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AN APPROXIMATION TO THE BINOMIAL SUMMATION
By G. F. CraMER
Washington, D. C.

We consider the binomial expansion (¢ + p)", where ¢ = 1 — pand n is a
positive integer. For given values of n, p, r, and s, where np < r < s < n,
we are often interested in the probability P(r < z < s) that the number of suc-
cesses x will satisfy r < z < s.

‘When 7 does not exceed 50, we can use tables of the Incomplete Beta Function,
or other convenient and accurate tables. For “large” values of n, we can use
normal tables. When p is “small”’, we can use Poisson tables. However, it is
often true that p is fairly small, and yet not small enough to give really accurate
results when Poisson tables are employed in the usual way, while n is too large
for use of the tables of the Incomplete Beta Function and yet too small for ac-
cnrate use of normal tables.

It frequently happens that an upper bound for P(r < z < s) would serve our
purpose. We propose to show how to find this from Poisson tables with greater
accuracy than could be obtained by using these tables in the ordinary way.

We shall denote the general term of the binomial expansion by B; = (})p'q™™*
and the general term of the corresponding Poisson distribution with the same
value of p by P; = (pn)'e ?"/i!. We shall also consider a second Poisson dis-
triiution whosc general term is given by Pi = (p'n)'¢ ®'"/i!, where p’ % p
will be determined later.

We shall use the following notations:

(1) Ui = Biya/Bi = (n — 9)(p)/( + 1)(1 — p);
(2) Vi= Pi./Pi = pn/( + 1);

3) Vi = Piw/P; = p'n/( + 1);

(4) Ui—Vi=plnp — /¢ + 1)1 — p).

From (4) wo obtain at once the following:

LemMma L. 1> Vior U; < V;according asi < np or ¢ > np.

Thus, the sze of the general term of the binomial expansion falls off more
steeply to the right of # = np than does that of the general Poisson term.
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We can use lemma I to obtain an upper bound to P(r < z < s) for any r > np.
In fact,

B, = B.P,/P, ;
Br+1 < BrPr+1/Pr 5
B2 < Bry1Pry2/Priy < B.P.ys/P, ;

B, < B.P,/P,.
Adding these, we obtain

8 8 00 hd
(5) P(r<z<s) =2 B;< (B/P)X P;= (B,/P) (Z P; — ZPi)'
The quantity in parentheses in (5) can be found by use of the cumulative Pois-
son table provided, of course, it is within the range of that table, while the
B,/P, can be computed directly.

In the work we have done so far, we have used a Poisson distribution which
is less steep than the corresponding binomial distribution throughout the whole
interval np < r < z < n. It seems reasonable to investigate the possibility of
improving upon (5) by using a Poisson distribution having a different value p’
in place of p, where p’ is chosen so that the new Poisson distribution is of the
same steepness at £ = r as is the binomial distribution. We wish to have
U,=Viand U; < Viforallr <4 <n. The first of these conditions requires
that (n — r)(p)/(r + 1)(1 — p) = p'n/(r + 1). Solving for p’ we obtain

(6) p = (@ — (/01 — p).

‘We are now ready to prove the following:

Lemma I1. If p’ is defined by (6) and if Us, Vs, and V; are defined by (1), (2),
and (3) respectively, then U; < Vi<V, , provided r > np and © > 7.

It is easy to see that U;/V:i = (n — 9)(p)(1 + ©)/(1 + )(1 — p)(np’), and
this can be reduced to (n — 7)/(n — r) by replacing p’ by its value from (6).
Then U;/V:i < 1 since ¢ > r. Moreover, we have Vi/Vi = (p'n)(@ + 1)/
G+ 1)(pn) = p’/p = (n — r)/(n — np). But r > np and hence V; < V.
This completes the proof of Lemma II.

We are now in a position to obtain an inequality somewhat better than (5).
The derivation of the new upper bound for P(r < z < s) goes just as before
except that each P; is replaced by P;. We obtain the new inequality

) P(r <z <s) < K'B,/P,,
where K’ = ZP: - EP:

We can get a lower bound as well as a somewhat improved upper bound for
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P(r < z < 3) by calculating B, and B, directly and then applying (5) or (7)
to find an upper bound M of P(r + 1 < z < s). This gives the inequality

®) B+ Bin <P@r<z<s <B+ M

This could, of course, be still further improved by calculating directly still more
of the B/’s and using a similar procedure, but one would not care to carry this
very far,

To illustrate the various approximations, we have worked out a numerical
example the results of which appear below. For convenience in checking, we
have used a value of n which is within the range of the tables of the Incomplete
Beta Function, even though we would ordinarily use our method only for larger
values of n.

ExampLE. s = n = 40;r = 10; p = 1/10; p’ = 1/12. The tables of the
Incomplete Beta Function give P(10 < z < 40) = .0050631. Using Poisson
tables in the usual way, we get P(10, 4) — P(40, 4) = .008132, which is not
particularly good. Using inequality (5) we obtain: By/Pyp = .6790 and
P(10 < z < 40) < .6790(.008132) = .005522. TUsing (8) and calculating both
By and By, we take » = 11 in the inequality (5) and obtain By, = .0035934,
B = .0010889, P(11, 4) — P(40, 4) = .002840, By;/Piy = .5657, and hence
004682 < P(10 < z < 40) < .003594 + .001607 = .00520. Again using
method (8), but calculating By, also and using » = 12 in inequality (5), we get
004974 < P(10 < z < 40) < .005099, which is quite good. We can obtain a
still better result by using inequality (7) instead of (5). Then p’ = 1/12,
np’ = 10/3, Byw/P1y = 2.150 + , P(10, 10/3) — P(40, 10/3) = .002366, and
P(10 < = < 40) < .005087.



