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We assume that the z; are independently distributed and each z; is dis-
distributed according to the same law of distribution, whence we find that the
characteristic function for the law of distribution of harmonic means of samples

of nis
a . [Ed] n
o(t) = {/; f—e""'"’ z2 dx} , (42)
from which, after simplification, we find that
kn 2n 0’2”
¢(t) = m . (43)

We now find that the law of distribution for u is

2n kn aon « e—itu
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which, after evaluation and simplification, becomes

2" k i 3n—1
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Recalling that in this case, u = 1/|z1| + 1/| 22| + --- + 1/| .|, we make
the transformation w = n/H, where H is the harmonic mean; whence, from
(44), we find that the desired law of distribution of harmonic means of samples
of n is given by

P(u) = e-%. (44)

2n knn:m—l n

P(H) = W*Hl—sne_ﬁ. (45)

7. Conclusions. We have shown that the same analysis is applicable to find
the explicit expression for all the distribution laws we have discussed in this

paper.
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ERRATA

In my paper* there appear two blunders which were called to my attention by A. T. Craig.

In section 4, pages 107-108, headed “The distribution of variances and standard devia-
tions,”” I have obtained the distribution function of the sum of the squares of n — 1 inde-
pendent values of z and not the distribution function of the sum of the squares of the
deviations from the sample mean of the n independent values of .

In section 2, pages 104-105, headed ‘“The distribution of differences,”” I have obtained
the distribution function of the differences of absolufe values and not the distribution

function of the actual differences.

* Weida, F. M., "‘On Certain Distribution Functions when the Law of the Universe is Poisson’s First Law of
Error,” Annals of Mathematical Statistics, Vol. VI, No. 2, June, 1935, pp. 102-110.
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