THE LIKELIHOOD TEST OF INDEPENDENCE IN CONTINGENCY
TABLES

By S. S. WiLks

J. Neyman and E. S. Pearson! have applied the principle of the ratio of likeli-
hoods to the problem of determining criteria for testing various hypotheses about
the group frequencies in problems dealing with grouped data. In particular,
they have discussed the fundamental x? problem, the test of goodness of fit, the
hypothesis that two samples of grouped data are from the same population,
and the hypothesis of independence in contingency tables. In their treatment
of these problems, these authors have started from the limiting form of the
probability of an observed set of frequencies and have shown that approximately
each of the appropriate \’s is a function of the minimum value of a corresponding
x3. The distribution of this minimum value is found, from which the significance
test is made.

In certain cases the exact values of the A’s are relatively simple functions of
the observations which can be as conveniently calculated as the correspond-
ing x¥s. The purpose of this note is to consider the exact expressions for the \’s
and find their asymptotic distributions in large samples for the following
hypotheses: (1) that a sample of grouped data is from a population with
specified group frequencies (i.e., the fundamental x2 problem) ,(2) that several
samples of grouped data are from the same population, and (3) that there is
independence in a contingency table.

1. The fundamental x? problem. Let py, p2, - - - px be the probabilities of the
mutually exclusive events Ei, E,, - - - E; respectively. In a sample of N events
the probability that E,, Es, ... Ei will occur n, ns, - - - ny, times respectively,
is given by
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If we let @ be the class of all sets of values of the p’s such that their sum is
unity, there is only one set of p’s that maximize C, namely, p; = n;/N (j =1, 2,
-+« k). The maximum of C is
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1 Biometrika, vol. 20A (1928), pp. 263-294.
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The likelihood of the hypothesis that the sample is from a population speci-
fied by p’s having the values p,, ps, - - - pi is defined as
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\: is a quantity which clearly lies between 0 and 1. It will be 1 only when
p;i = n/N (j =1,2, --- k), (that is, when the hypothesis is rigorously sup-
ported by the sample) and tends to 0 as the sample values n;/N diverge more
and more from the hypothetical values p;. The problem of making an exact
test of significance of an observed value of A, would involve the computation
of all terms of form (1) the n’s of which make A, less than the observed value of
X.. This, of course, is impracticable except perhaps for the binomial case with
small values of N. However, if the n’s are large we can find an approximate

solution. If we let z; = n—l—_\/-_—;:p’ then except for terms of order 1/4/N and
higher, the z’s are distributed according to the law
1 _1233.
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where Z;z; = 0. Neglecting terms of order 1/4/N and higher we easily find
2
(using natural logarithms) —2 log A, = E Zi Therefore, if 6 = —2 log A,
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0 is approximately distributed according to the function
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which is the 2 distribution with & — 1 degrees of freedom.

Since we have neglected terms of order 1/4/N in obtaining (4) there is no
theoretical reason why x? should be used in preference to —2 log A, as the cri-
terion for testing the hypothesis that the sample is from a population specified
by pi, P2, - Pr. Any practical advantage which —2 log A, may have will
therefore justify its use.

2. The hypothesis that several samples of grouped data are from a common
population. Let pa, pir, - - - pis be the probabilities with which the mutually
exclusive events E;y, Es, - - - Ei occur, where Z;p;; =1(¢ = 1,2, -.- 7). Then
in a sample of N; events the chance that E, E, - - - Ei, will oceur ng, nig, - - - 04
times respectively is given by an expression similar to (1). The chance of the
joint occurrence of the r samples is
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We are interested in testing the hypothesis that the r samples are from the
same population, that is, that the r sets of p’s pa, pig, -+ - P ¢ = 1,2, ... 7)
are the same. The likelihood criterion A, appropriate to this hypothesis is the
ratio of the maximum (w(max)) of (6) subject to the condition that the sets of
p’s are the same (that is, p;; = p;jsay,1=1,2,...r; j=1,2, ... s) to the max-
imum (2 (max)) of (6) without this restriction.

For convenience let the observations be arranged in table form so that n; is
the frequency in the ¢-th row and j-th column. Let n;. and n.; be the totals of
the 7-th row and j-th column respectively, and N the total of all observations.
Thus n;. is the same as N;. The expression for . will be
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It can be shown analytically that A, lies between 0 and 1. It can be 1 only
nyy Nej Nrj . . .
whenlvli = F; =0 = ]V:,J = 1,2, ... s, that is, when the hypothesis of a
common population is perfectly substantiated by the samples. Because of the
fact that the n; are integers, it is clear that A, can be 1 only in exceptional
cases, but it can take on values arbitrarily near 1 for sufficiently large values of

the N45.
If the N are large, the quantities z;; = n":/—N_N‘-& are approximately dis-
tributed according to the function
r 1 z2,
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where Z;jz; = 0,7 = 1,2, -.. r. By neglecting terms of order 1/4/N and
higher, we find that

—2log \, = 2 (Nzii — VN (32 V/N; Zef))z.
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Denoting the quantity on the right side of (9) by x4 it follows by straightforward
analysis that the characteristic function ¢(f) of x; defined by the r(s — 1)-tuple

0
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But it is well known that (10) is the characteristic function of any quantity dis-
tributed according to (5) with (k — 1) replaced by (r — 1)(s — 1). This, of
course, is the x2 distribution with (» — 1)(s — 1) degrees of freedom.

It will be noticed that the exact value of A, is a function of the observations
n¢ which is independent of the p’s, while the approximate value of —2 log A,
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as given by (9) involves the p’s. Before (9) could be used practically, one would
have to replace the p’s by sample estimates, thus making further approximations
necessary in order to get the distribution. If the usual estimates p; = n.,/N
are used for the p’s in x; we find that x? reduces to

<n" n.-.n.,-)z
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which is-the familiar x* function for testing independence in contingency tables.
However, (11) differs from x2 by terms of the same order (i.e., 1/4/N;) as those
by which x; differs from —2 log .. Since we have neglected terms of the same
order in obtaining (8), there is no theoretical reason why (11) should be used
rather than —2 log A, for testing the hypothesis that the m samples are from a
common population.

.7

3. The hypothesis of independence in contingency tables. We shall con-
sider a sample of N observations which can be arranged in a two-way contin-
gency table having r rows and s columns. Let p;; be the probability that an
observation will fall in the i-th row and j-th column. The probability that the
sample of N items will be distributed so that n; will be the number falling in
the ¢-th row and j~th column (z = 1,2, ... r; j = 1,2, ... 8) is given by
N ' gt
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Here we are interested in testing the hypothesis that the classification by rows
is independent of the classification by columns, that is, that p;; is of the form
Piq; where

(13) Zpi=1, Zig=1.

For this hypothesis the appropriate likelihood criterion, say A, , is the ratio of
the maximum (w(max)) of (12) when pi; = pig; restricted by the conditions
(13) to the maximum (2 (max)) of (12) subject only to the condition that
Z pi = 1. \. turns out to be identical with A, in (7). When the hypothesis

$,7

of independence is true, the approximate distribution of the quantity —2 log A
is the same as that of —2 log A\. when the hypothesis of a common population
is true. To show that the distributions are the same we note that by placing

Nij — 1_\1 DiQi
VN '’

we find from (12) that the z;; are approximately distributed according to the
function

(14) T =
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1
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where Y, z;; = 0. To the same degree of approximation we find
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(16) 2log A, Z} o Xo? .
Now the characteristic function of x,* can be shown without much difficulty to
be identical with that of x& as given by (10). The identity of the characteristic
functions of xo? and x2 implies the identity of the asymptotic distributions of
—2log A\, and —2logA.. The problem of testing the hypothesis of a common
population in several samples of grouped data is mathematically equivalent to
that of testing the hypothesis of independence in contingency tables.

If the usual estimates p; = ﬁNﬁ’ g = 7—;\7' are used in (16) we find that x

becomes the expression given by (11). But (11) differs from x,* by terms of
order 1/4/N and higher. Therefore, — 2 log A, and (11) can differ from each
other only by terms of order 1/4/N which is the order of approximation involved
in getting (15) from (12). Thus, — 2 log \; has as much validity as the usual
criterion (11) for testing for independence in contingency tables.

The A, method can easily be extended to the case of contingency tables of
higher order. For example, in a three-way table of r rows, s columns and ¢
layers in which 7 is the number of items observed in the ¢-th row, j-th column
and k-th layer, the X, criterion for testing the hypothesis of independence, that
is, that the probabilities p;: are of the form pi:ps;ps« is such that

—2logA. =2 X (niplogny) + 4 Nlog N — 23 (n... log ns..)
(17) 1,50k T
-2 Ei (n, log n,) -2 Z" (nk log nk)
where n;.. = E nir, and so on. —2 log N in this case is approximately dis-

ik
tributed like x2 with rst — r — s — t 4 2 degrees of freedom.

4. Illustrative examples. To illustrate the use of A, we shall consider the
following example given by R. A. Fisher? dealing with de Winton and Bateson’s
data on results of interbreeding the hybrid (F,) generation of Primula in which
two factors are considered.

Flat Leaves Crimped Leaves
Primrose Primrose | Total
Normal Lee’s
Eye Qﬁ‘;zn Eye %;een
Observed (7¢)........c.oovtt 328 122 77 33 560
Expected (Nps).............. 315 105 105 35 560

2 Statistical Methods for Research Workers, 4th ed. p. 84.
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If the two factors are Mendelian, that is, segregate independently, the four
classes of offspring resulting from interbreeding the F, generation are expected
to appear in the ratio 9:3:3:1 (assuming all classes equally viable). We wish to
test the hypothesis of a 9:3:3:1 ratio. It is found that

— 2log. N\, = 2log, 10 [Z n; logy n; — Z n; logy (N p.-)] = 11.50 .

Entering Fisher’s x2 table for n = 3, we find that the chance of exceeding the
value 11.50 is less than .01, which is significant if we take P = .05 as the critical
level of significant deviation. Thus, the observed frequencies cannot be reason-
ably explained as chance deviations from the 9:3:3:1 ratio.

The usual x? method gives x> = 10.87 and » = 3 for the 9:3:3:1 hypothesis.
The value of P in this case lies between .01 and .02. It follows from the theo-
retical discussion that 10.87 has no greater validity than 11.50 in testing this
hypothesis.

We shall illustrate the use of A, by using another example given by Fisher
dealing with Wachter’s data for back-crosses in mice.

lack Black B
Rt | Plobald | Seit" | Piebaia | Total
Coupling:
FiMales.................. 88 82 75 60 305
FyFemales................ 38 34 30 21 123
Repulsion:
FiMales.................. 115 93 80 130 418
FiFemales................ 96 88 95 79 358
Total................. .| 337 297 280 290 1204

The back-crosses were made according as the male or female parents of the
F; generation were heterozygous in the two factors Black-Brown, Self-Piebald,
and according to whether the two dominant genes came both from one parent
(Coupling) or one from each parent (Repulsion). We wish to test the hypoth-
esis that the proportions are independent of the matings used. We find

—2log A\, = 2log, 10 [E nij logio Ny
7
+ N logmN - Z.‘ n;. lOglo n;. — Zi n.; logm n.,-] = 21.69.

Entering.Fisher’s x? table for n = 9-we find that the chance of exceeding this
value is less than .01. The departure from the hypothesis of independence is
significant on basis of the P = .05 level. The x2 method gives the remarkably
close result x2 = 21.83, which, with n = 9 gives P < .01,

5, Summary. We have considered the exact expressions for the Neyman-
Pearson \ criteria appropriate to the following hypotheses: (1) That a sample
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of grouped data is from a population with specified group proportions (the
fundamental x? problem), (2) that several samples of grouped data are from a
common population, (3) that there is independence in a contingency table. The
quantity —2 log X for each of these cases is approximately distributed like x?2,
the number of degrees of freedom being given in each case. It is shown that the
usual x2 method of testing these hypotheses has no greater theoretical validity
than the A method. On the practical side, it is to be remarked that —2 log A
can be computed with fewer operations than x2. Two examples are given to
illustrate the practical‘application of the A method.
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