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(4.3) D an = o, >k < o,

n=1 n=1
Define a recursive approximation scheme as follows. Let x; be arbitrary and define
4.4) Thy1 = Tn + Aa2n
where 2z, = +1ify, < aand 2, = —11if y» > @, and y, is a random variable
distributed according to H(y | «,). Then, by applying Theorem 1 with o = 0
and y, = —z,, we obtain

TueoreM 3. If conditions (4.1), (4.2), and (4.3) hold, then P{lim z, = 6} = 1.

I should like to thank Mr. Lucien LeCam for many helpful discussions con-
cerning this problem. I should also like to thank the referee for pointing out that
the condition of uniform boundedness of M (x) in Section 2 could be replaced by.
the present condition (2.1). :
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A NOTE ON THE ROBBINS-MONRO STOCHASTIC APPROXIMATION
METHOD!

By GorinaTH KALLIANPUR
Institute for Advanced Study and University of California, Berkeley®

Introduction. The almost certain convergence of the RM process and related
stochastic approximation procedures is proved by Blum [1] in a paper appearing
elsewhere in this issue. In the present note we consider the method originally
proposed by Robbins and Monro [2] with a further restriction on the constants
@, . Our aim is to obtain, by elementary methods, an estimate of the order of
magnitude of b, = E (x, — 60)°. This estimate is sharp enough to enable us to
prove strong convergence for certain types of sequences a, . The method adopted
in [1], while being more general, does not yield information about the behavior
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of b, for large n. Using the notation and assumptions of [2] we state our results
in the following

THEOREM. Let G £ an < G for all n, where Gy and G, are positive con-
stants and 24 < 6 =< 1. If either

(i) 24 <6 <1,and ’
M K > J(G/G)(C + | al),
or (i) 6 = 1, and
@ K > 2(6:/G)(C + | a]),
then
3) P(imz, = 0) = 1.

n—>00

The appropriate estimates for the order of magnitude of b, are given by (9),
(15), (16) and (18) below.

Proof. We shall briefly indicate the proof of (i). Let r be a positive constant
less than [2KGy — (C + | a|)G)/(1 — §), andlet A = (C + |« |)Go/(1 — ).
Then using (21) of [2] and the inequality

14+27% 4 - 457 <470 = 9) (for all § large enough),
we have
(4) A; S (A 417 (for j sufficiently large).
From (4) and the easily verifiable relations [2]
bi = b; — 2a,d; + aje;, d; 2 b;K/A;, and ¢; £ (C + |«|)’ < o
we obtain
(5) by < bjg; + My™ Gz m),

where ¢; = 1 — B-j', and B = 2KGy/(4 +r) > 1 — & by the choice of r.
Here and in the sequel the letter M with or without a suffix denotes a constant
independent of n. Putting j = m, m + 1, - - - , n successively in (5) and setting
Q. = H};m g;and R, = 1 + m™2Q;' + -+ + n~?Q7}, we have

(6) bn+1 é M2'Qn’Rn’
Also, since Z Pai Tt ~logm,
(7) Q. = O(n™®).

For the estimation of R, we consider three different possibilities:
a) B > 25 — 1. Easy computation shows that

(8) Rn — 0(n1+8—25)
‘which together with (6) and (7) leads to the result
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) ba = O(n*™®).
Now choose 3 to satisfy
(10) @2 -1Dr<pg< -8,

with2 — 1 > 1 — s sinced > 24.Fork = 1,2, - - - define the subsequence n; =
[¥*]. Then Tchebycheff’s inequality yields the simple estimate

(11) P (| — 0| > ¢ = 0 [KP®™M]

Since 8(26 — 1) > 1 from (10), using (11) and applying the Borel-Cantelli lemma,
we have
(12) lim x,, = 0
k=0
with probability one. For ny £ n < ng41,

nk+1

(13) lxn"al = |xn—xnkl+|xnk"ol =M, .ZJ~5+ | Zn — 0.
J=ng

Since N1 — N = 0(]05_1)

nk+41
(14) 2 57 =00 = o(1)
J=ng
as n and hence k tends to infinity. The last remark follows from the right side
of (10). Relations (12), (13) and (14) establish (3).
b)1 — 5 < B < 25 — 1. In this case, since 26 — B > 1, R, = O(1) from
which we obtain

(15) b, = O(n7%).

¢) B = 26 — 1. This gives R, = O(log n) and
(16) b, = O(n~"-log n).
Combining b) and ¢) we may write
an b, = O(n™)

where it is understood that ¢ = B in case b) and 1 — & < p < B in case c).
The rest of the proof is the same as in a).
In the proof of (ii) similar computations give the following estimate for b, :

(18) b, = 0 (log n)™, where p = KG1/(C + |« )G — 1.
The proof of (3) is accomplished by taking nx = [exp K] (W™ < 8 < 1).
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