NOTES

This section is devoted to brief research and expository articles and other short items.

o

NON-PARAMETRIC TOLERANCE LIMITS!

By R. B. MurrHY
Princeton University

1. Summary. In this note are presented graphs of minimum probable popu-
lation coverage by sample blocks determined by the order statistics of a sample
from a population with a continuous but unknown cumulative distribution func-
tion (c.d.f.). The graphs are constructed for the three tolerance levels .90,
.95, and .99. The number, m, of blocks excluded from the tolerance region runs
as follows: m = 1(1)6(2)10(5)30(10)60(20)100, and the sample size, n, runs from
m to 500.

Thus the curves show the solution, B, of the equation 1 — a =
Ig(n — m 4+ 1, m) for a = .90, .95, .99 over the range of n and m given above,
where I.(p, q) is Pearson’s notation for the incomplete beta function.

Examples are cited below for the one- and two-variate cases. Finally, the
exact and approximate formulae used in computations for these graphs are given.

2. Introduction. Suppose a sample of size n is drawn from a population hav-
ing a continuous cumulative distribution function (c.d.f.), F(z). Let the sample
values arranged in order of increasing magnitude be z; , 23, - -+ , 2, . The frac-
tion, u, of the population which is included between z. (the r-th smallest value
in the sample) and z,_.; (the s-th largest value) is F(zs—s41) — F(z,). This
quantity » has been called the population coverage for the interval (x,, Tn—s41).
The probability element for this coverage is

—_ P(n + 1) n—m _ m—1
(2.1) flu) du = Fn = m DT 0m) w1 — w)" T du

wherem = r +s. From (2.1) we can calculate the probability that this coverage
is at least a given amount, say 8. If we call this probability «, we have

(2.2) a= f i) du.

The quantity « is the probability that 10089, of the population will be included
between x, and z,—,+1, and it is called the folerance level. This probability de-

pends only on n and m (=r + ).

1 All computations involved in this paper were carried out under an Office of Naval Re-

search contract.
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582 R. B. MURPHY

The idea of coverage is more general than it first appears. If we think of
Xy, T2, , T, as points plotted along the z-axis, we will then have n + 1
intervals: (— e, 1), (21,2), -+ , (Tn, + ), which, following Tukey [3], we will
call blocks. 'The reason for this term will be clear when we deal with the case of a
sample from a population of more than one variable. The coverage for the z-th
block (x;, xit1) is F(xi41) — F(x:). The probability element of the sum of the
coverages of any preassigned group of n — m -+ 1 blocks is given by (2.1) and
hence the probability o that the fraction of the population covered by any
n — m + 1 blocks is given by (2.2). By preassigned blocks we mean ones desig-
nated by order statistics prior to obtaining any sample from which a prediction is
to be made with these blocks. In general it is not legitimate, after taking a sample
and for some reason evident only then, to specify which blocks in this sample are
to be included or excluded from the coverage. There is no objection, however,
to specifying a scheme of blocks for the coverage on the basis of past samples
when the scheme is to be applied to future samples.

The purpose of this note is to present graphs of 8 as a function of n for m =
1(1)6(2)10(5)30(10)60(20)100 and for « = .90, .95, .99. There are three figures:
Figure 1 gives curves for a = .90, Figure 2 for « = .95, and Figure 3 for a« =
299. The graphs are accurate to at least two decimal places but never more than
three. In terms of the Pearson notation (2.2) gives, after minor alternation,
1 —a=1(n —m-+ 1, m). Hence these graphs may also be used to find
the 10, 5 and 1 per cent points of a variate X (0 < X < 1) with the c¢.d.f. I.(p, q)
for1 < p <500and1 < ¢ < 100.

3. Computations for the graphs. If in the relation (2.2) three of the argu-
ments «, 8, m, and n are given, the solution for the fourth may often be found
in Pearson [5] or Thompson [6]. The values of 8 through n» = 100 were com-
puted exactly for these graphs. For larger n, 8 was computed approximately
from

(3.1) = I:E/F(X%:#QL"V + 1672(: —m) — (% — 2m):r

where x> is determined by the relation
Pr(xzéxi) =1—-a

and has 2m degrees of freedom. This approximation is due to Scheffé and Tukey.
For large m the Cornish-Fisher approximation to x5 Was used.

4. Tllustrations of the one-variate case. The most common use to which
the graphs presented here may be put is in the prediction of 8 in sampling from
a distribution of a single random variable. It is this case that was first presented
by Wilks [1]. Suppose in the mass production of a certain type of screw one is
interested in the least proportion of all screws manufactured that have lengths
between the least and greatest lengths appearing in a random sample of 100
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screws. It is assumed that we do not know the distribution of the length, X,
of a screw produced in this process. Furthermore, it is assumed, of course, that
the manufacturing process is in a state of statistical control in the sensc of
Shewhart. We plan to discard two blocks: (— «, 71) and (x100 , +  )—exactly
as many blocks as observations. At the level a = .99 we obtain from Figure 3
that at least 93.5%, of all screws in the population sampled have lengths that fall
between z; and 10 . If we now draw a random sample of 100 screws and find
the least and greatest screw lengths to be 1.40 and 1.60 inches respectively, we
may say that at least 93.59, of all screws from the population sampled have
lengths between 1.40 and 1.60 inches at the .99 tolerance level. It must be
observed that the prediction is made on the basis of preassigned order statistics,
and not of the values 1.40 and 1.60.

We might equally as well have put the question in another way: If we want
at least 93.5%, of the lengths of all screws to lie within the range of lengths of a
sample of 100 screws, then at the tolerance level « = .99 what is the smallest
sample we could have in which as many as 29, of the sample are not acceptable?
Examining the intersections of the curves in Figure 3 with the line 8 = .935 we
choose the smallest n such that m/n < .02 and find n = 100.

5. The case of more than one variate. The ideas given in the introduction
may be extended to sampling situations involving two or more statistically
dependent variates with a continuous joint ¢.d.f. by means of the notion of blocks.
The abstract formulation is given by Tukey [3]. We shall restrict ourselves to
the case of two dependent variates X and Y, but the generalization is obvious.
Because of the dependence, the joint population of X and Y may be expressed
as an associated pair of values W = (X, ¥). Suppose a sample of size n is drawn
from this population, and let the pairs be wy , we, - - - , w. , where w; = (x;, y).
If we now choose a sequence of # numerically valued functions of  and y (or of w),
fitw), - - -, fu(w), let us order the w; in a sequence wi”, ws®, - - - , w<" such that
filwy) > fitw!). Imagine now that the sample values are plotted in a plane
scatter diagram. We call the first block the set of points w = (z, y) such that
filw) < fitw®). That is, we may imagine the curve fi(z, ¥) — fi(w") = 0
plotted in the plane and that the first block is bounded by this curve. Then
discarding w{® we take the n — 1 remaining w; and order them in a sequence
w®, w?, -+, w?; such that fr(wiy) > fa(w®). We call the second block the
set of points w = (z, y) such that fi(w) > filwi”) and also fo(w) < fa(wi®).
Thus the second block is bounded by the curves fi(z, y) — filwi”) = 0 and
fa(z, y) — fo(w®) = 0. If we continue this process of discarding and reordering,
until all » functions f; are used, we shall obtain a division of the plane into
n + 1 non-overlapping blocks, the “extra’” block arising at the last step in the
process. Then the fraction, u, of “points” (X, Y) of the joint population of
X and Y that are covered by any n — m =+ 1 blocks has the probability element
(2.1). Also the probability « that the population coverage, u, will be at least as
large as 8 is given by (2.2). Then — m 4+ 1 blocks constitute a tolerance region.
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An extension of this case has been made by Wald [2]. Namely, before a
sample is taken let us choose a numerically valued function f of w and choose
k(=Zn) of the w; and order them in a sequence w>, wy, -+, wly such that
f('w,ﬁgll) > f('wé‘;)) and a;4; > a; . Next, within each “strip” of the (z, ) plane
such that w = (r, y) satisfies f(wi?il) > flw) > f(wi‘;) ), suppose that we follow
the construction in the previous paragraph. Then the population coverage, v,
by n — m 4+ 1 blocks from one or more of these strips or their exteriors has the
probability element (2.1).

Again the warning must be made that the above functions f, fi, fo, -+, fa,
the numbers a; ,az , - - - , a and the sequence of construction must be completely

specified before samples are drawn to which this scheme is to be applied.

6. Illustrations for two variates. As an example of the use of the graphs for a
two-variate case, we use an example cited by Tippett [8]. The two variates are
the percentage of pig iron, X, and the lime consumption, Y, per cwt. of steel in
100 steel castings made without slag control. A scatter diagram is given in
Figure 4. Unfortunately the value of this example is lessened by the fact that
the block schemes were made after the sample had been taken; it does illustrate,
at least, the two simple types of scheme.

The tolerance region 7' (solid lines in Figure 4) resulted from the following
scheme: let fi(w) = y, fo(w) = fi(w) = filw) = fs(w) = fe(w) = —y. Now
follow the Wald procedure choosing f(w) = y withk = 6,and a; = 1, a; = 13,
a; = 46, ay = 75, a5 = 90, as = 96. Then in each strip ya,;,, > ¥ > ya; let
fi(w) = z. Considering only the blocks within the heavy line as the tolerance
region, we have, by counting the discarded blocks, m = 16.

In constructing the region 7" (broken lines in Figure 4) we also use Wald’s
method, taking f(w) = y — Sz with %k = 2and a; = 3, a; = 96. In the exterior
region with f(w) > f(wse') let all f; = y 4+ 5z and similarly in the exterior region
f(w) < f(ws”). Then in the strip f(wse) > fw) > f(ws®) (i.e., in the region in
which 41 > y — 5z > —77) choose fi(w) = y, fo(w) = fa(w) = filw) = —y,
fi(w) = fe(w) = fi(w) = y + 5z, and fs(w) = fi(w) = —y — 5z. Counting
the blocks outside the heavily bordered region, we have m = 17.

We obtain by interpolation 8 = .80 for T and 8 = .78 for 1" at the a = .90
level.

7. Ties. A tie is a sample point which in a coordinate system defining a set
of order statistics coincides in one or more coordinates with other sample points.
For instance, in the X coordinate of our example (32, 159) and (32, 185) are tied,
and (47, 218) and (47, 218) are tied in any system of coordinates. It would
seem easier to avoid ties with regions of the type of 7" than with those of the
type of T.

The existence of ties in the population is assumed impossible, because positive
point probabilities would destroy the continuity of the c.d.f. Therefore we
attribute the ties to the crudity of measuring devices.
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A procedure for handling ties is given by Tukey [4].
8. Acknowledgments. The author wishes gratefully to acknowledge the
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Tukey, who also suggested the data used in section 6.
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THE FOURTH DEGREE EXPONENTIAL DISTRIBUTION
FUNCTION'

By Leo A. AroianN
Hunter College

We shall derive a recursion formula for the moments of the fourth degree
exponential distribution function, state its more characteristic features, and show
how the graduation of observed distributions may be accomplished by the method
of moments and the method of maximum likelihood. The purpose of the note
is to make possible a wider use of this function.

R. A. Fisher [1] introduced the fourth degree exponential function

ey ye = kexp {—(But* + Bst® + Bof’ + But)},
where n < t < r,t = (x — m)/e, m indicates the population mean, ¢ the
population standard deviation, and where the 8’s are functions of

re
Oy = f t”yg dt.
1

A. L. O’Toole in two stimulating papers [2], [3], has studied (1); however his
methods and results are unnecessarily complicated. O’Toole requires eight
moments to determine parameters similar to the 8’s. Both Fisher and O’Toole
considered the restricted class of (1) with range (— 0, ).

Let
@) u = t"exp {—(Bat* + Baf® + Bot))}, dv = ¢ dt
in
T2
(3) oy = f "y, dt, obtaining
1

(4) 4ﬂ4an+3 -+ 3630(1;-{-2 + 262“15-{-1 + Bian = Mo s n = 17 2) 3) Tty

1 Presented to the American Mathematical Society and the Institute of Mathematical
Statistics, September 4, 1947.
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