A CONCISE ANALYSIS OF CERTAIN ALGEBRAIC FORMS
By FrANKLIN E. SATTERTHWAITE

State University of Iowa, Iowa City, Iowa

Many of the statistics in common use are functions of homogeneous algebraic
forms in the items of the sample. Among such statistics are the mean, a linear
form; the variance, a quadratic form; and the product moment, a bilinear form.
With the extension of the science, the mathematical statistician is faced with
the study of more complex statistics and the associated algebraic forms and
matrices. The purpose of this paper is to set forth concise and efficient nota-

tions and methods which may be used in such analysis.
We shall borrow the essential features of our notation from differential geom-
etry and tensor analysis. The Kroneker delta is defined as,

=1 i=j
= 0, T #j.
The summation convention provides that summation be performed with respect
to any index appearing twice in the same term. Thus,
ey’ =y + 2+ .-
To extend the use of the summation convention, we shall frequently place
indices on the numeral, 1. Thus,
I'ri=Toi+1at . =n+omt....

Symmetry in the .calculations is more striking if the pair of summation indices
appears, one as a superscript, the other as a subscript. Therefore we allow the
shifting of an index from the one position to the other at will. Thus,

z; = 2.

Where no confusion will arise, indices may be placed outside of parentheses.

11V 1 (1,’,)
| (’5’5 az;>,.,,"’5"5'° ()3)

The standard notations for averages will be used.

(1) i = G))jxif = <%> 2%

2 i= (-IN> STijk... .
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Unless otherwise indicated, the symbol, =, will always stand for summation

over all unrepeated indices including any already averaged under conventions
(1) and (2). Thus,

=& = Nz’

The following simple formulas are fundamental to the arithmetic of this
notation. They are obvious upon the expansion of the summations. Each
index varies from 1 to a. These formulas are

)
5,'23,‘ = Z;,

sioj = of,
815 = 1%,
111} = alf,

8 =a,

r— I 8’-x-—(}>jx~
) . L Ra? ) a/i 19

The symbols of this notation obey the associative, commutative, and the
distributive laws of simple arithmetic so that the operations of summation,
multiplication, and squaring are very easy. Thus for the product of two linear

forms we have
(Y (Y. (1Y
Iy = (&) x.<5> z; = <J>),‘ 22’

The sum of squares is obtained by the simple repetition of the form,
zzi = 2(iz)’ = (6lx)) (6l xy),

= (5iz) (6L ") = o}z,

®

Two other sums of squares occur so frequently that they should be particularly

noted:
i 2 i i
a/s a/i a/k
it i
aajik a/k

@
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S — ) =2 [(5 - }l)i x,-:r,

(%) =

The striking similarity in the coefficients of the second and final expréssions for
the summations in (3), (4), and (8) should not be overlooked.

Where we have multiple classification of the variables, we may operate on
each index separately. For example, in a four-way analysis of variance we may
have the quadratic form,

Q = Z{Zijp. — Fij.. — Tin. + 5:.'...}2,

1 1 11\ 17" 2

= 2{[“(‘” TR T 5)3].-,~u "'""f'}’
1 1 1 'mnop 2
B 2{[6(5 B 5) <5 B 5) a]t‘ikl x,mp} ’
- o) (- (e
e b/, C/e d ¢ mnep )

The rank is one of the important properties of a quadratic form or matrix.
An experienced mathematician usually has a rule of thumb for determining the
ranks of those quadratic forms occurring in statistical analysis. In order to
formulate such rules of thumb into a simple and rigorous algebra, the author
here defines a type of matrix multiplication which he calls “uncontracted matrix
multiplication’” and which he represents by the symbol, ©.

Let A = || & || and B = || B} || be two matrices of any finite orders and with
ranks R, and Rz. We define the uncontracted product, A © B, as follows:

C=A0OB
= |loi||®B
= ||«iB||

aiB aiB

= 1 2
a2B a2B ... |

oo LIRY
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where
il i a2
aifr oiB1

I = | dgl ig2
o b 6y olpy .||

Thus the elements of C are
vik = 6.
We therefore see that whenever we have-a matrix whose elements can be

factored in the above manner, then the matrix can be expressed as the uncon-
tracted product of simple matrices. Thus,

if i Il = [l (87« ) ]
then &0 = lleF||Ol 87O ---.

We shall now prove that the rank of the uncontracted product, C = A © B,
of two matrices is equal to the product of the ranks. This follows because for
the matrix, A, there always exists a set of elementary transformations defined

by the equations,
Ta: 48l = (ﬂ)(:) 0,67 am, 01, 600, i =]

where the 6’s, ¢ = j, are coefficients providing for the multiplication of the ele-
ments of a row by a constant not zero; the 6’s, ¢ # j, are coefficients providing
for the addition to the elements of a row a linear function of the corresponding
elements of the other rows; the §’s are similar coefficients referring to columns;

the symbol (‘i) is an operator indicating the interchange of the 7th and jth
rows (columns); and the ,&’s have the values,

45:::1, 1t =7 < Ra,

=0, otherwise.

This set of transformations reduces A to a diagonal matrix with R, non-zero
elements. A similar set of transformations,

Ts: Ballc = (i) (7’;) {b:n ‘P:nﬁ:s )

exists for the matrix B. We next define two sets of transformations by the
equations,

j il k A8 am( _7m
Tii ol A = (1,) (:k) 6,67 (am 62),

mi bl = () (§) ehentast a2,

S



ALGEBRAIC FORMS 81

which are also elementary because of their relationship to T4 and 7. Now
if we subject the matrix, C = || (i8}) || to the transformations T followed by
the transformations T'; , it will be reduced to the diagonal form C' = || (,8!s6%) |
with exactly R4Rs non-zero elements. Therefore, since the rank of a matrix is
invariant under elementary transformations, the rank of C = 4 © B must
be R ARB .

We shall now determine the ranks of several matrices which occur frequently
in statistics:

A1= ”1'” = ”1’ 1) 1’ te ”’ R =1
4 =[] = | LV = Lllo]r,
R,=1.1=1,

A3 = ||5:||, R3 = a.

i
4=](-3)
aji

The proof that B4 = a — 1 involves two steps. First summing the rows of 4,

we have,
. - A i . i
1'al = 1%6] — 1'(1) =1 - (‘1) =0
aji a

so that Ry < @ — 1. Second if we subtract the elements of the first row from

the corresponding elements of each of the other rows we obtain,
11 1

, Ri=a—1.

Since the (¢ — 1)st order determinant in the lower right-hand corner is not
equal to zero, Ry > a — 1.

Applying our theorem on uncontracted products, the ranks of complicated
matrices can often be determined by inspection. Thus:

aii(a - 11)): ' =&l o H(a _%):

R5 = a-(b bl 1).

EHIEH)

Re = (@ — 1)(b — 1).

_ _1 8 _ 1 ) .
A= '(6 &)i(a &>e vy

Rr=1.1=1

A5=

H

A5=

H

)

(l6-306-3
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The Matrix A; may be confusing at first sight. Note that each element, of ,
is a quadratic form in the ¥’s. This form is of rank 1 and can be factored into
two linear factors, one independent of j, the other independent of z.

To illustrate the application of these techniques to a fairly complicated prob-
lem, we shall construct and verify a design for the analysis of variance involving
a regression line. It is known that sufficient conditions for such a design to

be valid are:
1. The sum of the quadratic forms be equal to the sum of the sauares of the

variables, and
2. The sum of the ranks of the forms be equal to the number of variables.
We shall use the first condition to set up our design. Thus,

2 kl i
Ex;f = [55].’,‘ Tux -,

_ 1 1 117 117
={[5'5‘55 ‘a”aalﬁ[ag]ﬁ
kl k t l
IR (CHIEH R EYO)
(¥} 8 % ) 7
1 11\ 1\ t 1 V1V .
+ [(“5 - azs)ﬁ - (5 - a).<5 - )y v (—‘)(b)]} '

Rewriting this in thg usual notation, we have for our tenative design,
32 = Sley — & — &+ & ¥ 2@ + 2z — ]
+ 2[(roo/a) s — DI + Z[(&. — %) — (rou/o,) s — I

In order to determine the corresponding equation for the ranks, we rewrite (6)
in the form, ,

w={- D60+ O+ 060
Zx‘f—{(5 a),-(a 5),~+ a)\s); TG~ 5),
. 1\ . 1\ 1Y\/1V
® (=)o ]16-2) wl@)E),
1\ 1\* 1V, (1 1\ i
+ [(5 - ) - (5 ‘a).(‘S - )y v (_>](b)l T
First we must determine the rank of the unfamiliar matrix,

T T

We see that the rank of As cannot be greater than ¢ — 2 because two linear
relations exist between the rows, namely,

(6)

Qi

[y

@

t
1'al = 0, since 1'(6 - 1) =0,
a/s
t

u'al =0, since (5 - (1;)‘ vy’ = aor.
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To show that the rank of As cannot be less than a — 2, we subtract the elements
of the first row from the corresponding elements of each of the last a — 2 rows,

giving,

4 af | o} | al i=12
8~ 3 =
a% - a} P 1 : ‘(5t 6t) AN s/t ¢ ’
—\0— =)y — o)y, 6 —-) ¥’ — )y .
@/ ol — a/s 1% 1,2
| a,a% l au%

i 2
Multiplying each element of the second column by —(8 - 3) ¥ / ( — ‘];) Y’

and adding the result to the corresponding element of the jth column for j = 3,
4, ... a, we see that the (a — 2)th order determinant in the lower right-hand
corner becomes | 5} | which is not equal to zero. Therefore the rank of 45 must
equal ¢ — 2.

Referring to equation (8), we now write down the corresponding equation for
ranks using the theorem on uncontracted products. Thus,

Z Ranks = (@ — 1)(b — 1) + (1)(1) + (1) — 1) + (DA + (@ — 2)Q1),
= ab.

Hence the quadratic forms in the right member of equation (7) are mutually
independent and each, measured in units of the variance of the population, is
distributed as is Chi-square with the appropriate number of degrees of freedom.



