COMPLETE SIMULTANEOUS FIDUCIAL DISTRIBUTIONS
By M. S. BARTLETT

1. Introduction. In a recent paper in these Annals, Starkey [13] has made
some investigation of the distribution® related to the Behrens-Fisher test of the
difference between two means from normal populations with unequal variances.
She does not, however, give any critical discussion of the validity of this pro-
posed test in the light of criticisms that have been made of it. It may therefore
be an appropriate opportunity of reviewing the theory of fiducial distributions,
as I see it, up to the present stage of development,’ and in particular, of referring
to the idea of complete simultaneous fiducial distributions. In conclusion I
have made some brief comment on the particular problem at issue, in the light
of this general theory; and have added a note on the use of approximate tests.

2. Fiducial Probability. If from a sample denoted symbolically by S a
statistic T' is obtained whose chance distribution depends on one unknown
parameter 6, the distribution of T being of the form

»(T | 6) = (T, 6) aT,

and if the values of T bear a regular increasing relationship with 6, (for an
assigned value of the probability integral), then for any particular value T = T,
we may assert that 8 > 6,, where

To
[Cowie =1

and we shall know that this assertion, in the system of inferences based on the
above rule, will have an exact and known probability of being wrong, given by e.

The inference is thus an uncertain one, but the extent of the uncertainty is
exactly known, and as stressed by Fisher [6], who first introduced this important
concept of fiducial inferences and fiducial probability, is completely independent
of any a priori notion of what value 6 is likely to be.

It might be emphasized, to avoid confusion, that the inference is a deduction
from the standpoint of logic, and still requires, if applied in practice, the necessity
of inductive assumptions concerning the applicability of the mathematical
theory, but its avoidance of any appeal to a priori probability in regard to the
value of 6 gives it a completely independent status district from the classical
inverse probability argument, from which it should be distinguished. The

1 This distribution has also been studied by Sukhatme [14].
? See also the recent expository article by Wilks [16].
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interval assigned to 6 is to some extent arbitrary, and we can more generally
choose 6, and 6; such that the fiducial probability of

6 <0< 6

is equal to 1 — e. While this fiducial probability is a probability in a formal
mathematical sense, I have suggested [2] that its special meaning in regard to
the inference on 6 might be emphasized if we distinguished it by a special
symbol. Since intervals (61, 6) can be built up for all values of ¢, we can
represent them all by the general distributional expression

[aom = [ arin,

which defines the fiducial probability distribution f,(6 | T).

From the point of view of mathematical theory T is, so far, any statistic, but
Fisher restricted the term fiducial probability for those cases where T was a
sufficient statistic for 6, in order that the fiducial inference should be based on a
sample statistic which could justifiably claim to contain all the information
on # available from the sample.

The general theory of interval estimation, without this restriction, has been
subsequently examined by Neyman (e.g. [10]) under the name of the theory of
confidence intervals. In this general theory there is no particular restriction
on the number of parameters involved, for it may be possible in the coordinate
space represented by parameters 6, (for which there are statistics T,) to define
a region R(T,) for which the assertion that the vector parameter 4, lies in the
region R(T,) has a known probability 1 — e of being correct.

A difficulty, however, in a multi-parameter theory of fiducial distributions
is that it does not in general seem possible, even when T, is a vector statistic
representing a joint set of sufficient statistics for 8., to define a simultaneous
fiducial distribution f,(6, | T») which will be consistent with one-variate distri-
butions f,(8 | T) relating to one particular parameter 8. For such consistency
we must have the symbolic integration

[ 611

over all 6, other than 8 yielding j,(6) as a result. A further discussion of this
difficulty is given in Sections 4 and 5, after the theory of one-variate fiducial
distributions has been more completely discussed.

3. Fiducial Distributions and Properties of Sufficiency. If we now consider
the extension of one-variate fiducial inferences to the case where other param-
eters exist but are unknown, we are led to examine the various types of suffi-
cient statistic which are related to the theory of estimation of one parameter
when other parameters are unspecified (Bartlett, [1]). By a distribution of
fiducial type we shall mean a distribution providing at least confidence inter-
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-als in the sense of Neyman. This distribution will be defined as the fiducial
distribution for 6 if the statistic used (conditional or unconditional) satisfies
the necessary sufficiency properties given in the paper just referred to (sections
6, p. 132, and 7, p. 136). This definition is understood to include the possibility
mentioned in section 7, where T | T»(8) is a conditional statistic of the type
required for any specified value of 8 (T:| T, denotes T, given T,). For
example, the theoretical statistic Z | Z(x — m)’ in normal theory, where # is
the sample mean and Z(z — m)’ the sum of squares of deviations from the
population mean m, is of this form, and since

p@E| 2@z — m)*) = p(p),

a fiducial distribution for m is obtained from the familiar Student’s ¢-distribution.
As other developments of fiducial theory we may note (i) its application to
fiducial inferences on sufficient statistics in unknown samples (this application
to normal samples has been discussed by more than one writer, see, for example,
Fisher [8]; I have moreover indicated the general theory underlying such
applications [3]) (ii) the case of discontinuous or ‘“discrete” sampling distri-
butions, for which the theory of exact fiducial distributions breaks down.

In the latter case, it is only possible to choose an interval for 8, such that
the chance of our fiducial inference being incorrect is not greater than e (see,
for example, Clopper and Pearson [5]). This “inexact theory’”’ I have shown [3]
may also be extended to inferences on sufficient statistics in unknown samples.
In particular, from the general distribution

m! ! (n—r7)lr!
(1 — r) ! (ng — ry)!ry! 'l

p(rl; T2 I 1‘) =

giving the number of ways of assigning r members with some attribute A in
numbers r; and r; to samples S; and S;, sizes n; and nz, we have for n; = 1,

r
m (7'2 = 1)

n1+1—r _
M1 (r: = 0).

Thus if S; contains r, members with a certain attribute, such that

T1+1
n1+15

we may assert that a new member from the same population will not possess
the attribute. If

p(r|7) =

€,

m+1—n
n1+1

we assert that the new member will possess the attribute. If r; does not conform
to either inequality, we cannot, with the limit of error imposed, commit our-

<e
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selves. The probability that our variable assertion, based on the above rule,
is wrong, is then not greater than e. (This type of inference may be contrasted
with the Law of Succession in the theory of inverse probability. In this rather
degenerate example it is not of course surprising that the nature of the inference
we can make is not always very profound!)

4. Simultaneous Fiducial Distributions. It was pointed out in section 2
that an inference of fiducial type might be made regarding a joint interval con-
taining unknown parameters 6, , this interval or region being a variable function
of the (continuous) statistics 7, . If a sufficient set of statistics T, (r = 1 . .- k)
exist for the parameters 6, (r = 1 ... k), that is, if we have

p(816,) = p(T.| 6:)p(S| TV)
where T, denotes the set T, --- T, and similarly for 6,; and if we can write

p(T, | 6:) = pler)

where the distribution of the set of theoretical functions ¢, of T, and 6, is inde-
pendent to any further extent of 6,, then we may write also

fo(0: | Te) = pler)

as the simultaneous fiducial distribution of the 6, (cf. Fisher, [8]). This nota-
tion allows implicitly for the formal transformation from one set of variates
to another, the last equation meaning that p(e,) provides the fiducial distri-
bution of the 6, , when it is regarded as a distribution in 8, . For the equations
to hold, however, the Jacobian of the transformations must not change sign
anywhere in the sample space, this condition determining both the formal
identity of the two sides of the equations and also the necessary one-to-one
relationship between values of 6, and T, .

It has been shown by Segal [12] that if the sufficient set T', exist, the func-
tions ¢, also exist. For we may define ¢, by the equations

o= ‘[:l p(Ty)

o2 = [:’ P(Tlel)

so that
p(T)p(Te | Th) -+ - = deudes - - - (¢r, 0 — 1).

The above theory is also immediately applicable to quasi-sufficient statistics,
it being merely necessary to consider the appropriate conditional distributions.

5. Complete Simultaneous Fiducial Distributions. It has been emphasized
(3] that the simultaneous fiducial distribution f,(6: | T+) obtained from a suffi-
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cient set of statistics must not be interpreted analogously to a simultaneous
distribution p(T, | 6,). For example, if the set T, represent the sufficient sta-
tistics # and §* for the unknown mean and variance of a normal population
we have

- 2
p(ib & Im) ‘72) = P(x m, 8_‘)

o o?
= fp(m; 7 l z, 82);

but this does not imply that a fiducial inference could be made for one unknown
parameter defined by § = m + ¢ by integration of the above fiducial distribu-
tion after formal change of variable.

We may, however, in certain cases show that consistency relations are satisfied
which justify to a much further extent our calling f,(6, | T,) a simultaneous
fiducial distribution. Unfortunately this last expression has already been
appropriated for f,(6, | T+) in general; we shall therefore call f,(6, | T') a complete
simultaneous fiducial distribution if (taking ¥ = 2 for simplicity)

pACH ) 0s) = fp(ol l 02)fp(02)
= .fp(02 l 01)fy(01),

where the fiducial distributions on the right are known to exist, and their form
determined, from the theory of one-variate fiducial distributions. For example,
if we consider again the normal sample, we have

(252 2) = (2575 (%)

= fr(m|¢2)fp(¢2)

-( 7))

= fp(m)fp(‘z | m)

and also

where 2 = Z(z — m)’.

These relations imply not only that a fiducial region for m and ¢* can be
determined from the observed values of Z and s’, but that in particular, the
region can be chosen so that (i) it is some section of an area bounded by two
lines parallel to the m axis (ii) alternatively it is some section of an area bounded
by two lines parallel to the ¢* axis. Integration for m and o” respectively then
implies extending these sections until the whole area bounded by these two
parallel lines is included in the chosen region. This existence of a complete
simultaneous fiducial distribution for the two population parameters correspond-
ing to a normal sample is a special case of the complete fiducial distribution
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which exists for the two parameters of location and scaling for a sample from
any population of the form

p(z|m, o) =f<a: ;—m) dz

as I have previously pointed out ([2], p. 564).}

’
[

For let T; and T, be any two algebraically independent statistics giving
information on the two parameters, such that

(8 l m, o) = p(Tl , Ty l C) m, “)p(C)

where C represents the configuration of the sample (the idea of specifying the
configuration C was first introduced by Fisher [7]). The above equation is
always possible, for if z; is the smallest observation, x, the next smallest and
80 on, let

Th=mn

Tz =T — 11

T, = (zr — T1)/Te, (r>2).
Then C = (T,) is independent of m and o, and the quasi-sufficient set T,

T, will determine a simultaneous fiducial distribution for m and o, (the Jacobian

J ("-;-;-’i’), where ¢; = I - M oy = Z’, is Zf, and is always positive).
y O T '
As further necessary conditions for fy(m, ¢) to be complete, we have the

relations
P(TI, T, ‘ C, m, 0') = p(Tl - m I g, Tﬁ; C)p(T2 | C; 0’)

(D™ —m|c, iom
_p( T2 C)p(Tl mlC, Tg ,0’).
The first of these relations is obvious, and since the first factor in it corresponds

to the quasi-sufficient statistic T; for m when the configuration ¢’ = (C, Ts)
is given (¢ known), we have

To(m, 6) = fo(m | 0)fp(0).

For the second relation we note that the set

Tl—m

T, and Th—m

are algebraically equivalent to the set T) and T.. Moreover, . 1_,- ™ is inde-

3 Cf. also Pitman [11], who does not, however, consider the point with which I am con-
cerned in this paper.
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pendent of ¢; and if m is known, (T, — m) | C”, where C" = (C, Tl,; m)’
2
is a quasi-sufficient statistic for o. Hence .

To(m, ) = fo(m)fy(o | m),

which is the relation required.

The theory of complete simultaneous fiducial distributions may be applied
to sufficient statistics in unknown samples. In particular, a complete distri-
bution may be shown to exist for the statistics # and s; in an unknown
normal sample S;, or for the statistics Z and s* for the joint sample S of
which the known sample S; is also a part ([3]; cf. Fisher, [8]).

6. The Behrens-Fisher Test between two means. Fisher [8] showed that
by integrating out the simultaneous fiducial distribution f(m, ¢°) obtained
from a normal sample, we obtained either f,(m) or f,(¢”). He then suggested
that such integration was possible for any simultaneous fiducial distribution;
and hence obtained a distribution apparently appropriate for testing the differ-
ence between two means from normal populations whose variances were
unequal. Since I have shown that this integration can be justified for
fo(m, ¢®) owing to the complete simultaneous nature of this distribution, it is
clear that integration in any other problem is so far justified merely by analogy,
and no statement as to its meaning in general has been given by Fisher.

To show more explicitly the extent to which the proposed solution is open to
criticism, I examined in particular [2] the case where each estimated variance
had only one degree of freedom. The Behrens-Fisher solution implies a fiducial
distribution

(81 + s2) dy
w{(s1 + 8)? + ¥}
where § is the difference in population means m; — mz, ¢ = (my — 21) — (M2
— z;), where 7; and 7, are sample means with estimated variances st and s3
each based on only one degree of freedom. By direct argument, I derived a
distribution of fiducial type

fp(a) =

f p(s) =

|81 =+ 82|d\ll
w{(s1 = 8)* + ¢?}

where the sign + or — 18 to be decided at random. 1t is irrelevant to my argu-
ment whether we are justified in calling this distribution the fiducial distribution
of 8; it is also irrelevant what distribution would ensue if the + and — signs
were considered separately. It is sufficient to note that the distribution cer-
tainly provides us with an exact inference of fiducial type, as Fisher himself
confirmed ([9], p. 375); and this inference clashes with the apparent inference
to be drawn from the Behrens-Fisher solution. In general it is of course true
that different distributions might validly lead to different inferences of fiducial
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type, but here the distributions are sufficiently similar mathematically for it
to be possible to assert that they cannot both be correct. The direct distri-
bution of ¥/(s1 + 82) is in fact known to be dependent on the unknown ratio ¢
of the population variances (Fisher, [9], p. 374). While Fisher suggests that
this in no way invalidates his fiducial argument, in my view if an inference is
to be independent of an unknown parameter, it should in particular be inde-
pendent of it if we imagine that we are being supplied with pairs of samples,
for all of which the ratio ¢ has the same value.

7. Approximate Tests. I have shown ([2], p. 565) that while f,(8) in general
does not appear to exist, we have

J2(5, ) = fu(8 I ?)f»(¢)

'pz ¢ —§(n1+ng+1)
”m“=0%+u+wmﬁ+mmﬁ

where

Rvers )
Vi(mst +msip) V 1+9

where n; and n; are the degrees of freedom of s; and s;, and C is a constant.
For n; = ny, the fiducial limits for § (if ¢ were known) were shown to be in-
sensitive to changes in ¢, as has also been shown by Welch [15] in more detail.
For n; # n, this is no longer the case. If we tried to get an approximate solu-
tion we might consider inserting 6 = s}/s3 for ¢ in the above distribution; this
would be equivalent to considering the (direct) distribution of

Z1 — 2g

T=V@+$

as a t-distribution with n; + 7, degrees of freedom. This is therefore a first
approximation to the true distribution of T, which has been obtained by Welch
[15] to a further approximation involving ¢.

Sometimes it is sufficient in practice if we can assign limits to the true sig-
nificance level of T in any problem, as was illustrated in my own paper ([2],
p. 566). A formal proof of the inequality used there is as follows.

The actual distribution of T for n; = n, = n, say, depends on the integral

_ [ A 6/0)"d(6/0)
Ig) = ./.: T+ NT2/n)"" (1 + 6/¢)"

where
2 _ 20(1 + 6)
1+e)0+¢)
and hence the significance level of T on the integral

kd]
J(9) = f I(o)dT.
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If we write
{W«p, 0<0/p<1)
u =
e/, (1 <0/p< »)

we obtain
in—l

Az
J(9) = f f {(1 +Af T2 n)" + (1423 T’/n)"“} L dT,
that is,

2(u + o)

2(1 + uep) .
A+ u)(1+e)

Trad+e M7

AL =
where
7@ = [ F@) + PO+ 0"

where t; = M| T |, t2 = \2| T |, and F(t) is proportional to the probability
integral of a ¢ with n degrees of freedom. Since

AF®W) + Ft) _ { 1 _ 1 } 1—w|T|
T e W@ HNT/W)™ T M+ NTY/)™ T F W) F o)

this differential coefficient, from the relations
(I—-wu)(l—9) =20,
1+upzu+o
>\,

is never negative for all u and ¢(¢ < 1). Hence J(p) is a steadily increasing
function in the range (0, 1) for all values of T'; or the significance level of T lies
between its values for ¢ = 0 and ¢ = 1, as previously stated.

More generally, for n; = n., the effective number of degrees of freedom for 7'
would be expected to lie between n; (n; < ns) and ny + n. (cf. Welch, [15], p. 360),

though I have not succeeded in establishing this rigorously by a modification
of the above proof.

REFERENCES

[1] M. S. Bartlett, Proc. Roy. Soc. Vol. A154 (1936), pp. 124-137.

[2] M. S. Bartlett, Proc. Camb. Phil. Soc. Vol. 32 (1936), pp. 560-566.

[3] M. S. Bartlett, Proc. Roy. Soc. Vol. A160 (1937), pp. 268-282.

[4]1 W. V. Behrens, Landw. Jb. Vol. 68 (1929), pp. 807-837.

{5] C.J. Clopper and E. S. Pearson, Biometrike, Vol. 26 (1934), pp. 404-413.
[6] R. A. Fisher, Proc. Camb. Phil. Soc. Vol. 26 (1930), pp. 528-535.

[7] R. A. Fisher, Proc. Roy. Soc. Vol. A144 (1934), pp. 285-307.

[8] R. A. Fisher, Ann. Eugen. Vol. 6 (1935), pp. 391-398.

[9] R. A. Fisher, Ann. Eugen. Vol. 7 (1937), pp. 370-375.



138 M. 8. BARTLETT

[10] J. Neyman, Phil. Trans. Vol. A236 (1937), pp. 333-380.

[11] E. J. Pitman, Biometrika Vol. 30 (1939), pp. 391-421.

[12] I. E. Segal, Proc. Camb. Phil. Soc. Vol. 34 (1938), pp. 41-47.
[13] D. M. Starkey, Ann. Math. Stat. Vol. 9 (1938), pp. 201-213.
[14] P. V. Sukhatme, Sankhya Vol. 4 (1938), pp. 39-48.

[15] B. L. Welch, Biometrika Vol. 29 (1938), pp. 350-361.

[16] S. S. Wilks, Ann. Math. Stat. Vol. 9 (1938), pp. 272-280.

CAMBRIDGE UNIVERSITY,
ENGLAND



