Define a recursive approximation scheme as follows. Let x_1 be arbitrary and define

$$(4.4) x_{\hbar+1} = x_n + a_n z_n$$

where $z_n = +1$ if $y_n \le \alpha$ and $z_n = -1$ if $y_n > \alpha$, and y_n is a random variable distributed according to $H(y \mid x_n)$. Then, by applying Theorem 1 with $\alpha = 0$ and $y_n = -z_n$, we obtain

THEOREM 3. If conditions (4.1), (4.2), and (4.3) hold, then $P\{\lim x_n = \theta\} = 1$.

I should like to thank Mr. Lucien LeCam for many helpful discussions concerning this problem. I should also like to thank the referee for pointing out that the condition of uniform boundedness of M(x) in Section 2 could be replaced by the present condition (2.1).

REFERENCES

- [1] H. Robbins and S. Monro, "A stochastic approximation method," Ann. Math. Stat. Vol. 22 (1951), pp. 400-407.
- [2] J. Wolfowitz, "On the stochastic approximation method of Robbins and Monro," Ann. Math. Stat., Vol. 23 (1952), pp. 457-461.
- [3] J. Kiefer and J. Wolfowitz, "Stochastic estimation of the maximum of a regression function," Ann. Math. Stat., Vol. 23 (1952), pp. 462-466.
- [4] M. Loève, "On almost sure convergence," Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, 1951, pp. 279-303.

A NOTE ON THE ROBBINS-MONRO STOCHASTIC APPROXIMATION METHOD¹

By GOPINATH KALLIANPUR

Institute for Advanced Study and University of California, Berkeley²

Introduction. The almost certain convergence of the RM process and related stochastic approximation procedures is proved by Blum [1] in a paper appearing elsewhere in this issue. In the present note we consider the method originally proposed by Robbins and Monro [2] with a further restriction on the constants a_n . Our aim is to obtain, by elementary methods, an estimate of the order of magnitude of $b_n = E(x_n - \theta)^2$. This estimate is sharp enough to enable us to prove strong convergence for certain types of sequences a_n . The method adopted in [1], while being more general, does not yield information about the behavior

Received 1/19/53, revised 12/7/53.

¹ This work was begun with the partial support of the Office of Naval Research when the author was at the Statistical Laboratory, University of California, Berkeley.

² At present at the Indian Statistical Institute.

of b_n for large n. Using the notation and assumptions of [2] we state our results in the following

THEOREM. Let $G_1 n^{-\delta} \leq a_n \leq G_2 n^{-\delta}$ for all n, where G_1 and G_2 are positive constants and $\frac{2}{3} < \delta \leq 1$. If either

(i)
$$\frac{2}{3} < \delta < 1$$
, and

(1)
$$K > \frac{1}{2} (G_2/G_1)(C + |\alpha|),$$

or (ii) $\delta = 1$, and

(2)
$$K > 2(G_2/G_1)(C + |\alpha|),$$

then

(3)
$$P(\lim_{n\to\infty}x_n=\theta)=1.$$

The appropriate estimates for the order of magnitude of b_n are given by (9), (15), (16) and (18) below.

Proof. We shall briefly indicate the proof of (i). Let r be a positive constant less than $[2KG_1 - (C + |\alpha|)G_2]/(1 - \delta)$, and let $A = (C + |\alpha|)G_2/(1 - \delta)$. Then using (21) of [2] and the inequality

$$1 + 2^{-\delta} + \cdots + j^{-\delta} \leq j^{1-\delta}/(1-\delta)$$
 (for all j large enough),

we have

(4)
$$A_j \leq (A+r) j^{1-\delta}$$
 (for j sufficiently large).

From (4) and the easily verifiable relations [2]

 $b_{j+1} = b_j - 2a_jd_j + a_j^2e_j$, $d_j \ge b_jK/A_j$, and $e_j \le (C + |\alpha|)^2 < \infty$ we obtain

(5)
$$b_{j+1} \leq b_j q_j + M_1 j^{-2\delta} \qquad (j \geq m),$$

where $q_j=1-B\cdot j^{-1}$, and $B=2KG_1/(A+r)>1-\delta$ by the choice of r. Here and in the sequel the letter M with or without a suffix denotes a constant independent of n. Putting $j=m,m+1,\cdots,n$ successively in (5) and setting $Q_n=\prod_{j=m}^n q_j$ and $R_n=1+m^{-2\delta}Q_m^{-1}+\cdots+n^{-2\delta}Q_n^{-1}$, we have

$$(6) b_{n+1} \le M_2 \cdot Q_n \cdot R_n \cdot$$

Also, since $\sum_{j=1}^{n} j^{-1} \sim \log n$,

$$(7) Q_n = O(n^{-B}).$$

For the estimation of R_n we consider three different possibilities:

a) $B > 2\delta - 1$. Easy computation shows that

$$(8) R_n = O(n^{1+B-2\delta})$$

which together with (6) and (7) leads to the result

$$(9) b_n = O(n^{1-2\delta}).$$

Now choose β to satisfy

$$(2\delta - 1)^{-1} < \beta < (1 - \delta)^{-1},$$

with $2\delta - 1 > 1 - \delta$ since $\delta > \frac{2}{3}$. For $k = 1, 2, \cdots$ define the subsequence $n_k = [k^{\beta}]$. Then Tchebycheff's inequality yields the simple estimate

(11)
$$P(|x_{n_k} - \theta| > \epsilon) = O[k^{-\beta(2\delta - 1)}].$$

Since $\beta(2\delta - 1) > 1$ from (10), using (11) and applying the Borel-Cantelli lemma, we have

$$\lim_{k\to\infty} x_{n_k} = \theta$$

with probability one. For $n_k \leq n < n_{k+1}$,

$$(13) |x_n - \theta| \leq |x_n - x_{n_k}| + |x_{n_k} - \theta| \leq M_3 \sum_{j=n_k}^{n_{k+1}} j^{-\delta} + |x_{n_k} - \theta|.$$

Since $n_{k+1} - n_k = O(k^{\beta-1})$

(14)
$$\sum_{j=n}^{n_{k+1}} j^{-\delta} = O(k^{\beta-1-\beta\delta}) = o(1)$$

as n and hence k tends to infinity. The last remark follows from the right side of (10). Relations (12), (13) and (14) establish (3).

b) $1 - \delta < B < 2\delta - 1$. In this case, since $2\delta - B > 1$, $R_n = O(1)$ from which we obtain

$$(15) b_n = O(n^{-B}).$$

c) $B = 2\delta - 1$. This gives $R_n = O(\log n)$ and

$$(16) b_n = O(n^{-B} \cdot \log n).$$

Combining b) and c) we may write

$$(17) b_n = O(n^{-\mu})$$

where it is understood that $\mu = B$ in case b) and $1 - \delta < \mu < B$ in case c). The rest of the proof is the same as in a).

In the proof of (ii) similar computations give the following estimate for b_n :

(18)
$$b_n = O(\log n)^{-\mu}$$
, where $\mu = KG_1/(C + |\alpha|)G_2 - 1$.

The proof of (3) is accomplished by taking $n_k = [\exp k^{\beta}] \ (\mu^{-1} < \beta < 1)$.

REFERENCES

- [1] Julius R. Blum, "Approximation methods which converge with probability one," Ann. Math. Stat., Vol. 25 (1954), pp. 390-394.
- [2] HERBERT ROBBINS AND SUTTON MONRO, "A stochastic approximation method," Ann. Math. Stat., Vol. 22 (1951), pp. 400-407.