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Using this result and inequality (2), which was established in Section 4, we have
m; < my < 2m; , and the required result follows immediately on dividing by mi .
We also note that limy—_o(h) = 1, and limp~o(h) = 2. Thus no narrower
limits can be found. To obtain these limits, we use the result, limy~_«Z/k = 0,

© —1
which follows from limy,,_eZé¢""/* = [ [ P dt] = (v/27) . Thereby we have
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which is indeterminate of the form 0/0 as given. Using L’Hospital’s rule and
making certain obvious simplifications, we obtain

lim ¢(h) = lim
h—o0 h~c0
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ABSTRACTS OF PAPERS

(Abstracts of papers presented at the Ithaca meeting of the Institute, March 18-20, 1954)

1. Confidence, Region Procedures Based on the Logarithm of the Likelihood.
CarL R. OumaN, Princeton University.

Let f(zx, 6,) be a probability function where 8, is one of a set of permissible parameter
points @ = (6, --- , 6) contained in some subspace of R, . A sample (21 , - -+ , a) of size n
is observed and a set of k functions, p; = (1/4/%) i kisLs j=1,.--,h < n,computed,
where L; = 0logf/d6; , f = Ili. f(z:, 6), and the k;; are chosen so that E(p;) =
0, E(pip;) = 6:; . For a given sample, the ¢; are functions of 6, and (¢1(0), -+ , ¢x(0)) is a
point in the pivotal space ® C Ri . If a region W can be constructed in & so that
Pr#{(e;, - -+ ,¢n) € W} = « independently of 6, , the corresponding region in the parameter
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space will be a 100« per cent confidence region for 8, . If the ¢; are normally distributed,
the sphere W = {2 o7 < x?} is suitable. Otherwise, an approximate pivotal region can be
constructed using one of several modified Cornish-Fisher procedures. The details of one
such procedure are given and several examples are discussed. (This procedure differs some-
what from that described by M. S. Bartlett, Biometrika, Vol. 40, (1953) pp. 12, 306.) The
remainder of the paper discusses (i) the regularity conditions under which these procedures
are valid, (ii) the large and small sample properties of the resulting regions, (iii) the possi-
bility of improvement using higher order derivatives of f, and (iv) the problem of nuisance
parameters,

2. A One-Sided Confidence Interval for an Unknown Distribution Function.
HEerBERT RoBBINS, Columbia University.

Theorem. Let 2, , - -+ , z, be independent with common continuous c.d.f. F(z), let F,(z)
be the sample ¢.d.f. = (number of z; £ z)/n, and let ¢ be any constant between 0 and 1.
Then Pr [F(z) = tF.(z) forall — « < 2 < »] =1 — ¢{. Proofs By the usual transformation,
zi = F(z;), the assertion need only be established when the z; are uniformly distributed on
[0, 1]. In that case we have Pr [F.(z) £ z/tforall — w < 2 < =] =
n! Pr [:c; é e é xnand Z; g jt/n:j = 1, A ,n] = nl J.i I?:—l)t/n e f:f/n J‘flzn d$1 b d.xn

= n![z7/nl — tzv1nll} = 1 — ¢

3. The Mean Successive Difference in Samples from an Exponential Population.
P. G. Moorg, University College, London, and Princeton University.

A random sample of size n is drawn from the exponential population having probability
density functionp(x) = 6 lexp {— (z — A)/8} forz = A andzeroelsewhere. Let z1,22,*+ , &n
be the n observations in their correct temporal order. The mean successive difference is
defined as d = Z!7' | & — #i41 | /(n — 1). The first four moments of this expression are
found in order to obtain approximate significance points for d. These may be used, if 6 is
known, to test the hypothesis of homogeneity in the original sequence of observations. The
properties of d for the cases where A4, or 6, is not constant from observation to observation
but varies in some way are also investigated. Application of the foregoing suggests the use
of the statistic A = d/Z as a test for homogeneity which is independent of the population
parameter 0 in the case where A is known. In the final part of the paper, alternative statis-
tics based on | z; — ;4 | Or | ATz | for r = 2,3, --. are discussed, and also the properties
of the mean successive difference when the sampling is not from an exponential but the
general x2 or Pearson Type III population.

4. Application of the Duality Theorem of Linear Programming to Testing Hy-
potheses. Howarp Rairra, Columbia University.

Consider a finite sample space and finite parameter space. Let wo = {wo1 , woz , *** , wor}
and w; = {w11, w12, *** , w1} be disjoint subsets of the parameter space. For any random-
ized test, ¢, of wo against w; let ai(p) = E(p | wos) fore =1,2, --- r,andBi(p) = E(L — ¢ | w15)
for j =1, 2,~.- s. We apply the duality theorem of linear programming to find ¢ which,
subject to the condition that ai(¢) < awo for ¢z =1, 2, -+« r, is 2 minimizer of max; 8;(¢).
The results lead naturally to the notion of least favorable a priori distributions over wp
and w; ; the results are interpreted geometrically. The value, ming max; 8;(¢) has an in-
terpretation as a generalized distance in E(® from the origin to a displaced positive orthant.
The distance is the shortest path constrained to follow a ray of a cone (which ray is associ-
ated with the notion of the least favorable case) and directions parallel to the axis. Existence

_results, approximation results based on gaps, and an algorithm for solving such problems
“are considered.
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5. Multiple Points of Paths of Brownian Motion in the Plane. ARYEx DVORETZKY,
Columbia University; P. Erpos, Notre Dame University; and S. KAKUTANI,
Yale University.

The main result established here is J$hat almost all two-dimensional (mathematical)
Brownian motion paths in the plane possess multiple points of arbitrary high finite multi-
plicity. The method of proof is similar in part to that of a previous paper (Acta Sci. Math.
Szeged., T. 12 (1950), pp. 75-81). Combining the results of the two papers it is known that,
with probability 1: Brownian paths in four-dimensional or higher space have no double
points; Brownian paths in three-dimensional space have double points; Brownian paths
in two-dimensional space have points of arbitrary high finite multiplicity. The problems
of the existence of multiple (in particular triple) points in three-dimensional Brownian
paths and of points of infinite multiplicity in two-dimensional paths have not been settled
yet. Another unsolved problem is that of the existence of points of uncountable multiplicity
in one-dimensional Brownian motion.

.

6. On the Distribution of the Largest and Smallest Roots of a Matrix in Multi-
variate Analysis. K. C. S. PiLra1, University of North Carolina and Uni-
versity of Travancore.

This paper presents in a more convenient and usable form than before the general expres-
sion for the exact ¢.d.f. of the largest root (from which that of the smallest can be easily
derived) of certain sample (p X p) matrices (positive definite or positive semi-definite with
s non-null roots, s < p) arising in connection with different tests of hypotheses on p-variate
normal populations. The exact c.d.f. is obtained for number of roots going up to eight
(the expressions for s = 6, 7 and 8 being given for the first time). Approximations to the
c.d.f. are given for number of roots up to five which are useful for computing percentage
points (upper 5 per cent or less in the case of the largest root and lower 5 per cent or less
in the case of the smallest root) for small integral values of one parameter connected with
the sample. To illustrate the use of the approximations, exhaustive tables of upper 5 and
1 per cent points for the largest root, in the case of two roots, have been computed; the
error of approximation has been shown to be negligible.

7. A Problem in Two-Stage Decision Theory. (Preliminary Report.) MORRIS
SkiBINsKY, University of North Carolina.

Let D,, be the class of two-stage decision rules with first sample, X, of given size m,
and second sample size which may depend on X. For a Bayes solution, this second sample
size is given by the integral value of » which minimizes a certain function, @, (X). This paper
is concerned with the case of independent normal observations having unit variance. It is
required to decide between means 6, , 6; having arbitrary but fixed a priori probabilities
(positive and adding to 1), where cost per observation is constant and the loss functions
are simple. The nature of the second sample size function for a Bayes test in D, is deter-
mined, and theorems which demonstrate its fundamental properties are proved. Results,
leading to explicit formulas for this function, for the probabilities of wrong decisions, and
for the expected size of the second sample, are obtained, by assuming the ratio, Z (= mini-
mum wrong decision loss, over cost per observation) to be large. Comparisons, analytically
for large Z, and tabularly for certain fixed values of the parameters, are made with analogous
one-stage and sequential procedures, in terms of error probabilities and expected simple
size.

i
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‘8. Some Simple Sequential Tests and Estimates for Comparing Variances.

ArraN BirnBaUM, Columbia University.

Let ¢ = (w1, 22,-- ),y = (1, Y2, -+- ) be sequences of independent observations
from normal distributions with means 0 and variances o2 for each z; , af, for y;, Let u =
(i us, )= @+ T, T+ T, ),v==>01,0, )= @+ Yy, Y+ ys, ).
Let R; = 21 u;,Si = 21v;.Let T = (T1, Ts, --- ) be the sequence of all R;’s and Si’s
in increasing order. Let B = (b; , by, - -+ ) whereb; = 1if T; = some R; ,b; = 0 if T; = some
S;. Then B is a sequence of independent Bernoulli trials with p = Pr {b; = 1} =
(1 + o%/a})~t. Sequential or nonsequential methods for tests and interval estimates for p
give corresponding tests and estimates for ¢2/0, . In certain variance-components experi-
ments, each replication generates a set of n, transformed observations z; , n, transformed
observations y; . Then by use of a guessed value of o%/02 a modified procedure will tend to
utilize z;’s and y;’s at the rate at which they are generated by successive replications. The
method generalizes to give comparisons of 3 or more variances, with B a sequence of multi-
‘nomial observations.

9. A Minimal Sequence of Statistics. R. R. BAHADUR, Columbia University

Let x = (1, 72, --- ) be a sequence of real valued random variables, and suppose that
z is distributed according to some unknown one of a given set P of probability measures p.
For each m, let x(m) = (21, 22, -+ , Tm). It is assumed that for each m the set of possible

distributions of x(») is dominated. For each m let ym = T (zwm)) be a statistic on the sample
space of () . The sequence {yn} is said to be sufficient if for each m, y. is a sufficient
statistic for P when the sample point is ) ; {ym} is said to be transitive if, for each m
and each p in P, the conditional distribution of ym 41 given ) depends on the condition
only through T, . The author has shown elsewhere (‘‘Sufficiency and statistical decision
functions,”” Ann. Math. Stat., (1954)) that sequences which are sufficient and transitive
play an important role in the reduction of sequential decision problems. It is shown in this
note that there exists a sufficient and transitive sequence {ym} such that, corresponding to
any sequence {y»} which is also sufficient and transitive, there exists a sequence Fy , Fy , -+
of functions such that, except on a set which is of p-measure zero for each p in P, yn =
F..(yn) for each m. The result has application to the problem of determining the maximum
possible reduction of sequential decision problems by the principle of sufficiency.

10. Strong Convergence of Stochastic Approximation Methods of Robbins-
Monro and Wolfowitz-Kiefer. M. N. Guosu, University of North Carolina.

The Robbins-Monro scheme of stochastic approximation of the root 8 of the regression
equation M (z) = « has been shown to converge strongly to 6 under the following conditions:
1) lim sup | (m(zx) — «)/(x — 8) | < kas |z|— », and f‘f’w [y — m(z)]2dH(y | ) < 0?%;2)
M) £ a—e@) forxr <0 — 8 M) = a — @) forz > 6 + 8, where ¢(3) > 0; and 3)
> a. is divergent, Z a is convergent. The Wolfowitz-Kiefer process for estimating the
maximum of the regression function has also been shown to be strongly convergent to 6,
the point at which M (z) is maximum, under nearly same assumptions as in K and W except
that we do.not need M (z) to satisfy the Lipschitz condition, that is (2.8) in K and W.

11. An Ergodic Property of the Brownian Motion Process. (Preliminary Report.)
Cyrus DerMAN, Columbia University.

Let X(t) 0 £ ¢t < » be a one-dimensional separable Brownian Motion Process. The follow-
ing theorem is proved. If f(z) and g(z) are any real-valued Borel-measurable functions,
summable in the line — «© < z < «, then with probability one

im T — o f; f(z(t) dt/ [y g(z(®) dt = /g
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provided that § = 0 where f = f_z f(x) dz and § = f-: g(z) dz. This theorem is a proba-
bility one version of a theorem proved by G. Kallianpur and H. Robbins, “Ergodic prop-
erty of the Brownien motion process,” Proc. Nat. Acad. Sci., Vol. 39 (1953), pp. 525-533. A
method first used by Doeblin (Bull. Soc. Math. France, 1938) and later exploited more fully
by Chung (to appear in the Trans. Amer. Math. Soc.) was used to prove the theorem.

12. On the Distribution of Hotelling’s Generalized T Test. K. C. S. Prnrar
University of North Carolina and University of Travancore.

Let S* and S be two independent sample covariance matrices belonging to two p-variate
normal populations with m and n degrees of freedom respectively. Hotelling defines a meas-
ure of multivariate dispersion T , given by Ts/m = trace S—1S*. According to this definition
S and S* are positive definite (p X p) matrices. Assume that S* can also be positive semi-
definite with s nonnull characteristic roots, s < p, and denote by U the trace
of (m/n)8~18*. Establishing certain recurrence relations between the moment generating
functions of U® and U2, the lower order moments of U(® are obtained. These suggest
an approximation to the p.d.f. of U® in the form of an F distribution, where U /s is dis-
tributed as »1F/v; with »; = 8(2m’ 4+ s + 1) and », = 2(sn’ + 1); m’ and n’ being functions
of m, n and s. For s = 1, the approximate p.d.f. reduces to that of Hotelling’s T and is
exact. For s = 2, the accuracy of approximation has been discussed by comparison with the
exact c.d.f. obtained by Hotelling. The approximate distribution guarantees sufficient
accuracy for practical use.

13. Power and Sample Size for Small Samples on Testing Hypotheses Con-
cerning a Bernouilli Variable. Howarp Ra1rra, Columbia University.

The problem of testing a simple hypothesis versus a single alternative concerning the
parameter p of a Bernouilli variable is considered. By example, it is shown that if the
number of successes is used as the sample point: a) a decision rule which is admissible among
the nonrandomized rules is not necessarily admissible; b) if we confine ourselves to non-
randomized strategies then, for a given significance level, increasing the sample size might
decrease the power of the most powerful test; and ¢) among the class of randomized tests,
for a given significance level, increasing the sample size does not necessarily increase the
power of the most powerful test. Assertion ¢), which is not generally realized, is illustrated
for the case where the type II error is not zero. This is easily explained by returning to the
sample space comprising sequences of successes and failures. Emphasis is laid on the fact
that the desirability of increasing power by increasing sample size is intimately related to
the actual significance level of the tests. Attention is drawn to similar examples involving
the multinomial distribution.

(Abstracts of papers presented at the Gainesville meeting of the Institute, March 18, 1964)

T4. On the Central Limit Theorem for m-Dependent Variables. P. H. DIANANDA,
University of North Carolina and University of Malaya.

Let X, X,, e be a sequence of m-dependent random variables with zero means and
finite variances. Let S, = X; + +-+ 4+ X, and s, = \/E(»S“,.). Suppose that,as n — «,
(1) lim inf (sh/n) > 0, (2) lim sup E(X%) < «, and (3) for every fixed ¢ > 0,

8:2 i ,r|=|>u,. 22 dFi(x) — 0,

where F;(z) is the distribution function of X; (# = 1,2, --- ). Then S,./s, is asymptotically
distributed as a standardized normal variable. If, further, F;(x) is independent of
i (¢ =1,2,--) then (2) and (3) are automatically satisfied and (1) is a sufficient condition
for the result. These results and their analogues in the vector case generalize results given
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‘by the author in an earlier paper, “The central limit theorem for m-dependent variables
agsymptotically stationary to second order,” (to appear in Proc. Camb. Phil. Soc.). A
property of joint distribution functions of m-dependent variables with finite variances,
given in the earlier paper, is used in an improved form in proving the results of this paper

15. On a Property of a Class af Decision Procedures for Ranking Means o’
Normal Populations. (Preliminary Report.) K. C. SEaL, University of Nort]
Carolina.

Suppose there are (n + 1) normal populations N (u; ,¢?),7 =0,1,2, -+ ,n, with unknowr
‘means and a common but unknown variance, and that one random observation from eack
-of these (n + 1) populations is given. It is desired to choose the smallest group of popula-
‘tions which includes the population with greatest mean. Suppose an estimate s? of o2 is
known which is independent of the given observations z; ( = 0,1, -+, n). Let 1 — «
(0 < @ < 1) be the g.1l.b. of the, desired probability of correct choice, whatever may be
w#i’s (1 =0,1, --- ,n). The class (corresponding to different sets of ¢’s) of decision rules given
below has the property that probability of incorrect choice never exceeds that of correct
choice. Let t{1" ) (¢; 2 0;4 =1, -+ , n; Z&; ¢; = 1) denote the upper « per cent point
in the p.d.f. of ¢t ") = B c.ysy — yol/s, where y; (1 = 0,1, -+ ,n) are (n + 1) random
observations from N (0, o?) and ya) < Y@ =< -+ S Yw) are n ranked observations among
Y1, , Yo . The class of decision rules is defined as follows: “Reject any observation zo
from the given observations z; (6 = 0, 1, -+ , n) if Sy ciwesy — oo = 8850 (es Z 05
i=1,---,n; 2 ¢; = 1), and accept otherwise; z(;) stands for the 7th ranked observation
among z;’s (1 = 1, --- , n). Proceed as above for each of (n + 1) observations separately.”
‘Other properties of this class of decision procedures and the selection of an optimum rule
from this class are under investigation.

16. Simultaneous Confidence Bounds on Canonical Regressions. S. N. Roy,
University of North Carolina.

In an earlier paper (‘“‘Simultaneous confidence interval estimation” by S. N. Roy and
R. C. Bose, Ann. Math. Stat., Vol. 24 (1953), pp. 513-536) simultaneous confidence bounds
on canonical regression coefficients were given with an exact joint confidence coefficient.
The confidence statement itself was, however, quite complicated and not of much direct
physical use. The present paper uses a technique recently developed by the author (and
reported at the last meetings of the Institute of Mathematical Statistics) to obtain a set of
confidence bounds, much simpler and physically more usable, but with a joint confidence
coefficient greater than or equal to a pre-assigned level, the level being one that is also
actually attained.

17. A New Test of Compound Symmetry. S. N. Roy, University of
North Carolina.

It is well known that if ; and 2. have a bivariate normal distribution with variances
o1 and % and correlation coefficient p, then #; + #; and z; — » has zero correlation pro-
vided that oy'= o . It is also well known that this fact and the central distribution of the
correlation coefficient are used to test the hypothesis a1 = o3 , which is the hypothesis of
compound symmetry for a bivariate normal population. For an N(%, =), where ¢isp X 1
and Z is p X p, the corresponding hypothesis is that all the diagonal elements of = are
equal, and so also all the nondiagonal ones. Starting from the bivariate compound sym-
metry test and using a technique discussed in an earlier paper (‘On a heuristic method of
test construction and its use in multivariate analysis’’ by S. N. Roy, Ann. Math. Stat.,
Vol. 24 (1953), pp. 220-238) a test of this hypothesis is obtained in terms of the largest
gharacteristic root of a matrix and its distribution.
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18. A 2 X 2 Factorial with Paired Comparisons. RoBeErRT M. ABELSON, AND
Rarpr ArvaN BraDLEY, Virginia Polytechnic Institute.

The parameters previously specified for a method of paired comparisons are redefined in
such a way as to permit the use of treatments in factorial array. The algebraic procedure
is shown in general but the normal equationsrresulting from the use of maximum lieklihood
are nonlinear and difficult to solve. Easy solution of the normal equations seems to be
limited to the 2 X 2 factorial and an explicit solution is given for that case. The method of
paired comparisons presented for 2 X 2 factorial treatments permits most of the compari-
sons available through usual analysis of variance. It is possible to test for the presence of
both main effects and their interaction. A numerical example is included.

19. On Wald’s Confidence Interval for the Ratio of Variances in a Variance
Components Model. W. A. THoMPSON, JR., Virginia Polytechnic Institute
and University of North Carolina.

Wald’s confidence interval (‘A note on regression analysis,” Ann. Math. Stat., Vol. 18
(1947), p. 586) is specialized to the case of incomplete block designs with random block
effects. A theorem concerning the multiplicity of the characteristic roots of the variance-
covariance matrix of the adjusted yields is discussed and applied to Wald’s confidence
interval. A practical example is discussed. This work was done under contracts with the
Air Force and the Quartermaster Corps.
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NEWS AND NOTICES

Readers are tnvited to submit to the Secretary of the Inmstitute news items of interest
Personal Items

Paul M. Blunk has accepted the position of Operations Analyst with the Con-
solidated Vultee Aircraft Corporation at Fort Worth, Texas.

Dr. R. 8. Burlington, Chief Mathematician of the Bureau of Ordnance, Navy
Department, and head of the Evaluation and Analysis Group of the Bureau of
the Ordnance, has been named Special Assistant to the Director of Research
and Development, Bureau of Ordnance, Navy Department, Washington, D. C.

Visiting Associate Professor Kai Lai Chung of Cornell University has been
appointed Associate Professor at Syracuse University. He is in charge of an
ARDC Research project on probability and statistics there.

Charles W. Dunnett, formerly Biometrician for the Food and Drug Labora-
tory, Ottawa, Canada, is now on the statistical staff of the Lederle Laboratories
Division of the American Cyanamid Company located in Pearl River, New York.

Edward A. Fay, formerly a graduate student at the University of California,
has been employed since September 1950 as a statistician with the United States
Naval Ordnance Test Station, China Lake, California.

Professor E. J. Gumbel, Columbia University, has been appointed Visiting
Professor for Statistics at the Free University, Berlin (West) for the summer
term 1954. Professor Gumbel has also been elected a member of the International
Statistical Institute at The Hague.

Stuart T. Hadden, formerly Chemical Engineer with the Research & Develop-



