THE SKEWNESS OF THE RESIDUALS IN LINEAR REGRESSION
THEORY

By P. 8. Dwyer
University of Michigan, Ann Arbor, Mich.

In obtaining the regression of y on z it is customary to show the relation
between the actual and the estimated y by computing the standard deviation
of the residuals with the use of the formula ¢ = o, /1 — 72 If the errors
are distributed normally one may estimate the number of values coming within
one standard deviation, within two standard deviations, ete., of the regression
line. However these errors are not always distributed normally, and in such
a case it seems wiser to compute the skewness of the residuals and to use a
Pearson Type III curve in making the interpretation. The present paper out-
lines a technique for the calculation of as.. which is feasible from a practical
standpoint. It is based (a) on a cumulative totals method of obtaining the
correlation coefficient which, at the same time, makes possible the determination
of the third order moments needed to evaluate the skewness and (b) onl an effi-
cient ritual for computing the coefficient of skewness from the moments.

The determination of the normality or non-normality of the residuals is not
always immediately evident. If the scatter diagram or correlation chart is
presented, one can make an estimate of the extent of normality but if not, and
the most modern and efficient computational methods do not utilize the correla-
tion chart, there is no way by which the presence or absence of normality can
be detected. Some research workers are opposed to the use of the more efficient
methods (particularly the use of the Hollerith tabulators) because the correla-
tion chart is not presented. Though within limits it is possible to use the
tabulator to present the correlation chart simultaneously with the values needed
to compute the correlation coefficient [1], it is here suggested that the computa-
tion of the skewness of residuals, which can now be accomplished quite easily
from the tabulator runs, may be substituted for the examination of the correla-
tion chart.

The classical least squares theory makes use of

(1) €=y—'bo""b1$

where by and by are the solutions of the normal equations. We note that the
first normal equation is ¢ = 0 so that M, = 0 and the residual is a deviation.
It follows that the skewness of residuals is

- E(y - bo - b1$)3
No? ‘
104

(2) Q3:¢
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SKEWNESS OF RESIDUALS 105

We wish to compute 3. without computing the individual residuals. The
denominator causes us little concern but it seems discouraging to evaluate such
an expression as
y® — Nby — bizZa® — 3by=y® — 3b,2zy® + 3bs =y

— 3bgbiZz + 3biZa’y — 3bibyZa’ + 6bobyiZxy
even though the values of by, by, N, 2z, Zy, 2%, Zxy, =y, Za°, =%y, 2y’

Zy’ are available.
A first simplification is made by summing (1) and dividing by N. We then

have

(3) Mc = My - bo - blM,;

and by subtracting (3) from (1) and §den0ting deviations by barred letters,

we have

(4) € = ?7 - blﬁ-ﬁ

so that the skewness of errors is

_ 2§’ — 30227 + 3bi22'y — biZE’
Not

(5) 03¢

This formula can also be expressed as
fios — 3b1jinz + 3b3 s — b}
[0z — blﬁll]312
A similar formula for the skewness of the residuals of x on y is

- ’_ 92 _ 73 -
fso — 3b1fa + 3bi’fie — by’ fies
]3/2 *

(6) 3¢ =

(7) 03’ =
? [0 — b;ﬁu

For theoretical purposes formula (6) may be put in standard units with

g, ’ [z - - 2 . .
by = 1=, by = =2, figo = ooy, fim = anoio, , etc. with the resulting
O oy

(8) . = o3 — 31"0[12 + 31"20121 - 7‘30(30
3ie 1 = ryn

Asr — 0, azc — agy just as ¢ — oy as r — 0.
Formulas (6) and (7) are of some theoretical importance in that they show how
the skewness of the residuals is connected with the skewness of the marginal

distribution. Thus
_ '
as uj; — 0, b1 and b1 — 0 and 03¢ = O3y 5 Olgie? —> O3z
’
as by — 0, 03¢ —> —U3:z and as b; — D, 0ig:e’ —> — 03y ,

. . ’
as by — 1, as;e — a3,y— . Similarly as by — 1, as:er — o3z »
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It is hence possible in some cases to get a good approximation to the skewness
of the residuals if the regression coefficients and the skewness of the marginal
distribution are known.

TABLE 1
Correlation from first order cumulations

| W] @] |@ 6|6 m]®|©]a)| a)|a| us) |
N 3.99 13.49 [2.99 |2.49 {1.99 [1.49 | .99 | .49

4.00/3.50-(3.00-(2.50-|2.00~(1.50-/1.00~| .50-| .00~

y 8 7 6| 5 4 3 2 1 0
fz

fu 13| 50 107| 220; 341 179] 121 60| 35| Czy | Cyy
4.00| @ 18 5 2 5 5 1 113 108
3.99
3.50-| 5 106 2| 19 29| 27| 20 7 1 1] 673] 638
3.49
3.00-| 4 178 3 12| 35 53] 44| 18 6 5 2] 1503| 1350,
2.99
2.50-| 3 270 3 10| 20 55 103 33 27 11 8] 2568| 2160,
2.49
2.00-| 2 330 6| 11| 54| 114] 67 46| 19| 13| 3714 2820,
1.99
1.50- 1 173 1 5 19| 45| 44{ 34/ 18 7| 4244| 2993
1.49
1.00-| 0 51 2 7 14| 10 8 6 41 4399) 2993]

Cy. | 61| 259 661 1330| 2194| 2578| 2809( 2923| 2993| 12815{10069

Cz, | 104| 454| 1096 2196 3560 4097| 4339( 4399] 4399| 20245

For actual computation, we use (6) and (7). It has been indicated previously
how the values =z, Zy, 2%, Zzy, 2y°, Z2° and Zy® could be obtained with the
use of cumulations. An illustration used previously [2] is presented in Table I.
The information was obtained from the Office of Educational Investigations of
the University of Michigan and gives the University first semester average (X)
and the high school average (Y) for 1,126 students entering the College of Litera-
ture, Science, and the Arts in 1928.

The new origin of each variable is taken at the class mark of the lowest class
rather than at the class mark of a middle class as is conventional. In this way
all negative terms are avoided in the computation of the moments. The z’s are
arranged in descending order from left to right and the y’s in descending order’
from top to bottom. The notation z, is used to indicate the sum of all the z’s
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having the same value of y. Thus the first entry in column 13 is 5-8 + 2.7 +
5.6+ 5.54 1.4 =113. The column Cz, is obtained by cumulating the values
of z, . Similarly y, is the sum of all the y’s having the same value and the first
eutry in column 14 is 18(6) = 108. The entries Cy, , Cy., and Cz, are obtained
similarly.

The entries 2z, 2y, Z2%, Zzy, =y’ are found in the lower right hand box in this
position:

2r |2y

Sy | Szy |2y

>z | =2’

The values of Zz and Zy are obtained from the final cumulations while the value
of Zxy is obtained by adding the entries in the column above, or, as a check,
the entries in the row to the left. The value of =y’ is obtained by adding the
entries in the row at the left of the box while the value Zz* is obtained by adding

the entries above the box.
The values of the third order sums are obtained by multiplying the entries
above the box and to the left of the box successively by 1, 3, 5, 7, 9, ete. Thus,

=2’ = 4399 + 3(4339) + 5(4097) + etc. = 102,103,
2’y = 2923 + 3(2809) + 5(2578) 4+ ete. = 63,121,
Sxy® = 4244 4 3(3714) + 5(2568) + ete. = 46,047,

=y® = 2003 + 3(2820) + 5(2160) + etc. = 38,633.

In making the reductions we use ab — cd operations as much as possible.
We first compute

9)

A,y = NZzy — (27)(2y),
(10) A, = N22* — (Zz)’,
Ag2y = N22%y — (229 (3y).
We note too that
o = [NAs. — @222) (A /N fn = (NAzy — (222)(4.,)]/N°
fir = [NAsyr — 229 (A:)1/N°; e = [NAyzy — (229)(4,,)]/N°

and finally we get a3 or as.r by (6) or (7).

The general solution is outlined on the left of Table II. We record in Fig. A
the values given by (9) and in the Fig. B the values resulting from the applica-
tion of (10). The values 22y and 22z are inserted in Fig. B to facilitate the
calculation of Fig. C which gives the values of (11). The technique is very
eagsily carried out once it is understood. It can be performed with hand calcu-

(11)
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lators but it is ideally adapted to the use of the latest Marchant, Fridén, and
Monroe models equipped with automatic positive and negative multiplication,
so that ab-cd operations can be performed with a minimum of effort and a max-
imum of accuracy. Actually the value of “a,” which is the total frequency, is
the same for many of these operations so that there is further saving if a ma-
chine is used which permits the locking in of a constant in such a way that it

can be used, without continued key punching, in later ab-cd operations.

Abbreviated techniques for computing third order central moments, etc.

N zz Za? a3 1126 4399 20245 102103

Zy Zxy Sty 2993 12815 63121

Zyr | Saxy? 10069 46047

Zy? 38633

N 22z Az V: PL 1126 8798| 3444669 25910223

22y | Az A2,y ‘ 5986)  1263483| 10480961

Ayy | A2 2379645 7555391

Ay 13364241

N A N3ggo 1126 3444669| — 1131286764
Azy N3y 1263483|685438652

A,y | Npa 2379645 944161028

N 803580396

N (b1) fi20 fios 1126 (.367) 2.717 —.7925

1) | B Ra1 (—bd), (—3by) (.531) .997 .4801  (—1.593)

oz Ri2 (3b3), (3b1%) 1.877 .6614)  (.846)

Bos  [(—8b1), (—b{%) 5629 (—.150)

The values in Fig. D are obtained by dividing the values 4,,, 4.4, and
A, in Fig. C by N? and the values in the diagonal below, NA,2, — (22y)4,.,

etc., by N°. The values b; = % and by

to the N. The value of the correlation coefficient is r =

/f—u can be inserted in Fig. D adjacent

Vbibi =

Au

\/ﬁzoﬁéz.
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We have too, g. = \/ Hoz — bifin and ¢ = \/fin — bifin SO that the standard
deviation of residuals is readily computed from the entries of Fig. D. The
numerator of (6) is readily obtained after entering —3b;, 3b, (—b}) in the
diagonal under the diagonal containing the third moments and multiplying by
columns. The numerator of (7) is obtained by entering —bi®, 3bi*, —3b;,
in the same diagonal and multiplying by rows. The theory is applied to the
results of Table I and the details are presented at the right of Table II. It is
to be noted that all values indicated here are the coded values z, y and not the
original values, X, Y. However, the correlation coefficient and the skewness
of errors are independent of any such change in unit, grouping errors being
neglected.

From Fig. D we see that b, = .997/2.717 = .367, that b; = .997/1.877 =
.531 and that r = 4/(.367)(.531) = .441. In this case we wish to estimate
college record, z, from high school record, y, so we use b; = .531 and compute

—38b; = —1.593, 3b® = .846, —b,° = —.150. It follows that
v, = 7925+ (:4801)(—1.593) + (.6614)(.846) + (.5620)(—.150) _ _ gq,
B [2.717 — .531(.997)F oo

It thus appears that a better picture of the variation of the residuals in this
case is obtained with the use of a Pearson Type III with a; approximately —3%
than is obtained with the use of a normal curve. It is not necessary, of course,
to form Fig. D as the results can all be obtained from Fig. C. Thus if we
multiply the numerator and denominator of (6) by N°, we get entries, with the

Ay

exception of the b’s, which are in Fig. C. Now in this case by = i and by =
T,z
j”" so that these values can be inserted in the upper left as before. Also the
n»Yy

powers of by can be inserted in the lower right as in Fig. D. We have then

—1131,286,764 + (685,438,652) (—1.593) + (944,161,028)(.846)
s = + (803,580,396) (—.150)
B [3444669 — (1263483)(.531)]*/

We know however, since the grades were coded, that it is not sensible to carry
results to more than three places, (and, indeed, a three place determination of
the skewness is very satisfactory for interpretive purposes even though more
places might be obtained) so we cut down the number of places. The division
of numerator and denominator by 10°%, and the dropping of the decimals results in

| _ —1131 + 685(—1.593) + 944(846) + 804(—.150) _ _ ..
o3:er = [344 — 126(.531)]*” o

It is possible of course to duplicate the theory indicatejin Table IT with the
use of moments rather than the A’s. In this case Fig. A consists of 1, Zz/N,
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Zzy _ (2z) (2y)

Ex2/N , etc. We have such formulas as a5,y = N NN = u1 — Mooty
where a,, = ‘;;2'" , G2y = AT;? , ete.

It would be possible to compute the o4, in a somewhat similar fashion though
it would take somewhat longer. In the first place we would have to compute
=2 from the correlation table. This could be done by forming the cumula-
tion C(y2) and multiplying by 1, 3, 5, 7, 9, etc. When this is done, however,
it does not appear that the calculation of the central moments of the fourth order
can be reduced to as simple a ritual as the calculation of the third order moments.

The question should be raised as to the calculation of the skewness when
there are two or more independent variables. This can be done, of course, but
the calculations are lengthy. The point of the present paper is to provide an
easy and simple technique for computing the skewness of residuals in the case
of two variable linear regression.
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