2, 3, 4, 5, 6, 8, 10, 12, 15,
20, 24, 40, 60, numbers quite suitable for trial periods. The arith-
metic mean and standard deviation of each such group may be
computed. These may usunally be accepted as close approxima-
tions to the mecan value and mean error of the measurements of
the group.

To illustrate further the naturc of the tests to be applied, let
us imagine that the 120 measurements of a group are recorded on
slips of papers, thesc slips put into.a bag, drawn at random, and
recorded as drawn. This set of numbers would have the same
arithmetic mean and standard deviation, noted above, no matter
in what order they are drawn and recorded. But periodicities de-
pend upon the order of the measurements. A chance order of meas-
urements x,, such as established by drawing from a bag, would
very seldom match sufficiently well a periodic function like
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cos 2777 /2 with period 2, or cos err/ 3 with period 3, etc., to
make a test function C{k)=Z X, cos 2 7rr/k noticeably
large. Thus, if for some particuler 4, the function C(4), com-
puted from the data in their actual given order, turns out to be
significantly large, the indication is that the data contain a con-
stituent with period k .

We mean here that each measurement of the set may be
thought of as the sum of certain constituents, one of which is
periodic with period k. Another constituent may perhaps have
a different period &'. Still another constituent may be a chance
variable with no regularity which can properly be called periodic.

IT. Trigonometric Formulas.

Q1 considerable use are the simple formulas:

~—

(1) Sn a smb-%Cos (a—b)-—z'cos la+ bl

cos.a cos b= cos (a-b)+} cos (a+b)

Camn
to
-

Indeed. by using (1) in summing the product sin (»6 + %)
sin 6/, irom r=0 to (n-/ ) thereis obtained,'in case & is
not a muitiple of 360 ¢

n-s g
3 . ol 8¢ n-A 6 sin n6/2
(3 rzo Sén \r@+a)= Sin H_ ot) —_—

s(n6/2

Likewise. for @ # 0(mod 360°);ie., € not a multiple of 360

4 E;cos r Bral=cos (L"'£)6+d) 5;?"”6?2/2

‘

As important special cases, we have when 76 is a multiple
of 360 °

1 For formulas suitable for period testing and for a historical review of this sub-
ject with references, the reader is referred to the article of H, Burkhardt in
Encyklopddie der Mathematischen Wissenschaften, 11 A 9a, pp. 642-694.
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s 6#0 (mod. 360°)
5 X (i g - .
( =, scn (rdtw)- J 2," s (r 1), n6=a (mod 360°)

As an application ot (5), let X,, Koy X, X, be
any set of 722 numbers, lec € be any constant. Then

8f0 (mad 365°)

) f};: .(Xr_ () cos (réiw :’2’—:; ,{, cos (réa) T 6z0 bnod 360°)

Likewise tor sin ( ~@+ « ).

The above signifies that if the A, represem data to be sub-
jected to tests with harmonic nwltipliers, where an integral num-
ber of complete cycles is taken, it is immaterial where the origin
for the data is taken. In the theory, the C will be usually taken
as the arithmetic mean of the data; in computation, the C may
be some simple number which will reduce the number of significant
figures in the data.

[1T. Chance Dara in Distributions with close
contact at extremities

Chance data distributed normally will be considered first.
Given »n numbers or variates X,, X, ,... AX,, the arithmetic
mecan M and standard deviation 6 are determined by

7) Mx;f(X,fX; X)) 62:7%[(’('—,\/)1"'(}(;”)2]-

Let

¢
8) b5 [e
. (4

The data will be said to be normally distributed if the number
of variates lying between /M+A, and A+ A, is approximately

2z

dt

-
z
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%[¢ (A:/6)-& (A, /o‘ﬂ for all values of A, < A,. Here
n is supposed to be at least moderately large. To express this
in the language of probability, suppose the » numbers X, , X, ,
are recorded on slips and put into a bag, and suppose a slip is
drawn out. Then, for the X, thus drawn—

aem)/26 %
(9) Probability that A <X,<ArdA is "}—%_e bom'/ 26
where, if dA is taken rather small, the ~n is to be thought of as
rather large.

The important theorem needed here—substantially explained,
if not proven, in most books on probability—is that if sets of k
of these variates are drawn at random, and linear functions with
fixed coefficients, such as

(10) Flki=a,X+a, Ko+ +a, X,
are formed, these functions F (k) as determined in sets of draw-

ings will be normally distributed with standard deviation &, ,
where

(11) ol~s(aalt - -.+al) .
If, in particular &, = cos(ré+a) making

2 &%=/+cos (2r6+2d) and if further 46=360"°with A >2,
it follows from (5) that

(12) S =ko/2

Let us now in (6) set C=M ; or rather, what amounts to
the same thing, change the origin for the data so as to make
M= 0 . Then the “mean value” or “expected value” of £ (k)
in (10) is zero. Then, with the use of (8) and (12), it follows
that '

(13) Probability that | F (&)
=0.0027.

>3s/k/z2  isl— @& (3)

This small probability by no means implies impossibility.
However, if the computed IF (/c)l exceeds 36 _/k/Z , there
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is some ground for doubting the original hypothesis that the data
under consideration exhibit a chance arrangement. Sometimes
such evidence gathered from different sections of the data can be
made cumulative. A comparatively large value for F(k) in
(10) is likely to result when the signs of the X, match the signs
of the a,, taken as in (11) and (12) as cos ( r 6+ o ), giving
a cycle or period of & items.

To what extent evidence is thus afforded for the specific period
of & vweeds further consideration. But, until we have found an
adequate number of instances in which some inequality like (13)
is satisfied we have obtained little evidence of any periodicity at all.

Thus far we have considered normally distributed data, con-
forming to the well-known symmetric bell-shaped probability
curve. But this is more restrictive than necessary. Results sub-
stantially the same can usually be obtained for distributions—even
those not symnretric and not mesokurtic—which at both ends taper
off in slender tails.  Although the particular numerical value of
the probability given in (13) is no longer applicable to these curves,
the probability nevertheless is usually very small, as presented
geometrically as slices of the two tails.

Moreover, the equations (11) and (12) arise from the general
theory of expected values. Suppose that p, is the probability
that the chance variable X will take on the value ﬁ , where
P+ Pt - o+ pg =1 Then the expected value of X is, by
definition

(14) f(ln=P, 5-/"'00; 5z+ T+ P 53 =fl ’

and its mean error & (X) is defined by

(15)  &*(X)<p, (§~L5 Vo vy GE)'= £ h-E£) *

It is common to identify expected value and mean error with
arithnictic mean and standard deviation as approximations. In
applying (6), the supposition was made that the origin be taken
so as to make M=0 . \With this adjustment, we may take
EN=0=rC .in (14) and (15). As the X, arc regarded as
independent, the theory of expected values applied to (10) leads
first from  £(X)=0 to E[F(k.):' = 0, as mentioned before;
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and then to (11)—noting that whfn i+, £(X.X) = 0,
in the expression for £ Al4)- 0]

IV. Data with Periodic Constituents.

We ncew consider data of the form
(16) W, =X, +Y,+2Z, ,
where X ,.is, as before, a chance variable; but

(17) Y= bcos(ré8) s Z=ccos(ré+y),

(18) k6=~ 2m=2360= k'6'

Here Y, and Z, are periodic with periods 4 and 4 ’, not neces-
sarily integral, amplitudes 4 an ¢ , phases /S and y, respectively.
Dealing first with . ¥,., let » and " be whole numbers such that
n=m#é& . Then, in analogy with (10), but applied to 7z of the
Ys take

-,

(19) r‘(n)=z: Y, cos (r6+a)= co.s(zx -0); k2

as may be shown from (2) and (5). The magnitide of < (»)
depends materially upon the phase difference (o —,0) But

(20) lcas (o~ B)

>092, if |a-p|s 224"

Thus if the phase a of the test function cos ( » &+ ) differs
from the phase A of the data. taken now as ¥, in (17), by not more
than 22/2 , the absolue valuc of £ (n2) in ( 19) will fall below its
maximum, nb/2, by less than 87,. The phase & of the ¥ con-
stituent of data would in general be unknown but if for o we take
eight consecutive multiples of 45 °, one of these would fall within 2214 °
of any designated angle A, ( mod 360°). Moreover, if in (19), &
is increased by 180°, F (n) merely changes its sign, and thus gives
no essentially new mformation. Hence, instead of eight multiples of
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45°, the four multiples—90°, 0 % —45°, 45°—will be adequate. These,
taken in the above order, give

n-/ n-/
(21) S=2 V.sinré ; €C=2 Y. cos ro
r=o rao
, -/ , n-r
(22). 5 =’Zw Y. sin(re+4s°); C=X Y, cus (re+45 9.

r=e

Furthermore, it is not necessary to compute 3 and C'in (22)
directly from the data, since

(23) s’ ‘/77(&5) ; c’ ‘/—%(c—s) ;

but a direct computation of § ‘or € would serve well as a check
upon (21). Thus, if in (19) we assign to o¢ the four values men-
tioned above, we get 3, C, S', €', in (21), (22) such that for
one of these quantities (20) is satisfied, which makes F(~n) in (19)
take a value almost equal to 726/2. This increases as 7 itself—not
merely as the square root of n, an increase typical for 2 X, cos(r 6+x),
see (12), (16), with 4 replaced by 7.

Let us now consider the function:

n- U
(24) 0(n)=‘_‘: Z, cos (r6+a)=C ) cos (r8+d) cos (r6+7).

By (2), the terms above have the form
C
(25) Z cas[r 6+6)+ oc-r;f] 1—36- cos[r(9-93+o¢-)’] .

In order to use (5), we postulate that neither &+8& "nor -6’
is zero or any other multiple of 360 ¢ in particular €%+ & . With
72 = 7 4, as before, (18) gives 72 6=mk 6= m (2 ). Hence,
it follows that

sin n (9f9)'/2.=!si72 n 9/z= tsin mkm/k’.
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Likewise, 3¢cn n (6-68")/2=s5in miw/k’.

Hence, from (4), (25) it follows that G () in (24) contains
the factor sin mi&~/4 . Thus G(n)=0, if

, mk mk mk m k mk
(26) kimk, ==, G5, FE S 2D

This may also be written
(27) q/c-l-mk , g= any whole number ¢ m .

Thus, if m cycles of a period 4 are used ac mu'tizlers in the
form (24) upon a set of m & numbers  Z, with perid  k'= mki /g .
where ¢ is any whole number except m. the result is zere. It should
be noted that in order to apply (4) to (24) (23, ta ger 126 it was
necessary to require that 4 ‘# 4 , which would make 9+ m in (27).
To illustrate: 3 cycles, each with period 4=4, will “annihilate” a
set of 12 numbers if these are the succe:sne terms of Ccas(rv-Z”r/k )
with period 4 ‘equal to 12, or 12 2, or-12 4 or 12,3, etc.. but not 12 3,

Indeed, G ()z) mstead of vanishing when 4 ’is set equal to &
in (24), making € '= €, takes on just about its maximum value
nc/2 in this case w hen the phase & is properly chosen—see (19),
(20). Inasmuch as G( ) in (24) is a continuous function of &
it follows that if 4 is taken very close to 4. G ( 7 ) would be al"nost
as large as for k= k. Dut from (26) we learn that G(n) goes
down to zero if &' is allowed to be as small as m4/ 7+ / ) or as
large as mk (m-/ ).

Thus, if significantly large results are obtained when using the
test function cos ( 76+« ) with period & =277/6 , the individual
period & itself is not necessarily indicated. But rather, the test fur-
nishes evidence that some period close.to k is present in the data, this
proximity being expressed by the inequality (see 26)

(28) gk < k' 7Pk

m
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The relations involved here can perhaps be set forth in greatest
simplicity by using integration to effect summations—cf. (34). In
the test function cos (7 6+ o+ ), set the phase =0, and take z=ré ,
where 8- 27 /k. Suppose k is rational, and take an even in-
teger m such that 2= m4is an even integer. Consider the test as
covering the data, from r=-mmrto x=mm . Also, in (24), take

7= 0, 8=t¢6 , =1. This leads naturally to
. mmr
/
(2N g (¢, m)=;l—1—; Cos x « cos txdx
-mr

where the coeflicient  / /msr is chosen to make g (1, m)=1 With
the aid of (2), it is easiiy seen that .

2¢ sen mmt
30 ¢, m)= =L 2L L v/
(30) s8(¢,m) m(¢5 /) #

for a given 2, the plot o1 g (#.7) as a function of ¢ consists of
a crest above the interval from #¢=1- I/m to ¢=1t 1/m, tlanked
on each side by depressions only about one-fourth or one-fifth as great
it size or amplitude followed by waves of still smaller size—a “vibra-
tion™ strongly “‘damped” on each side of #= 1. It has essentially the
sanmie characteristics as curves frequently occurring in periodogram
analysis.! Only the interval from #¢=1-1 /m to 1+1/m has in
aeneral much significance.  Sometimes the two adjacent waves? need
a little attention. Dut as @'=#6 , the above interval is described by

(31) /—;nf<——-,</+——

which is another way of writing (28).

As an illustraticn, suppose that 4 cycles of 12 terms each of
cos (7 30°+ o ) are used in a test with a significantly large result.
Here 4 =12, m=4. Then (28) would recommend to our considera-
tion periods between 9.6 and 16. Perhaps only those between 10 and
15 would deserve serious attention. Since at points #=1% 34 m, the
curve (30) is less than half as high as at ¢=1. Another interesting
form® of (28) is

1 Rietz-Handbook Loc. cit. p. 172, Figure 17.
2 Schuster, Terrestrial Magnetism, Vol. 3 (1898), p. 30.
3 C{. the Schuster criterion, Rietz Loc. cit. p. 173; Schuster, Loc. cit., p. 30.
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) L
(32) | 6= 4] < =

Before leaving (30), it may be well to note that g ( ¢,m ) does
not take its maximum exactly at ¢ =1; but at

(33) t=/+

as may be seén by setting = 1+7 in (30), expanding sin m ¢ =
sin mn T in powers of 7, and setting the first derivative equal to
zero. When m=l, ¢ =1.13; when m=2, ¢ = 1.04; when m is mod-
erately large, ¢ is very close to 1. In all cases, however, the test
function which yields the largest result, when applied to a cosine func-
tion with period 4’ is not that one which exactly fits, but one with
period &=4'¢ | where in the ideal case represented by (29) this
value of ¢ is given by (33). Inasmuch as #>1, there is some
danger, then, of overestimating the sicc of the unknown period k'’ if
the attempt is made to get a close approximation to A’ by using sev-
eral test periods & in the immediate vicinity of 4’ and selecting the
k giving the maximum result. This is not due to the fact that G(n)
in (24) is a linear function of the 2,'s . For, if in (29), we should
change cos x to sin xr, to get the mate of g (¢, m ), this mate would
be zero. Thus, the usual gquadratic function would reduce to the square
of g (¢, m), and would have its maximum at the same place given
by (33). If the main purpose of an investigation is merely to locate
with fair precision those periods whose existence have high probabil-
ities, it may not be necessary to refer to (33).

Going back to the constituents of W, in (16) we see that if »
termsof L W. cos (r 6+ & ) are taken, the Y contribution to this
sum increases directly as n ; the X contribution, being of chance
origin, increases usually about as the square root of 2 ; while the 2
contribution oscillates about zero.

V. Convenient Forms for Test Functions

The main points of the theory needed for testing data for periods
with the aid of linear functions have now been set forth. In the first
place, it appears impossible to demonstrate a periodicity. At best, we
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can nierely make certain ‘suppositions appear more or less probable
or improbable. The method outlined here starts with the assumption
that the order of the sizes exhibited in the data is a chance arrange-
ment. Certain functions are to be computed which under chance con-
ditions would ordinarily keep generally within a certain range. If
these functions show no marked tendency to jump the bounds, then
the tests yield no positive evidence of periodicity. On the other hand,
if these functions take on extremely high values, it appears reasonable
to relinquish the supposition that the order of sizes is a chance arrange-
ment and to suppose, rather, that such a periodicity exists as would
naturally make the function large. If the data have as a constituent
a cosine fluctuation and this is matched by a test cosine curve of the
same period and phase, it is easy to see that the sum of products all
positive obtained from similarly placed ordinates may be abnormally
large. Any & which gives these large results is to be regarded as
approximating a probable period.

That the tests may all'be conducted in a systematic and uniform
manner, some further properties and details may well be noted.

In the first place, only values of & = 2 need be considered if the
data are regarded as representing a sequence of discrete values, cor-
responding to values of the time (or other argument) spaced at unit
intervals. For suppose that p/q. the period of cos [2 nrq/p]
is less than 2. Then for each integer r, cos [2 ﬂrq/p] =
cos[Z mr(p-—q ) /p] , the latter with pgriod ,o/'( pP-g)> 2. This
applies, indecd, to the case where the discrete values are integrated
values. In fact, since

) " emt _ 27r, ¢
(34) /cos( k- +,6)a’f—Acos( P +ﬁ),

where A=( k//7 ) sin 77/ k B=(mr/k)k B . it follows that
if there is growth or deposit of ~ A+cos[ Znt/k + Bt

in time d¢ —thus, with period & —then the total deposjts in time
intervals 0 to 1, 1 to 2, 2 to 3, etc.,, form a sequence with the same
period & .

In the second place, it should be noticed that the case of 4= 2
is peculiar. In place of (12), we have

(35) 6:= 26 cos ‘o



EDWARD L. DODD 221

as follows directly from the fact that when 4£=2, & =180 °, and
cos (180 *+o ) =- cos & . With the phase & small, we have approx-
imately o,= ¢/ 2.

Let us now suppose that the data in given order are divided into
sets of convenient size—say sets of 120 measurements. Let the arith-
metic mean and standard deviation of each set be found. If these
quantities—in particular, the standard deviation—show violent fluc-
tuations as we pass from one set to the next set, it may be necessary
to handle the material in different sets. But suppose these fluctuations
appear to keep within reasonable bounds.

In (6), the data were represented by X, . Later, in order to
emphasize the possibility of different constituents, W, was used in
(16). But, for simplicity, let us now return to X, as a symbol for
the rth element of the data. In the first tests, let the period 4 be
a whole number. Moreover, in place of the functions (21), (22) let
us introduce the following, for 4&>2.

k-1

2 o,
(36) wu=y; (k)=6j; ,-,.Z.:.X' sinré, ;=1/, 2, 3,
(37) V=\§(k)-‘;//f—ZX, cosr6, k6=360°

(3R)  wu=uj (k)'éjz?z X, sin(re+45°)
(39)  v=y (k)?’/f— > X, cos (ro+45°)

In the case of k=2, replace the radical by 1/ ﬁ If tests for
fractional & are desirable, replace & in (36) to (39) by n, where
n=mk , mand n whole numbers as in (21).

Here for each individual set—say of 120 measurements—it is
assumed that each measurement has the same “expected value” or
“Probable value,” approximated by the arithmetic mean, and the same
“mean error,” approximated by the standard deviation ¢ . In this
case, 4, v, «’,and v’ all have the same expected value, zero, by (5),
noting that the distributive law holds for expected values. Moreover,



222 LINEAR FUNCTIONS TO DETECT HIDDEN PERIODS

when k>2—see (11), (12), (14), (15)—the mean error of u, v,
u’,and v’ is in each case unity. This is also true when k=2, if the
phase has been properly matched—see (35).

To make the tests, then. the functions «, v , «’, and v’ are
computed for certain values of & —perhaps for the sub-multiples 2,
3,4,5,6,8 . . . of 120. In this way, for £=6, twenty values
would be found for each of the four functions. The information thus
found may not be very significant. But if not, we may combine results
as follows. Let s=¢* , where ¢ is a whole number. Let

(40)  Uimf (et - ovag) 3 Gmf gy ),

’

etc., and form similar expressions for V,,V[,... &, : U,:. .. I{', Vise o
Each of these functions has expected value sero and mean error unity.
To illustrate—suppose that ¢, (6)=1.8: «,(6)=2.1; ¢,(6)=1.7;
u, (6)=18. These results taken individually would not furnish
strong evider.ce for a period of 6. Some statisticians regard a varia-
tion equal to three times the “probable error” or two times the standard
deviation as “significant”—in which case (6) 2.1 would be sig-
nificant. But such evidence 'is not overwhelming. But, by (40),
U,— 3.7. Here U, , with mean value zero, has jumped up to an
absolute value 3.7 times its standard deviation, unity. On a pure
chance basis, in normal distributions, this would happen only about
twice in 10,000 trials, on the average. Altho U=3.7 affords no
demonstration of a period of 6, the result is at least highly significant.
If such high values occur repeatedly in using k=6, we would be jus-
tified in asserting that the data contain a constituent with period some-
where near 6.

Moreover, the process ‘( 40) is subject to iteration—as long as the
dataholdout. If s=¢' ,then (U+ U, + ... + 0, )/q’is a
function with mean value zero, and mean error unity.

When the change in standard deviation is fairly gradual from
set to set, the values of «,, «, ... can be computed without inter-
ruption, using proper adjustments for those values of «; whose terms
arise partly from two sets, such as u, (16).

Such a result as w, (6)= 2.1 would furnish evidence only for
the six measurements from which it was computed; and in the light of
(28), with m =1, the implication at most would be for some period
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greater than 3. But & =3.7 would furnish strong evidence that in
the 24 measurements covered there was a constituent with period be-
tween 4.8 and 8—taking m=4 in (28). ‘

The technique of computation would present a few problems. In
some cases (6) would be utilized. Certain tables' of products with the
harmonic factors as multiplicands may be of assistance. Or certain
tables may be constructed for use with the aid of an adding machine—
with complements listed to take the place of negative numbers. Only
« and v in (36). (37) need be computed directly; for «’and v’
may be found at once—see (23). But it would seem advisable to
compute « ‘or v’ as a check. Graj as showing the progress of the
functions «, v, etc., may be constructed.

The interpretation of the results would often be difficult because
different sections of the data would frequently give different’indica-
tions. Again, if two layers of rock are counted as one, an error would
be introduced. Dut this would affect the «;. v, .. .. involved, not
the preceding or following «;. v; . Indeed. if an actual period is
present, as indicated by the «’s, an error of merging may merely shift
the “burden of proof” to one of the other functiony v, «’, or v’.
Certain cyclic changes, bringing « . «’. v , v’ into prominence in
rotation, may indicate that the test period 4 is close to an actual
period but with a discrepancy large enough to produce a systematic
advance of phase. Many similar principles commonly employed in
period testing could be used to advantage in the method here outlined.

1 E. g.. L.\, Pollak. “Rechentafeln zur Harmonischen Analyse.”
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