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Pairman and Pearson gave a numerical example in which both the lack of
high contact and the grouping introduced large errors. They started with
¥= = 100,000 4/z and from this formed ten values of A.. From these they
computed the »,’s and corrected them to get the un’s. The exact values of the
latter were already known to them through integration of the original equation.

The following table compares four values of moments from these data.

, u., by u., with Pair- | _Method
m v, Sheppard’s man-Pearson Developed True Values
Formula Full Corrections Here
1 5.9880 5.9880 5.9994 5.9996 6.0000
2 42.6900 42.6067 42.8570 42.8576 42.8571
3 331.0854 329.5884 333.3349 333.3387 333.3333
4 2698.7735 2677.4576 2727.2757 2727.3555 2727.2727

Despite the use of the Aj_’s instead of Al’s, the results of this method are
almost as good as by the older one. The method has the additional advantage
of unifying the theories of the correction of moments from the two types of
distribution.
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FREQUENCY DISTRIBUTION OF PRODUCT AND QUOTIENT

By E. V. HuNTINGTON

The main purpose of this note is to establish Theorems 1 and 2. For the
sake of completeness, the more familiar Theorems 3 and 4 are appended. All
four of these theorems have numerous applications in the theory of frequency
distributions. While the proofs of Theorems 1 and 2 in the elementary forms
here given (and used in my class-room notes since 1934) can hardly be new, they
seem not to be readily accessible in the current text-books.

THEAREM 1. Suppose a variable z is distributed in accordance with a probability

law £ f(z)dz = 1; and a variable y in accordance with a probability law _/; F(y)dy
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196 E. V. HUNTINGTON

= 1, z and y being independently distributed. Then the product, u = xy, will be
distributed according to the law l Pu)du = 1, where

Pe) = [ /) Fw)1/y) dy.

(The definite integral is a convenient representation of a probability law, since
the limits on the integral sign indicate the interval over which the probability
law is defined.)

Proor. Represent the distribution of x by the density of dots along the
axis of z, and the distribution of y by the density of dots along the axis of y.
Since, by definition, the (relative) number of dots in an interval dz is f(x)dx
and the (relative) number of dots in an interval dy is F(y)dy, and since each
dot in the interval dz is paired with each dot in the interval dy (in accordance
with the hypothesis of independence), it follows that the (relative) number of
dots in the corresponding area dzdy will be [f(x)dz][F (y)dy].

Now for fixed values of u and Au, plot the curves 2y = w and 2y = u + Au
in the zy plane, as shown in Figure 1. Then the (relative) number of dots in the
area bounded by these two curves is precisely what is meant by P(u)Au. Hence
the expression P(u)Au may be built up by integrating the expression
f(z)dz - F(y)dy over this area, as follows.

Pase= [ [ [ sert) a|ay

uly

_ o f(xf)F(y) (u/y)+(Au/y) i dy’
0 u

ly

where z’ is a mean value of z between £ = u/y and z = (u/y) + (Au/y). Now
at every point in the plane, x = u/y (since u = zy). Hence we have:

P = [ /P /maddy = [ 1P/ [ou,

from which the theorem follows immediately.
TuaeoreEM 2. Suppose a variable x 18 distributed vn accordance with a proba-

bility low [ f(@)dz = 1; and a variable y in accordance with a probability law
f F(y)dy = 1, = and y being independently distributed. Then the quotient,
o

z = z/y, will be distributed according to the law f Q(z)dz = 1, where

@ = [ fewr@ydy.

Proor. As in the proof of Theorem 1, the (relative) number of dots in the
area drxdy will be [f(z)dz][F (y)dy).
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Fig 1
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Now for fixed values of z and Az, plot the lines z/y = zand z/y = z + Az
in the zy plane, as shown in Figure 2. Then the (relative) number of dots in
the area between these lines is precisely what is meant by Q(z)Az. Hence the
expression Q(z)Az may be built up by integrating the expression f(z)dz - F(y)dy
over this area, as follows:

o@as = [ [ [ roraasay

2y

= L ) [f(:c’)F(y) [ e dx] dy,

Y

where 2’ is a mean value of 2 between z = zy and z = 2y + yAz. Now at every
point in the plane, z = 2y (since z = z/y). Hence we have

Q@@)Az = f Y F(y)yaeldy = [ f f(éy)F(y)y dy] Az,
o ]
from which the theorem follows immediately.

For convenience of reference, we include the corresponding theorems for the
sum and difference, the proofs of which have long been well known.

TaeoreM 3. If x obeys a law j; f(@)dz = 1, and y obeys a law l F(y)dy = 1,

then the sum, s = x + y, will obey the law -/o. ¥(s)ds = 1, where

v = [ s~ DFG)dy.
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The proof consists in integrating f(z)F(y)dzdy over the area bounded by the
twolinesz 4+ y = sand z + y = s + As, as shown in Figure 3. '

THEOREM 4. If x obeys a law [ f(@)dz = 1, and y obeys a law [ F(y)dy =1,
then the difference, w = z — y, will obey the law [ R(w)dw = 1, where R(w)

= [[ 100+ 0 Fa) .

The proof consists in integrating f(z)F(y)dzdy over the area bounded by the
twolinesz — y = wand z — y = w + Aw, as shown in Figure 4.

HARVARD UNIVERSITY.

MOMENTS ABOUT THE ARITHMETIC MEAN OF A
HYPERGEOMETRIC FREQUENCY DISTRIBUTION

By HaroLp D. LARSEN

In a recent paper' Kirkman has developed a method of continuation for
obtaining the moments of a binomial distribution. Although other investi-
gators’ have found various methods which are perhaps superior from the
standpoint of elegance and compactness, Kirkman’s method is of some impor-
tance inasmuch as it is adaptable to use in a course in elementary statistics.
With this thought in mind, we shall extend Kirkman’s method to obtain the
moments of the hypergeometric distribution of Table I1.®

TABLE 1
Variate Relative Frequency
v v
0 2Coa B /N m
1 2Cra®MBe=D /N
2 ,.Cga(2)ﬂ(""2) /N(n)
n nCrat™B® /N

1W. J. Kirkman, ‘“Moments About the Arithmetic Mean of a Binomial Frequency
Distribution,’’ Ann. Math. Statist., vol. vi, no. 2, June, 1935, pp. 96-101.

2 For example, J. Riordan, “Moment Recurrence Relations for Binomial, Poisson and
Hypergeometric Frequency Distributions,”” Ann. Math. Statist., vol. viii, no. 2, June,

1937, pp. 103-111.
3 For the Poisson distribution, this method degenerates into the application of a well-

known recursion formula.



