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Summary. The purpose of the present paper is to contribute to the sequential
theory of testing hypotheses about stochastic processes with a continuous param-
eter (say, ¢t which one may think of as time). Sequential decision problems about
such processes seem not to have been treated before. Subsequently we shall
treat problems of point and interval estimation and general sequential decision
problems for such processes. The results, in addition to their interest per se and
their practical importance, also shed light on the corresponding results for dis-
crete stochastic processes. The subjects of sequential analysis and the theory of
decision functions were founded by Wald, and we treat our present subjects in
* the spirit of his approach. The general results of decision theory, such as the
complete class theorem, carry over to sequential problems about stochastic
processes with continuous time parameter. As specific examples we treat the
Wiener and Poisson processes and obtain, for example, the exact power function.
(For discrete processes the corresponding known results, due to Wald, are ap-
proximations).

1. Introduction. Let {x:(f), ¢ = 0} and {z(f), ¢ = 0} be two different stochastic
processes. The statistician observes continuously, beginning at ¢ = 0, a process
{x(¢), t = 0} which is either {z;(f)} or {z.(f)}, and wishes to decide, as soon as
possible, whether {z()} is {z1(f)} or {x.(f)}. “As soon as possible’”’ means the
following here. Let 7' be the time when he reaches a decision (in general this
may be a chance variable and need not be a constant). Let E.T denote the ex-
pected value of T when {z(¢)} = {x:()}, 7 = 1, 2. Let a1, a; be two positive
constants, oy + a; < 1. Subject to the requirement that the probability of an
incorrect decision when {x(t)} = {z:(f)} be at most «;, the problem is to give a
procedure for deciding between {x;(f)} and {x:(f)} such that E;(T) is a minimum
for 2 = 1, 2, This is simply the same formulation for stochastic processes with
continuous parameter as was originally given by Wald ([3], [4]) for stochastic
processes with a discrete parameter.

In this paper we shall limit ourselves to stochasfic processes which fulfill
the following conditions. For every ¢t = 0, z(f) is a sufficient statistic for the
process, that is, the conditional distribution of the chance function z(7),0 < 7 £ ¢,
given z(?), is, with probability one for every ¢, the same for the processes {z(¢)}
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and {x.(f)}. For every ¢ and z, both x,(f) and z:(f) have frequency functions,
say fi(z, t) and fu(z, t), respectively. Let

_ fz(x(t), t) _
(1.1) -l-(tq) log G0 D (+0) = 0).
Finally we postulate that the ¥(f) process is one of stationary independent
inecrements, that is, a) for every positive integral k, every A > 0, and every
sequence t; < tp < -+- < # = t, ¥t + h) — (¢) is distributed independently
of +(4), - -+, #(&); b) the distribution of (¢ 4 2) — 3(t) depends only upon
h and not upon ¢.

Thus our theory will include the following problems: 1) testing hypotheses
about the parameter of a continuous Poisson process with stationary independent
increments (to be discussed in detail below in Section 3); 2) testing hypotheses
about the mean of a Wiener process (to be discussed in detail below in Section 4);
3) testing hypotheses about the value of p(0 < p < 1) in the following process
with stationary independent increments (called the negative binomial): the
probability that x(f) = k for every nonnegative integer k is

I'(t + k)p'(1 — p)*/T(k + T();

4) testing hypotheses about the value of (6 > 0) in the following process
with stationary independent increments (called the Gamma process): the prob-
ability density of z(f) at z(z = 0) is given by z""¢™**/T(1)6".

In practice it is, of course, impossible to observe without error a sample func-
tion of a continuous process such as the Poisson process or the Wiener process.
Yet in many cases these processes do constitute an excellent approximation to
physical reality. For example, the incidence of mesons on a Geiger counter is
generally assumed to follow a Poisson process. If the recording lag and the dead
time of the Geiger counter are very small, a physicist could use the present
theory to decide between two possible values of meson density. In this case
continuous observation means simply exact registration of incidence times. As
another example, our method, or a modification of it, may be applied to problems
of life testing.

Moreover, there are several distinct advantages of the continuous parameter
procedure over the discrete one. These are as follows.

The expected duration of observing the process before reaching a decision
about which hypothesis to adopt can obviously only be shortened by allowing
continuous observation.

Moreover, there are many cases, notably the Poisson and Wiener processes,
in which an exact determination of the optimal procedure is possible in the
continuous case, while in the discrete case so far only approximations have been
derived. Thus, even when treating the discrete case, the continuous case, which
is easier to treat, may be used to derlve approximations when the unit of time
,is small.

There may also be other advantages in special problems. Thus it is seen in
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Section 3 that in the continuous Poisson process the solution does not depend,
as in the discrete case, on the values of the two parameters A, and A., but only
on their ratio \s/A; .

2. Application of the Wald sequential procedure. Optimum character of the
test. A careful examination of the results of [5] and [6] shows that their conclu-
sions in no way require that the processes be discrete in time, and under the as-
sumptions about the processes made in the preceding section the following re-
sults hold.

i) Let a and b, b < 0 < a, be given numbers, and let us employ the Wald
sequential probability ratio test as follows. As long as +(¢) lies between b and a,
continue observing {x(t)}. As soon as ¥(f) < b, stop observing {x(¢)} and decide
{x(®)} = {x:(¢)}. As soon as +(f) = a, stop observing {z(f)} and decide {z(t)} =
{x2(t)}. Let a;(a, b) be the probability of error and E;(T | a, b) be the expected
value of T when {z(f)} = {x:(t)}, ¢ = 1, 2. For any other procedure with re-
spective probabilities of error af and a3 and respective expected values E1T an
EiT, we have that af £ a;, ¢ = 1, 2 implies EIT = E«(T | a, b), that is, the
optimum character of the Wald sequential probability ratio test (with respect to
all randomized as well as nonrandomized procedures).

ii) Let ¢, W, and W be positive numbers, and let g; be the a priori probability
that {z(t)} = {z:(t)}, 7 = 1, 2 (cf. remarks about a priori probability distribu-
tions' in [5) and [6]). There exist two numbers a(c, Wi, W, g1, g2) and
blc, Wy, W2, g1, go) such that, if the statistician continues to observe {z(t)}
until either +(f) < b or ¥({) = a, and then decides respectively that {z(t)} =
{1(8)} or {x(t)} = {x2(t)}, he will minimize gi(cyW; + cErT) + ga(aeW, + cE.T)
with respect to all possible procedures for deciding between {x;(¢)} and {z.(¢)},
where E;T is the expected value of T when {z(f)} = {z:()}, ¢ = L, 2. (It is of
course assumed that ¢ = b, with the equality sign not excluded. Also +(0) = 0.
Thusifa = b,ora < 0 orb = 0, the decision will always be made at time ¢ = 0.)

It is to be understood that any procedure which the statistician will employ
should be such that the quantities a; , a3 , F1T, and E,T will be well defined. The
consideration of questions of measurability is a little more involved for our
problem than it is in [5] and [6], but because of the assumptions on the processes
made in the preceding section it can be carried out without difficulty. We shall
therefore omit consideration of such questions.

From the remarks at the end of Section 1 and well known results of sequential
analysis (see Stein [2]), it follows that E,T* < « for any sequential probability
ratio test and any positive k.

Other important, results of sequential analysis established for discrete processes
apply also to the continuous parameter dase. For example, let {z(¢), ¢ = 0}
(2(0) = 0), be a process with stationary independent increments. Assume that
Ez(1) exists and denote it by h. Suppose that one has any stopping rule, that is,
“there is defined a positive chance variable 7" such that the set of chance functions
“for which T = ¢ is defined only by conditions on 2(7), 0 £ 7 < t. Then Wald’s
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equation ([3], [7])
2.1) Ex(T+) = hE(T)

holds. Suppose also that Ee™ exists for all real u, and denote it by ¢(x). Then

Wald’s fundamental identity ([4], p. 159)
(2.2) Ee*"P(pu))™" =1

holds for many stopping rules, including in particular the rule where 7 = ¢
if 2(t) =z aorz(t) < b, whileb < 2(r) < afor 7 < {. Here a and b are constants,
a > 0,b < 0. The simplest way of proving these results is to derive them as im-
mediate consequences of a theorem of J. L. Doob on martingales with a con-
tinuous parameter (1], Chap. VII, Theorem 11.8). For (2.1) the martingale
process is {z(t) — ht}, and for (2. 2) the martingale process is {e**”(p(u))™*}.
Another, more laborious way, of proving these results is to consider the process
{2(t)} only at time intervals which are integral multiples of A, proceed as in
[4] or [7], and then let A approach zero. This is, however, a laborious way of
proving a special case of the martingale theorem.

3. The Wiener process. Let {z,(f)} and {z,({)} be Wiener processes (¢ = 0,
1(0) = 22(0) = 0) each with a variance which without loss of generality we take
to be one per unit of time. Let 7, and m; (my 5 m,) be the mean values per unit
time of {21(f)} and {z:(t)}, respectively. Thus we have the following situation:
t = 0 is a continuous (time) parameter. For any a;, a;(0 < a; < ap), zi(az) —
zi(a1) is normally distributed with mean m;(a: — a1)(z = 1, 2) and variance
(a2 — a1). For any integral k and sequence Gi<afdi<ai=---2di<dl,
the k£ chance variables z;(a3) — zi(ai),j = 1, --- , k, 7 = 1, 2, are independently
distributed. The statistician observes continuously, beginning at ¢ = 0, a process
{z(t)} which is either {x:(f)} or {z.(f)}, and wishes to decide whether {z(f)} =
{m®)} or {2()} = {=:(0)}.

At time {, the quantity x(4) is sufficient for deciding between {z:(f)} and
{z2(2)}, that is, it is unnecessary to know the previous history of the process.
The likelihood ratio L(z(Z), t)) at time ¢ is given by

1 ~i((¢(¢)—mst) 3/¢)

L), ) = ‘/12”‘

V2t ¢

Hence
t
3(t) = 2() (ma — m1) — 5 (m3 — mi).
The sample functions of the {x(f)} process are continuous with probability one.

We choose a and b, b < 0 < a, such that the statistician will continue to observe
{Z(t)} only until 3(¢) = a or +(¢) = b. In the first case he will decide that {(f)} =
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{z2(?)}, in the second case that {z(t)} = {m(f)}. We shall now find a;(a, b),
E{(T|a,b), and the distribution function of T. The same problem for the dis-
crete stochastic process when one observes {x(f)} only at { = 1, 2, - - - has been
studied by Wald ([3], [4]) who gave, inter alia, approximations for these quanti-
ties. An examination of his argument shows that, in his problem, his results
are approximate only because he neglects the excess of +(7) over a or b. In our
problem this excess is zero with probability one, and Wald’s formulae cease to be
mere approximations and become exact. Thus we have, for example, ([4], p. 50,

equation (3.42))

1-¢

31 wla,b) = L=
(3:2) asla, b) = ‘{if'_:i;bQ.

For any Wiener process with variance one per unit of time, not necessarily
either {z:(t)} or {x.(f)}, the probability that +(f) will reach b before reaching
a is given exactly by [4], page 50, equation (3.43). Call this probability H. Then,
for any Wiener process with variance one per unit of time, not necessarily {x()}
or {z:(t)}, ET = (Hb + (1 — H)a)/h (4], page 53, equation (3.57)). These
rgsults can be derived from (2.1) and (2.2) by Wald’s methods. Also the density
function of T is given exactly by formula (A:194) on page 195 of [4].

In practice one has to find @ and b to correspond to given values a; and a, .
Solving (3.1) and (3.2) we obtain

1—a2

(3.3) a = log )

25}

[43]

(34) b = log i

——

All of the above results are exact because the excess of +(T') over the boundaries
a and b is zero with probability one. For the same reason one may already infer
the optimal character of the Wald sequential probability ratio test for testing
hypotheses about the mean of a Wiener process from the approximations and
heuristic arguments given by Wald on pages 196-199 of [4].

One may raise the question how to test hypotheses about the variance of a
Wiener process. However, a scrutiny of the problem shows that from a knowledge
of a sample function in any interval, no matter-how small, one can, with prob-
ability one, determine the variance to any arbitrary accuracy, so that the problem
is trivial. For suppose {z(f)} is a Wiener process with mean value m and variance
v, both per unit of time. Suppose the process has been observed from ¢ = 0 to
{ = Hy, where H, is any positive number. Let N be any integer which will later
approach infinity, and write {; = 1Ho/N,7 = 0,1, --- , N. For any 7 from 1 to N
we have
) H, 2 Ho

E(a(t) — at-))’ = v 7 +m* 1.
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Now, fori = 1, -, N, the chance variables

{(w(t.-) — 2(t1))* = v %’ — e
are identically and independentfy distributed, with variance of order Niand
fourth moment of order N~*. Hence the fourth moment of

N
; (x(ts) — x(tm)) . mH,
H, N
is of order N2 Consequently, for any ¢ > 0 we have that
3 ) )
P ;1 (x(ti) - x(ti—l)) - m2H°~ o é'. . £_
H, N e

where C is a suitable constant. Since the series > N7 converges it follows im-
medidtely from the Borel-Cantelli lemma that (Z?;l(.r(t;) — r(tieM) H: con-
verges to v with probability one as N — .

4. The Poisson process. In this section we treat the problem of deciding which
of two values given in advance represents the correct mean occurrence time of a
Poisson process with stationary independent increments.

The probability that a Poisson process with mean occurrence time A will
result in exactly k occurrences between times ¢ = O and ¢ = T is

k
(4.1) 9‘107:) e (k=0,1,2--).

Let H;(¢ = 1, 2) denote the hypothesis that A = A, where A; and A, are any
two different positive numbers. It is clear that the two corresponding processes
satisfy the conditions imposed in the introduction. Hence, given two positive
numbers o , a3, (a1 + a2 < 1), the optimal test procedure for deciding between
H, and H, which satisfies the condition that the probability of a wrong decision
when H; is true does not exceed a;(z = 1, 2) is given by a Wald sequential prob-
ability ratio test.
More specifically, in view of (4.1) we have

42) 2O = 2(0) log;\-j + O = ML

Thus, assuming A\: > A1, the best decision rule is specified by two numbers
a, b(b < 0 < a) in the manner described in the introduction.

Suppose now that a; and a, are the actual probabilities of error. According to
Wald ([4], p. 196) we have

1 — a2 = Pz(Hz) o2 = P2(H1)
a; P\(H))’ 1—a PyHY)’

©(4.3)
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where P;(H ;) is the probability that hypothesis H ; is accepted when hypothesis
H; is true. By the argument used by Wald we have

< Py(H)) < 1) _ ewp1(m)

(4.4) eMI™ = inf JT sup e
3

i P(H) T
the sup; and inf; being taken over all values of +(T) where the observation is
stopped at time T with the decision to adopt H;. In our case we know that if
the decision to accept H, is adopted at time T we must have #(T) = a, while
1(t) < afort < T. Since (see (4.2)) ¥(t + 0) — +(t) = log \2/\; with proba-
bility 1 we have from (4.3) and (4.4)

1_a2 a

A
)Tle .

IA

A

(4.5) e°

a

Similarly if at time 7 we decide to terminate observation and adopt H; we

must have #(T) < band ¥(t) > bfort < T. Since with probability 1 we have
1) = ¥t — 0) we find that +(T) = b with probability 1. Therefore

(22} b

(4.6) = ¢

1—-a1

We see here one of the advantages of continuous observation over observation
at diserete times only. If we were treating the problem in the conventional manner
we would have (4.6) replaced by an inequality, while only the first of the inequali-
ties (4.5) could be derived in the above manner.

Thus we have

4.7 b = log o2
1 - )
and
(4.8) logz\l + log1 “ % <g §‘log1 %
)\2 [+ 3% [+3}

We now proceed to give a method for the exact computation of a. Without ad-
ditional effort we shall also find the power function of the test.
We put

(4.9) .. RG) = X0 _ 1) — o

2
log .
where ¢ = (A2 — A\1)/log (A\2/A1). Together with the process {z(f)} we have to

consider also processes differing from it by a constant; that is, we consider proc-

esses with arbitrary z(0).
For given a and b, let Vi\(r) be the probability that the procedure described
above will terminate with the adoption of H, when the Poisson parameter is



SEQUENTIAL DECISION PROBLEMS 261
really A and R(0) = r. We then have
r — cAt ¢ 1 — \At + o(AD)
R(At) = 4r + 1 — cAt with probability < A\At + o(At)
any other value o(At)

where the 0(At) terms are all smaller than N’A¢ for 0 < At < 1/A.
Putting

b
(4.10) K= , J=-Z
)\z A2
log — log =
1 kl
we have
Valr) =0 : forr £ K
V) =1 forr = J

while for K < r < J we have
(4.11) V() = (1 — NOVA(r — cAl) + AAV\(r + 1 — cAL) + o(Af)

with | o(At) | < M(At)* for 0 < At < 1/A. It follows at once that V() is con-
tinuous for K = r < J. (It will be discontinuous at r = J.) Rewriting (4.11) as

Valr) — V(r — cAt) o(At)
At

and letting A¢ — 0 we see that V,\(r) is differentiable in the interval K < r < J
with the exception of the point r = J — 1 (in case K < J — 1). Thus we have
the difference-differential equation

(4.13) cV(r) + AVA(r) = AVA(r + 1)
for K <r < Jandr # J — 1. The unique solution in K < r < J is determined
by the conditions: (i) V(r) continuous for A < J, (ii) Va(K) = 0, (iii) Va\(r) =

forr = J.
Let n(r) be the integer such that

(4.12) —AV(r — cAt) + AV(r + 1 — cAl) + -

(4.14) J—r—1=2nr)<dJ—r

It is easy to verify that, for K < r < J,

(4.15) Valr) = 1 4 Ce ™" E (= 11) [(J i)%‘e—”‘]'
=0

satisfies (4.13) and (i) for every choice of the constant of integration C. To satisfy
also (ii) one has merely to choose

(4.16) C = —e®oF 1 [ -K - z‘)%‘e‘“] .
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Putting 7 = 0 to represent the start of the actual probability ratio test as
used in applications, we have from (4.15) and (4.16) that the “OC” function
corresponding to the given values of A1, A2, @ and b is given by, say,

B DTy o]
(4.17) g <_c>§> =1 — M9¥ %{)*zo——_'l_;—f [(‘!:j K"—.ci:% e;Im]i.

=0 2.

(K is not displayed since it is given explicitly by (4.10).) Now J should be de-
termined so that

log A
y<}3)=g M-
¢ A
M
(4.18)
Ao log%
g(&—)—g Al —l—az.
1 -2
A2

Each of the equations (4.18) follows from the other and either one may be used
to find J.

It should be noticed that the dependence of K and J on A and Az is only through
the ratio Ay/A1 . This follows from (4.10) and (4.17) and could also have been
foreseen from the nature of the problem. This remark is useful in the numerical
tabulation of the values of J and K or, equivalently, of a and b. (The fact that
the \; are involved only through their ratio is due to the fact that they are not
attached to a given time-unit. In the discrete parameter problem there is an
absolute unit of time and hence the two \; enter as two parameters. The simpli-
fication mentioned above therefore does not occur.)

We now derive, in a manner similar to that used above, an expression for
the moment generating function Mi(u; r) = Ee'" of the observation time T
necessary to reach a decision when R(0) = r and the true Poisson parameter is
. From a result of C. Stein [2] it follows that for given J, K and A there is a
positive number u, = uo(J, K, \) such that Mx(u; r) is analytic and uniformly
bounded in 7 for each complex u with real part smaller than % . By definition
we have My(u;r) = 1forr £ K orr Z J. In thesame way as (4.11) was derived
we obtain (for each v with real part smaller than u)for K <r=J —1

Miy(u;7) = (1 — NADE{e"|R(0) =1,  R(At) = r — cAt}
+ NAtE{e” |R(0) = 7, R(A) =r 4+ 1 — cAt} + o(A?)
= (1 = AADe M E{e"" %" | R(At) = r — cAt]
+ AAtE{e" | R(At) = r + 1 — cAt} + o(at),
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or
(4.19) My(u;r) = (1 — N + uAt)My(u; r — cAt)
+ NAtMa(u; T + 1 — cAf) + o(Al).

.
This form is also valid for J — 1 < r < J since Ma(u;r + 1 — cAt) = 1 4+ o(1)
forr > J — 1. Since the 0(At) term and M, (u; r) are uniformly bounded in r we
deduce, as in the case of V\(r), that, considered as a function of-r, My(u; 7) is
continuous for r < J, possesses a derivative for K < r < Jandr % J — 1 and
satisfies in the last range the equation

(4.20) c%ﬂmmﬁ+wx—MMmmo=uﬁmr+1%

It can be verified that the solution of (4.20) satisfying the required boundary
conditions is given for K < r < J by

n(r)+1
Mwn=( *)

A—u
n(r) :
(421) + Clw)e ™™™/ 37 (= 1) [( J—r—02 —(x—u)/c] M
=0 \ — u)?
n(r)-—1 .
L, (A—w) (J—r—1)/e A —(X—u)/c ( 1) [ . A — u],
° ;) <)\ —u° ) ,;0 J—r—i-1) p

with C'(u) determined so that My(u; K) =

Let Z\(r) be the expected length of time before a final decision is adopted.
Then Zyx(r) = 0/(0u) Mi(u; 7) | umo . Since C(0) = 0 in (4.21) we obtain, on
putting C’(0) =

n(r) T %
Zi(r) = n(r);l- 1 4 (e (—.'1) |:(J —r—3) ée—x/c]

=0

_ L wou—rn "%_1 MO Z( 1) [(J i) )_\jl’
¢

A =0 =0

(4.22)

for K £ r < J (of course Z\(r) = 0 outside this range and C’ is determined so
that Zy(K) = 0).

(One could derive (4.22) without using the moment generating function by
establishing the equation

eZx(r) + NZ\(r) = 1 + NZ\(r + 1)

for K <r<J,r=J —1)
If we write in a more explicit manner Z\(r | Ay, N2) for Z\(r) with J and K
determined as explained above, it is easily seen that
1
(423) Z.,x(?' I al\; 5 a)\z) = ; Z).(T I A y )\2)

for every positive a.
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It is possible to treat the negative binomial process in a manner essentially
the same in which we have treated the Poisson process above. A complication
is caused by the fact that the probability that the chance variable will exceed
one in a small time interval is of the same order of magnitude as the probability
that the chance variable will be one.

The authors are obliged to Professor J. L. Doob for several helpful remarks.
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