A SEQUENTIAL DECISION PROCEDURE FOR CHOOSING ONE OF
THREE HYPOTHESES CONCERNING THE UNKNOWN
MEAN OF A NORMAL DISTRIBUTION

By MimLtoN SOBEL AND ABRAHAM WALD!
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1. Introduction. In this paper a multi-decision problem is investigated from
a sequential viewpoint and compared with the best non-sequential procedure
available. Multi-decision problems occur often in practice but methods to deal
with such problems are not yet sufficiently developed.

The problem under consideration here is a 3-decision problem: Given a chance
variable which is normally distributed with known variance ¢%, but unknown
mean 6, and given two real numbers a; < @z , the problem is to choose one of the
three mutually exclusive and exhaustive hypotheses

H:0<m Hy:ai £ 0 = ay H;:0 > a:.

In order to select a proper sequential decision procedure, the parameter space
is subdivided into 5 mutually exclusive and exhaustive zones in the following
manner. Around a; there exists an interval (6, 6;) in which we have no strong
preference between H; and H, but prefer (strongly) to reject Hs. Around a,
there exists an interval (6;, 6;) in which we have no strong preference between
H; or H; but prefer (strongly) to reject Hy . For § < 6, we prefer to accept H, .
For 6 < 0 < 0; we prefer to accept H, . For § = 0, we prefer to accept Hs .

The intervals (6, 6;) and (85, 6s) will be called indifference zones. The de-
termination of these indifference zones is not a statistical problem but should
be made on practical considerations concerning the consequences of a wrong
decision. )

In accordance with the above we define a wrong decision in the following
way. For 6 < 6, , acceptance of H, or H; is wrong. For 6; < 6 < 6; acceptance of
H;is wrong. For §; < 0 < 65, acceptance of H; or H;is wrong. For 6; < 6 < 04,
acceptance of H, is wrong. For 8 = 0, , acceptance of H; or H, is wrong.

The requirements on our decision procedure necessary to limit the probability
of a wrong decision are investigated. Two cases are considered.

Case 1: Prob. of a wrong decision =< v for all 6.
Prob. of a wrong decision < v, for ¢ < 6,

Case 2: < Prob. of a wrong decision < v, for 6 < 8 < 64,
Prob. of a wrong decision =< y; for 6 = 6,.

The decision procedure discussed in the present paper is not an optimum
procedure since, as will be seen later, the final decision at the termination of

1 Work done under the sponsorship of the Office of Naval Research.
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experimentation is not in every case a function of only ‘‘the sample mean of all
the observations”, although the sample mean is a sufficient statistic for 6. Al-
though the procedure considered is not optimal it is suggested for the following
reasons:

1. The decision procedure can be carried out simply. In fact tables can be con-
structed before experimentation starts that render the procedure completely
mechanical.

2. The derivation of the operating characteristic (OC) function, neglecting the
excess of the cumulative sum over the boundary, is accomplished with little
difficulty. In general, for other multi-decision problems it is unknown how to
obtain the OC function.

3. It is believed that the loss of efficiency is not serious; i.e., the suggested
sequential procedure is not far from being optimum. In this connection a non-
sequential procedure is compared with this sequential procedure. The results
show that, for the same maximum probability of making a wrong decision, the
sequential procedure requires on the average substantially fewer observations to
reach a final decision. In fact, for Case 1 noted above, if .008 < v < .1, and if
certain symmetrical features are assumed, then the fixed number of observations
required by the non-sequential method is greater than the maximum of the
average sample number (ASN) function taken over all values of 6.

It was found necessary in the course of the investigation to put an upper bound

on the quantity ZL——;):’— in order that the methods used to obtain upper and lower
2 — d1

bounds for the ASN function should give close results. This restriction, however,
is likely to be satisfied in practical applications.

All formulas for ASN and OC functions which will be used in this paper will be
approximation formulas neglecting the excess of the cumulative sum over the
boundaries. Nevertheless, equality signs will be used in these formulas, except
when additional approximations are involved.

2. Description of the Decision Procedure.? We shall assume that the indiffer-
ence zones described above have the following properties
D oa<a<b,=6<a<0,
(i) 6.+ 6 = 2a1 ; 63 + 0, = 20,
(iii) 6, — 61 = 05 — 63 = A (say).

2 A similar decision procedure was used by P. Armitage [2] as an alternative to the
sequential ¢ test (with 2-sided alternatives). The form used there is more restricted as he
considers only the case #; = 0; . Essential inequalities on the OC function are pointed out
but no attempt is made to determine the complete OC and ASN functions. A closely related
but somewhat different procedure for dealing with a trichotomy was suggested by Milton
Friedman while he was a member of the Statistical Research Group of Columbia University.
As far as the authors are aware, no results were obtained concerning the OC and ASN fune-
tions of Friedman’s procedure.
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Let R, denote the Sequential Probability Ratio Test for testing the hypothesis
that @ = 6, against the hypothesis that § = 6. . We assume for the present that
either the proper constants A, B in the probability ratio test are given or that
they are approximated from given «, 8 by the relations

A~ 1-28 B~ B

@ 1—a’

Here « and B are upper bounds on the probabilities of first and second types of
errors, respectively.

Let R, represent the S.P.R.T. for testing the hypothesis that § = 6; against the
alternative that 6 = 6,. For this test we assume that («, 8, 4, B) are replaced
by (& 8, 4, B) and as above that either A and B are given or that they are
approx1mated from given &, B.

The decision procedure is carried out as follows:

Both R, and R, are computed at each stage of the inspection until

Either: One ratio leads to a decision to stop before the other. Then the former
is no longer computed and the latter is continued until it leads to a decision to
stop.

Or: Both R, and R, lead to a decision to stop at the same stage. In this event
both computations are discontinued.

The following table gives the rule R for the decisions to be made corresponding
to all possible outcomes of R; and R, .

R, R, R

If accepts 6 and accepts 0; | then | accepts H,

If accepts 0, and accepts 6; | then | accepts H,

If accepts 6. and accepts 6; | then | accepts H;

We shall show that acceptance of both 6 and 6, is impossible when (4, B) =
(A, B). For this purpose we need the acceptance number and rejection number
formulas. (See page 119 of [1]).

Acceptance Number Rejection Number

2 n 2
R;:ﬂlogB+a1n<Zx.,<fr—logA+a1n

R2: logB+agn< Zx. < — IogA+a2n
a=]1
We shall assume for conventence that “between observations” R1 is tested before
R and let the term ‘‘initial decision’ refer to the first decision made.
Assume 6; and 6, are both accepted. Then if 6, is accepted initially at the mth
stage

m

2
Zxa§2—logB+a1m.

a=1



A SEQUENTIAL DECISION PROCEDURE 505

Since
2
g

2
g
ElogB+a1m<AlogB+aam

it follows that 6, is rejected at the same stage, contradicting the hypothesis.
Similarly if 6, is accepted initially at the mth stage, then

m 2
ZxagUA—logA-{—azm.

a=1

Since
0_2 0_2
A log A 4+ aem > K—logA + am

it follows that 6, is rejected at the same or at an earlier stage, contradicting the
assumption that the acceptance of 6, is an initial decision. Hence 6, and 6, cannot
both be accepted.

A geometrical representation of the rule R is given in Figure 1.

R can now be described as follows: Continue taking observations until an
acceptance region (shaded area) is reached or both dashed lines are crossed. In
the former case, stop and accept as shown above. In the latter case stop and
accept Hs . '

The proof above that 6, and 6; cannot both be accepted consists of noting that
a point below the acceptance line for 6, is already below the rejection line for
0, and that a point above the acceptance line for 6, is already above the rejection
line for 6, .

If (4, B) = (4, B), a necessary and sufficient condition for the impossibility
of accepting 6; and 6, is that at n = 1 the following inequalities should hold.

Rejection Number (of 6;) for R; < Rejection Number (of 6;) for R,

and
Acceptance Number (of 6;) for B, = Acceptance Number (of 6;) for R, .
In symbols
Z—zlogA +a = glogzi + a
and
g—zlogB +a = flogB + a,.
A A

These can be written as

dA/e

ol &
IIA
I\

Ala?
< &% and

Bl

respectively, whered = a2 — a; .
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Since % > 0, the above inequalities are certainly fulfilled when

B A
(2.1) =1 and =1L

In what follow in this paper, we shall restrict ourselves to cases where accept-
ance of both 6, and 6, is impossible, even if this is not stated explicitly.

X

X =|

Py

P2

Ficure 1

3. Derivation of OC Functions. Let L(H; |6, R) denote the probability of
accepting H; when 6 is the true mean and R is the sequential rule used. Let Hy,
denote the hypothesis that 8 = 6; . Since, as shown above, H, is accepted if and
only if 6, is accepted, we have

(8.1) L(H, ’ 6, R) = L(Hon ' 6, Ry).
Similarly,
3.2) L(Hs | 6, R) = L(Hs, | 6, R»).
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From the fact that R, and R, each terminate at some finite stage with prob-
ability one, it follows that R will terminate at some finite stage with ptobability
one. Hence

(3.3) L(H;|6,R) =1 — L(H:| 6, R) — L(H;| 6, R).
From pp. 50-52 of [1], the following equations are obtained.
V|
(34) L(H |6, B) = L(H, |6, B) = 5—pm
where
_ _02"‘01—20_(11—0
hy = m(6) = A A
2
and
A -1
(3.5) L(Hy, | 6, Rz) = W
where
_ _04+03—20=a2—0
hy = he(8) = I .
2

These equations involve an approximation, as explained in [1].
Hence

1 — B"
(36)  L(Hs|0,R) = L(Hy, |6, Re) = 1 — L(Hy, |6, Bo) = r——5

and
AM — 1 1 - B" 1 —B" 1 — B
(37) L(H:|6,R) =1 — AM B T Zm — B AM — Bm 4R — pha

Since L(H, |6, R) = L(Hs, | 6, R:), it follows that L(H; |6, R) is a mono-

tonically decreasing function of 6 and that
L(Hy| —»,R)=1; LH,|~,R)=0
L(H,|6,,R) = 1 — a3 L(H,|6:,R) = B
log A

log A + [log B[~
Similarly, since L(H; | 6, R) = 1 — L(H,, | 8, Ry), it follows that L(H;| 6, R)
is a monotonically increasing function of 8 and that

L(H;| —©,R) = 0; L(H;| »,R) = 1
L(H:|6;, R) = &;  L(H;|6,R) =1 — f
|log B|
log A + [log B’

L(Hl , a, R) =

L(Hs|az, R) =
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Since L(H: | 6, R) = 1 — L(H, | 6, R) — L(H;| 6, R) it follows easily from the
above results that
L(H:;| —,R) = 0; L(H:;|»,R) =0

L(H;|60,R) < o for 0 <6,; L(H:|6,R)<fB for 6> 6,

|log B | oA |log B |
log A + |log B| a<L(H2!a]’R)<logA+llogBl
log A log 4

%8~ B < L(H:|a,R) < — B4
fog 2+ g ° (H | @z, ) log 4 + [log B|

1—/3—&<L(H2'0,R)<1 for 6, =60 < 6.

4. Probability of Correct Decision. Denote the probability of a correct
decision by L(6/R). It is defined as follows:

Interval Correct Decisions L(G]R)
0 =< 6, acceptance of H, L(H,| 6, R)
6 < 6 < 6, acceptance of Hy or H, L(H,|6, R) + L(H,| 6, R)
6, < 60 = 0; acceptance of H, L(H:| 6, R)
bs < 6 < 6, acceptance of Hyor H; L(H:|6, R) + L(H;| 6, R)
6, =6 acceptance of Hj L(H;| 6, R)

It should be noted that at points of discontinuity, L(6, | R) is defined as the
smaller of the two limiting values.

We shall now discuss some monotonicity properties of the function L(6 | R).
From the fact that L(Hy, | 6, R:) and L(H,, | 6, R;) are continuous with con-
tinuous first and second derivatives and are monotonically decreasing for all
6 with a single point of inflection in the mtervals h<0<bandb <6<,
respectively, it follows that

(i) L(| R) is monotonically decreasing with negative curvature for — o <
0=60.

(ii) L(6| R) is monotonically increasing with negative curvature for 8, <
0 < .
Making use of (3.3) we have further

(iii) L(6 | R) is monotonically decreasing with negative curvature for 6, <
0<6,.

(iv) L(8| R) is monotonically increasing with negative curvature for 8; <

0 < 0,.
(v) For 02§0§03,d%L(GIR) = —[ L(H,| 6, R) + L(H3|0 R)] is

d d
decreasing, since 20 L(H,| 6, R) and 2 L(Hs| 6, R) are increasing. In

other words L(0 | R) has negative curvature for 6, < 0 < 6; .
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1

In the special case when A = 4 = 5 = f and the origin is taken at uta

2
for the sake of convenience, it is easy to see that L(6 | R) is symmetric with
respect to the origin and, because of (v), has a local maximum at § = 0.

6. Choice of the constants 4, B, A, B to insure prescribed Lower Bounds
for L(6 | R). We shall deal here with the question of choosing 4, B, A and B
such that L(§ |R) 2 1 — v;when § < 6,,L(6|R) =21 — yawhen 6, < 6 < 6,,
and L(6 | R) = 1 — y; when 6 = 6,. From the monotonic properties of the correct
decision function it is only necessary to insure that

(5.1) L(.|R)=1—,L(6:|R) =L(6;|R) =1—v:and L(6,|R) = 1 — 3.
The following relations will be needed:

h(6:) = ho(6s) = 1 = —hi(02) = —ha(64)

p|

iob
ho(62) = b +0‘A— 202. = é2 =r (say)
2
A
NOPLELES SR JI
1\V3 A é
2

whered = 6; — 6, = 03 — 6, = a2 — a;.
The following four equations are obtained from (5.1):

(52) 1 — L(H |6, R) = L(Ha, |61, Ry) = H -
1 — L(H: |6y, R) = L(H:|6s, R) + L(H; |6z, R)
58 Ba-1 [1-F
=A_B +[r_B¢]='Y2
1 — L(H,|6s, R) = L(H; |63, R) + L(H, |6, R)
=A—B+[ y ]“”
B4 -1 _

(55) 1 — L(Hs|6s, B) = L(Hy, |01, Be) = ——5=~ = m.

The “bracketed terms’ represent quantities less than & and g respectively and
if » is sufficiently large they can be neglected. This will be made more precise
but first let us note the results of neglecting the bracketed terms.

From (5.2) and (5.3) we obtain

(5.6) B(1 — v1) = v2, whence B = 2 LI
1—m
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From (5.2) and (5.6)

(5.7) 4 = 1-B(1—m) whence A4 = 1;73
g1 Y1

Since the last two equations are obtained from the first two by the permuta-
tion A — 4, B— B,v1 —v2,v: —v3, we have

B=_78
1— Y2
i=1=
Y2
1 1 1-—y9
Ifyi=7= v (say)thend = 4 = BB~

We shall consider the bracketed quantities negligible if the result of neglecting
them produces a change of less than 209, in [1 — L(6| R)] at 8 = 6,, 65 re-
spectively, i.e., if

N 1 ( Y3 )
1-F 1 — 1 Y2
5. - . = <X
(5.8) ir — B (1___73)r ~ ( va )r 5
Y2 1— 7
and
() [(57) -]
(59) B -1 _M-m n <
‘ Ar — Br <1 — 72)7‘ _ < o )r =5 .
Y1 11—y

Inequality, (5.9) can be written as

vel(1 — v2)" — 7l
(1 — %) (1 — 7)) — 7175

(- [v-2a -] s ey (1-2).

This will certainly hold if

IIA

i
5

or

or if

.. Then the last inequality can be
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written as

(5.10) r= ~log—<%->-—

1 - "/1) )
1 - n
Og( Y

Starting with (5.8) the same relation is obtained except that v, is replaced by
vs , namely

5
log —
(5.11) rz— "27 .
log=——— 13
og =
Let
logé
Y2
k 1_
1
og -

where 7 is the larger of v; and v; . Then k is the larger of the right hand members
of (5.10) and (5.11). Then for (5.8) and (5.9) to hold it is sufficient that

r 2 k.

Iy, = .05and 0 < y1,%vs < .1 then k is approximately % = 1.54. If 4, = .01

and 0 < v1, vz < .1 then k is approximately 277 = 1.35.

We shall now investigate under what conditions the approximate solution
obtained above for 4, B, A, B are such that acceptance of both 6; and 0y is
impossible. i

It follows from (2.1) that the following pair of inequalities are sufficient for
the impossibility of accepting both 6, and 6, :

A _7vl-—1m B_ 71l —mwv
12 = =— =1 = = — =1
(512) A ml—1y B wml—m

If 41 5 73 let the smaller and larger of the pair (v:, ;) be denoted by ¥ and
7 respectively. Since 1 — ¥ > 1 — 4, then
Y21 — v2) vl — v2)
1 -7 T 11 -7
and we need only consider one of the two inequalities in (5.12). The condition
ve < ¥ will in general satisfy (5.12). More precisely if all the v’s are restricted
to the interval (0, .1) then
9 < l1—7 1—1v _10
101 -7 1 -7 9
and it is sufficient for the validity of (5.12) thatvy. = (.9) 7.
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If v, = 43 = v (say) then the two inequalities reduce to one
Yvi—rt+v—-720
which can be written as
(e—7v)(2—14+7%) 20.

Since the inequality v = 1 — v is impossible when all y’s are <%, we see that
ve < v is sufficient for the validity of (5.12) wheny, = vs = v < 1. ‘

There remains the problem of finding an approximate solution for equations
(5.2) to (5.5) when r < k. Since

A A
_d—g_@—%+§21
"TTa T A F

2 2

we merely have to consider the interval 1 = r < k.
The following approximations are used

1-B 1. BA-1 . Ll=F 1
(5.13) A-B 4° A—-B ’ Ar — B Ar
. 1-B 1 B'(A'—I)NB'- B(A—I)NB
i—p~i a-m 7 A-B 7
which upon substitution yield
(5.14) 4=1
T
(5.15) B=m
1
(5.16) B + s '
(5.17) 1 B =
. A + = Y2.

Subtraction of (5.17) from (5.16) shows that B = Z} is a solution. Substituting

this result back in (5.16) leads to the equation
(5.18) B+ B =1,.
It can easily be verified that between zero and unity this equation has exactly

one root. Since 1 £ r < «, the root of the above equation lies between 'g and
Y2 .

Taking v: as a first approximation for B and substituting y. + € for B in
(5.18), we obtain

e+ (r2+ ¢ =0.



A SEQUENTIAL DECISION PROCEDURE 513

Expanding (y2 + €)" in a power series in ¢ and neglecting second and higher
order terms, the above equation gives

v
€Y ————.
147y,
Thus,
1 s vl + (r — 1)y57]
5.19 B = K’ v - = .
(5.19) AT T T e 14+

It is necessary to investigate under what conditions the above approximate
solution satisfies (5.2) to (5.5) to within a 209, error in [1 — L(6/R)],i.e., such that

(5.20) _151<711(_}_;h__?_%<%_1
(521) - 733 < 1;3(1_;3? < %g
S i Rk
S B = A R

where for B the value in (5.19) is understood.

It can be shown that if v, v2, v3, are each between zero and .1 then the
inequalities (5.20) to (5.23) hold. Furthermore it can be shown that if, in addition
72 < min (y1, 7v3) then also the inequalities (2.1) hold. The latter inequalities are
sufficient to ensure the impossibility of accepting both 6, and 6 .

6. Bounds for the ASN Function. First we shall derive lower bounds for
the ASN function. Let E(n/6, R) denote the expected value of n when 0 is the
true mean and R is the sequential rule employed. For 6 < 6, the probability of
coming to a decision first with R, is large and therefore

E(n/6,R) ~ E(n/6, R;) 6 < 6.
From the definition of R it follows that
E(n/6, R) > E(n/6, Ry) for all 4.
Hence E(n/6, R;) serves as a close lower bound when 6 < 6. .
Similarly

E(n/6, R) ~ E(n/6, R) for 6 > 6,

E(n/6,R) > E(n/6, R,) for all 6.
Hence E(n/0, R,) serves as a close lower bound for § > 6; .

Combining the above we have
6.1) E(n/6, R) > Max [E(n/0, R,) , E(n/6, R.)|
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where, neglecting the excess over the boundary,
L(H,,/6, Ry) log B + L(H,,/6, R;) log A

(62) E’(n/o, Rl) =

A
pc 6 — a)

(63) E(n/s, By) = ZHou/0, Fo) log B + 1(H/6, Ro) log 4
("_—2 (0 - az)

Formula (6.1) gives a valid lower bound over the whole range of 6, but this
lower bound will not be very close in the interval (6., 6;), particularly in the
neighbourhood of the mid-point %03 The authors were not able to find any
simple method for obtaining a closer lower bound in this interval. The upper
bound given later in this section will, however, be fairly close also in the interval
(6, 65) and can be used as an approximation to the exact value.

We shall now derive upper bounds for the ASN function. Let R{ be the follow-
ing rule: “Continue to take observations until R; accepts 6;.”” Since this implies
the rejection of 6, at the same or at a previous stage, it follows that B must

terminate not later than Rf . Hence
(6.4) E(n/6, RY) 2 E(n/6, R).

As a matter of fact one can easily verify that E(n/0, RY) > E(n/6, R). Thus
E(n/6, RY) is an upper bound for E(n/6, R). This upper bound will be close
when the probability of accepting 6, is high, i.e., for § < 6,.

By the general formula
E(n) = =1

E(z) ]
(see p. 53 [1]) we obtain, upon neglecting the excess over the boundary,
(65) E(n/o,RY) = 88

A

) (0 - al)

[

This coincides with (6.2) when L(H,,/6, R;) = 0.
Similarly, if Ry denotes the rule of continuing until R; accepts 6; , then

(6.6) E(n/8, RY) > E(n/8, R)
67) E(n/o, B = 14
e 6 — a)

and this will be a close upper bound for 6 = 6, .

~ 1 1
IfdA=A= B=B and if a; + a2 = 0 the above results reduce to
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(68) E(n/8, R) = E(n/6, BY) = ﬁ__"_e for 06
(6.9) E(n/0, R) ¥ E(n/o, RY) = o‘f‘i for 62 0,

where the symbol = stands for a close inequality, and where
0.2
=ZlogA and A== —a.

To establish an upper bound for the ASN function in the interval 6, < 6 < 6,

“ 1
we shall restrict ourself to the case where A = A = -, = B These relations are

|

fulfilled by the approximate values of A, B, 4, B suggested in section 5 when
a + a
2

= 0. Then the vertex P of the triangle (P;, P., P) in diagram 1 lies on

Yi=17v =v3andr = ’k. ‘We shall choose the origin to be at , i.e., we put

a + a
2

the abscissa axis and OP; = OP, = h. The abscissa of the vertex P is % = N (say)

N
where A = a; = —a;. Lety = > X, represent the sum of the first N observa-

=1
tions. Let R, denote the rule: ‘“Continue until both 6. and 6; are accepted”.
This is tantamount to neglecting the two outer lines in diagram 1, i.e., the accept-
ance lines for 6; and 6, . Then clearly,

(6.10) E(n/6, Ry) > E(n/0, R).

‘When 6 lies between 6, and 6; this inequality will be close, since the probability of
crossing either of the two outer lines is then small.
However E(n/0, Rs) was found difficult to compute and it was necessary to
N

consider instead the rule Ry; : “Take N observations. If y = > X; < 0 then
=1

continue until 6, is accepted. If y > 0 then continue until 6; is accepted”.’ Clearly,
(6.11)  E(n/0, Rz) > E(n/6, Ru).
This inequality, however, will be close only if the probability of concluding the
test before N observations, given that 6, < 6 < 65, is small.

Some investigations by the authors seem to indicate that the inequality (6.11)
will be close when A < A. This inequality is likely to be fulfilled in practical
problems. :

We shall now proceed to determine the value of E(n/6, Rss). Neglecting the
excess over the boundary, we have

N
(6.12) E (n/e, Rés, Z x; = y) = ;-1— )\—% for y >0
=1 e

3 The event ¥ = 0 has probability zero and it is indifferent what rule is adopted for that
case.
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and
- h )
(6.13) E (n/o, R23 ) ; Xy = y) = -X -_ m fOI‘ y < 0

where, for any condition C, E(n/6, R, C) denotes the conditional expected value
of n given that the true mean is 6, that R is the sequential rule used and that the
condition C is fulfilled.

Multiplying with the density of y and then integrating with respect to y, we
obtain after simplification

’ 1 9 h - ,
(6.14) E(n/6, R3s) = T [h)\ + 2ho¢ (; "/X> + 2 "/Q}; 002 2):|

z e—(v’/ 2)
where ¢(z) = b Nor dy,and 6, < 0 < 6;.

In particular, for 6 = 0 we get
(6.15) E(n/o=0,Rl) =2+ 2 ,‘/2_7_’5
A T

To establish a close upper bound for 8; < 6 < 6, we must bring the line of
acceptance of 0; into account. The line of acceptance of 6; can be disregarded
since the probability of accepting 6; is very small.

‘We therefore define the rule Ry as follows:

“Continue with R; until 8, is accepted and with R, until either 6; or 4, is
accepted.”

Since the ASN function for Ry is difficult to compute we define a modified
rule Ry as follows:

“Proceed to take N ( = %) observations without regard to any rule. If y =

N
> X: < 0 then continue only with R; until 6, is accepted. If 0 < y < 2h then
i=1 ,
continue only with R until either 6; or 6, is accepted. If y = 2h then stop taking
observations and accept H;.”

It is clear that the following inequalities hold

(6.16) E(n/6, Rss) > E(n/6, Rw) > E(n/6, R).

The proximity of E(n/6, Ru) and E(n/6, R), as stated above, is based on the
fact that the probability of accepting 6, , when 6; < 8 < 6, , is small.

The proximity of E(n/8, Ry) and E(n/6, Rs) is assured if the probability
of terminating with Ry (and with R) before N observations is small. It can be
shown that the latter condition is fulfilled when' A < A. In terms of the quan-
tity r defined in Section 5 this can be written as r > 3.

To determine the value of E(n/6, Rss) the following two preliminary results
will be needed:
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If0<y <2,
2h 2%, [1 - e‘(ﬁlv*)(x_o)(w,_”)]
> _ y _ — o2
(6.17) E (n/o, Ry, 2 % = y) _hy R
=] N L7
= C (say).
Ify <0,
! L h y
(6.18) E <n/0, R4, ,Z_; T = y) -3 e = D (say).

Both are easily obtained from formula (7.25) on p. 123 of [1].
Multiplying with the density of ¥ and integrating with respect to y, we obtain
after simplification

E(n/o, Ri) = 2 + [¢ (2)‘ — 1/9 +o (g 1/9]

h 0 26"(2'!(X—0)/02)
oy T Yo ey 72)
)] (x 14 )

(6.19) ‘

[ h)\ —(h62/2\a2 —h(2\—0)2/ 22
+ [ (h02/2202) e h (2\—0) /2)\11

AX = 6)

- 50 9 [ 24’( 1/ E)] SR VT4 L

Formula (6.19) is an improvement on (6.14) as it will give for any 8 a smaller
upper bound, but in the neighborhood of the origin the difference is insignificant.
For 6 = \ we obtain from (6.19) using L’Hopital’s rule

N
(620) Bln/ B = 3 = g3 (40 — 50"
| I RCEIE
T 2\? 2w )
\/h)\
> 2.5, the above formula can be approximated by
' 2
(6.21) E(n/\, Ra) ~’£2 + 2—;’ % PR

2
Since the right hand member above lies between ’i and (1. 002) = when

\/h)\

> 2.5 then for practical purposes

2 /
(6.22) E(n/\, Ry) ~ 7 when (——Uh—)‘ > 2.5) .
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An upper bound for E(n/6, R) for 6, < § < 6, can be obtained by defining
Ry and Ru in an analagous way to Ry and Rs, . Because of reasons of symmetry,
E(n/6, R1;) can be obtained from (6. 19) by replacing 8 by —4.

The method used for obtaining upper bounds for E(n/6, R) can easily be

extended to the more general case when the equalities 4 = 4 = ;7 = % do not

necessarily hold. However, the resulting formulas are more cumbersome and we
shall merely give without proof the upper bound corresponding to (6.14). This
upper bound becomes

B/o, &) = 8+ (=) 3 - o@] + (B3N L - o]
roy/ N[+ 0]

2w | N — 0 A+ 0
where
0'2 0'2
hy = Py log A hlo=KlogB
0'2 ~ 0’2 2
hzl = KlOgA h20= KlOgB
A = —a; = N
N=h11—hzo. a=h3—N0_ b=h3+N0' h=h11+h20
2 o/N ’ ovV/N ’ s 2
7. An Example. We shall consider the following example
¢2=1’01= _35_6'702= _1_36':03=T33"04='f%,')'l=72=73=7=-029
then
A—A—1—1—1_7—335 =7>3>k~147
- ST B BT T4 T "= )
and
0; + 604

h = lOgA 28, ) = =HA=0—06=20—0=%§

Using formulas (6.1) and (6.7) the following upper and lower bounds were ob-
tained

5|6 |78 |9 |w|2|u|. ]|
0 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16
Upper bound. .......... 448 224| 149 112/89.6(74.7| 56 [44.8/37.3| 32 | 28

Lower bound. .. ........ 421| 224| 149| 112/89.6|74.7 56 |44.8{37.3| 32 | 28
)
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Formulas (6.14) and (6.1) yield

1 2 3

o 0 1% |16 |16
Upper Bound......... 146| 163| 229| 450
Lower Bound. ......... 112] 149| 224| 421

In the neighborhood of the origin the true value is very nearly the upper bound.
From formulas (6.19), (6.22) and (6.1) we obtain

3 4 5

o ®| 16|16
Upper Bound. ......... 422|784 .5| 423
Lower Bound. ......... 421(784 | 421

As shown above for the end points of the indifference zone, (6.19) gives better
results than (6.14) or (6.7). This is as it should be since (6.19) takes into account
possibilities omitted in (6.14) and (6.7). The greater accuracy of (6.19) is offset
by a slight increase in computation.

In the graph of the Bounds of the ASN function shown in Figure 2, a single
curve is shown wherever the upper and lower bound are sufficiently close to
each other.

Since (6.14) contains an even function of 8 and since elsewhere the correspond-
ing bounds are mirror images with respect to § = 0, the bounds for negative 8
are exactly the same as those for the corresponding positive 6.

Consider the following non-sequential rule applied to our problem. With a
fixed number N, of observations compute the mean Z and accept H; if  falls in
the interval (— «, a,), accept H. if £ falls in [a;, as] and accept H; if & falls in
(a2, «). This is certainly a reasonable procedure. One can also verify.that no
other non-sequential rule exists that is uniformly better (for all possible values of
6) than the one under consideration.

The two decision procedures become comparable if we introduce the indiffer-
ence zones and define a wrong decision in the non-sequential case exactly as was
done for our sequential procedure (see Section 1).

For the non-sequential case (just as in the sequential case) the probability of a
wrong decision will be discontinuous at 6, , 6, 6; and 6, . At each of these points
there will be a left-sided and right-sided limit, different from each other. As in the
sequential case we shall take the probability of a wrong decision at a discontinuity
point to be equal to the larger of the left and right hand limits. One can easily
verify that the maximum probability of a wrong decision occurs at 6 = 6; (which
is equal to the value at 6 = 6,).
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We then determine N, by setting the maximum probability of a wrong decision

equal to v, i.e.

(7.1) ¢(‘1—‘7—A/2 vm) + "’(% x/m) —1-n

UPPER AND LOWER BOUNDS FOR THE ASN FUNCTION
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F1GURE 2

For the particular problem considered above, this gives N,

sequential procedure, which was 784.5.

915.4. Hence
916 observations are required in order to ensure’ that this non-sequential pro-
cedure will have the maximum probability v = .029 of a wrong decision. This
is to be compared with the maximum over all 8 of the ASN function in the

Returning to (7.1) we shall derive lower and upper bounds for the root of that

equation. Since

°°>d——UL/21/No§2—AG\/N—o
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1t is clear that the root of the equation

A — A —

¢(‘2‘; \/No) + 4’(%\/]\70) =1—-49
is an upper bound for the root of (7.1) and that the root of the equation
A =
#(=) + ¢(§- \/No> =1—+4
a
or
A = 1

is a lower bound for the root of (7.1). We shall compare the value of z = §A;\/ N,

with the value of y = % Vv Moax ASN . Since

. B4 1 -~} . A
Max (ASN function) ~ == log p (for sufficiently small,a ).
0

then

1 -
y = 2% A/Max ASN ~ 3 log 1 Y ¥ (for sufficiently small%).
o .

The following table gives upper and lower bounds for # and the corresponding
L 1
value of y for the type of example under consideration, i.e., when 4 = 4 = B= B

and r = k.

4 .001 002 005 008 01 05 A

zand £ |3.08-3.312.87-3.10|2.57-2.81|2.41-2.65 | 2.33-2.58 | 1.64-1.96 | 1.28-1.65

y 3.45 3.11 2.65 2.41 2.30 1.47 1.10

As the table shows* for .1 > v > .008
zT>z>y

4 Actually, the inequality in question is shown only for the values of v given in the
table. However it can be verified that the inequality remains valid for all values of vy be-
tween .1 and .008.
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and hence
Ny > M;ax ASN (for sufficiently small %).
The statement and the table above are not meant to delimit the region in which
the sequential rule is superior to the non-sequential procedure.
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