A SINGLE-SAMPLE MULTIPLE DECISION PROCEDURE FOR RANKING
VARIANCES OF NORMAL POPULATIONS!

By Rosert E. BE?HHOFER AND MiIrTON SOBEL
Cornell University

Summary. A single-sample multiple decision procedure for ranking yvariances
of normal populations is described. Exact small-sample methods and a large-
sample method are given for computing the sample sizes necessary to guarantee
a preassigned probability of a correct ranking under specified conditions on
certain variance ratios. Some tables computed by these methods are provided.

1. Introduction. In an earlier paper [3], one of the present authors proposed a
single-sample multiple decision procedure for ranking means of normal popula-
tions with known variancés. Although the procedure described in that paper
can be used for ranking variances if the sample sizes are sufficiently large, the
question as to which type of large-sample approximation would give satisfactory
results required further study. In addition, since much applied statistics involves
small sample sizes, it was felt that it would be desirable to develop an exact small-
sample theory for ranking variances of normal populations. The formulation
of the ranking problem as given in this paper is the same as the one given in the
earlier paper. However, the earlier paper treats the problem somewhat more
generally, and the reader is referred to it for additional background and motiva-
tion.

Neyman and Pearson’s [10] L; test as modified by Bartlett [2] (with the new
tables of Thompson and Merrington [13]) is the best known and most widely
used test? for the homogeneity of variances. However, even in situations where
the test is appropriate,® it has a very important deficiency—namely, that its
power against various types of alternatives has not been determined.

In many situations the test is used inappropriately, particularly when the
experimenter has strong a priori reasons for believing that the population vari-
ances can not, in fact, be exactly equal. Many times in such situations the ex-
perimenter would like to know, for. example, which population has the smallest
variance. What he requires is a decision procedure which will tell him which
population to choose, and an operating characteristic curve which will tell him
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2 Recently Hartley [7] introduced an easier (from the computional viewpoint) but less
powerful test of the same hypothesis based on the maximum F-ratio. See also Cochran’s
test [5], [6] for the significance of the largest of a set of sample estimates of variance.

3 For example, before attempting an analysis of variance test, an experimenter might
want to do some preliminary sampling in order to obtain information concerning the validity
of the assumption of homogeneous variances.
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274 ROBERT E. BECHHOFER AND MILTON SOBEL

the probability of his making a correct choice if he follows the given decision
procedure. The ranking procedure described in the next section is designed to
handle this latter situation.

2. The ranking (multiple decision) approach.
2.1. The mathematical model and related definitions. Let X;; be normally and
independently distributed chance variables N (X; | u:, o2),

(’L’: 1)2) e 7k)J= 1727 e )N'i)°

We assume that the u; are known, and that the o7 are unknown. (If the w; are
known linear combinations of parameters which themselves are unknown and
which must be estimated from the data (a typical situation in regression prob-
lems), the only effect will be to change the degrees of freedom associated with
the estimate of each o7 .) Let

) oty S ofy £ -0 = ol
be the ranked o} , and let
2) 8:;; = ota/oin Li=12 -,k

be the variance ratios; we assume that it is not known which population is asso-
ciated with of;; . We further assume that for each population, the only parameter
of interest is the population variance, the “best’ population being the one having
the smallest variance, the “second best’”’ being the one having the second smallest
variance, etc. Alternatively, we might have defined the ‘“best’”’ population as
being the one having the largest variance, etc.; the mathematical theory is simi-
lar for both cases.

The % populations might be % different lots of ammunition, and o; might be
the (population) target dispersion of the 7th lot, or the & populations might be &
different measuring instruments, and ¢f might be the (population) variance of
measurement of the 7th instrument. This variance, which characterizes the
reproducibility of repeated measurements of the same quantity, can be used as
an index of the precision of the measuring instrument. We would like on the
basis of a sample of »_i_; N; independent observations to make some inferences
about the ‘bestness” of the populations.

Our inferences will be based on the sample variances, by which we mean the
best unbiased estimates of the corresponding population variances. The sample
variance from the ¢th population, and the number of degrees of freedom (d.f.)
associated with this estimate, will be denoted by s; and =, respectively. (For
simplicity of notation no attempt will be made in this paper to distinguish be-
tween chance variables and their observed values.) The sample variance asso-
ciated with the population having population variance of; and the number of
d.f. associated with this estimate will be denoted by s{;, and n(;, , respectively.
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Thus

®3) n(as%a/tf%u = x'i(,-, 1=1,2 -+ ,k.
The ranked s} will be denoted by

) Sty < sty < o0 < sl

(If two or more s} are equal, they should be “ranked” by using a randomized
procedure which assigns equal probability to each ordering.)

2.2. The goals, requirements, and procedures. Different goals are appropriate
for different practical situations. We shall assume that in each situation it is
the experimenter’s responsibility to decide, before taking any observations, pre-
cisely what his goal is. Two representative goals will be considered here. All
problems of dividing the & populations into groups will be special cases of these
two, or will require a similar development.

Goatr 1. To divide the & populations into two. groups, the ¢ “best” and the
k — t “worst,” the ¢ best being unordered and the k — ¢ worst being unordered
1=st=sk—1).

Goaw II. To divide the & populations into ¢ + 1 groups, the ¢ “best” and the
k — ¢ “worst,” the ¢ best being ordered and the k¥ — ¢ worst being unordered
1st<k—1). '

It should be clear that, for Goal I, the problem of choosing the ¢ “best” is
logically equivalent to choosing the ¥ — ¢ “worst.” It should also be noted
that, for Goal IT when ¢ = k — 1, the problem is that of requiring a complete
ranking. The goals coincide for ¢ = 1.

For Goal I it is assumed that the experimenter can specify a smallest value of
0u41.0, S8y O3y1,¢, that he desires to detect. The experimenter also must specify
the smallest acceptable probability of achieving Goal I when 8,1, = 6%y, .

For Goal II it is assumed that the experimenter can specify a smallest value of
each 0i41,:, say Oy (6 = 1,2, -+, ¢) that he desires to detect. He also must
specify the smallest acceptable probability of achieving Goal II when 8;41,; =
0?+1.i (t=1,2--,10.

The statistical procedure for achieving these goals is essentially the same for
the two cases. The experimenter takes a predetermined number N; (depending
on the goal and the problem) of independent observations from the ¢th popula-
tion. He computes the & sample variances s; and makes the ranking (4). He
then makes the obvious decision. For Goal I he states that the populations that
gave rise to the ¢ smallest sample variances are the ‘“best” populations, and the
k — ¢ remaining populations are the ‘“worst”’ populations. For Goal II he states
that the populations that gave rise to the smallest, second smallest, ... , {#h
smallest sample variances are the “best,” “‘second best,” ... , “{th best” popu-
lations, respectively, and the k — ¢ remaining populations are the ‘“worst” popu-
lations. The probability of achieving the goal, that is, the probability of a cor-
_ rect ranking, depends for each goal on the 6;41,; (¢ = 1,2, -*- , k — 1) and the
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n; (d.f.) associated with the s} ({ = 1, 2, - -+ , k). We shall show, for Goals I
and II, how to determine the n; so that the experimenter’s requirements will be
satisfied.

2.3. Confidence statements associated with the procedure. It is important to point
out that if one adopts the procedure described above, it is possible for him to
make useful confidence statements. These are given below without proof.

For Goal I if the n; are chosen so that the probability of a correct ranking is
P when 0,41,; = 07511,cand 0,1 = 64,41 = 1 (see Section 3.2), then after having
taken the required number of observations, the experimenter can assert with
confidence coefficient at least P that

2 2 2
max {0y, 0@, ***, 0 *
(5) 1 é { (1) (z), ) (t)} § 0t+1,t
I

where ¢{;) denotes the variance of the population which yielded sf;(¢ = 1,2, - -+ ,
t). Similarly, for Goal II if the n; are chosen so that the probability of a correct
ranking is P when 6;,1,; = 6341, G = 1,2, -+, t) and 6,11 = 1 (see Section
3.2), then after having taken the required number of observations, the experi-
menter can assert with confidence coefficient at least P that

(6) 1/8%ia S oto/otn S 0

simultaneously for ¢ = 1,2, -+, ¢. (Here 61, = 1.)
For example, if £ = 1 the goals coincide and the confidence statement becomes

(7) 1 £ o(n/oty S 63,

This statement holds, with confidence coefficient at least P regardless of the true
configuration of the population variances. Thus, without knowing whether
621 < 031 0r 6,1 = 03, , the experimenter still can assert with confidence coeffi-
cient at least P that the variance o{y of the population which he chose as having
the smallest variance is not greater than 630fy; .

It follows from the above that the problem for ¢ = 1 (say) could have been
formulated in the following equivalent way: “How many observations must I
take from each population in order that I will be able to assert with confidence
coefficient at least P that the variance of the population that I choose as having
the smallest variance is either the smallest one or at least not greater than

02 1 times the smallest one?”’

3. The probability of a correct ranking expressed as an integral.
3.1. Arbitrary configuration of the population variances. The probability of a
correct ranking can be represented as

(8) Pr [maX{S%n P S%g)} < min{s%t+1) y " s%k)}];
9) Prsty < sty < ++- < 8{n < min{s(esn , =+ St}

for Goals I and II, respectively. We shall give integral expressions for each of
these probabilities.
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We note that (8) can be written as

t
2 2 2 2 2 . 2 2
Zl Pr[max {s@, -+, 8G—1, SGn, -+ * , 8} < 8¢ < min {8(in, =+, S}l
]=

: ‘ (@ = 1,2, - L4110
(10) =X Pr I}‘%a) < sty < sia; ’ :I
i=1 (B=t+1,t+2,--~,k)
¢ P l:x‘i(.,) < (n(a)/n(i)) oiaxzn(i); (0[ = 1;2; ttt 7j_ 17.7+ 11 e ;t):l
r
Xnsy > @/ M) Bis Xniiys B=t+1,¢t42 k).

If for each j the above probability is evaluated for x%,;, fixed (say at y), and the
expectation is taken over y, then (10) can be written as

(11) 2 fo [}I Fr (n"” 0,ay>] Lﬂl{l — Fug (n— m?/)}] faiin () dy

where fr.;, (v) and F,,.(y) are the probability density function (p.d.f.) and
cumulative distribution function (c.d.f.), respectively, of the Gamma variable

=

1.2
2Xn(s)

The probability (8) can be evaluated for arbitrary n; and 6;,; (4,7 = 1,2, - - -,
k) using (11). However, we shall be concerned with the case

(12) nmo=ny = -+ = = n (say),

and future probability calculations will be made for this special case.
The probability (8) also can be evaluated using an alternative expression
which we give for the special case (12). The expression is

(13) g f f I'(kn/2) II w1 / r(n/2))* <1 + kz;ji u,~>”k/2

where the limits of integration for w; , uz, - - - , Uz are (0, 8;1), (0, 6,2), - -+,
(07 Bi.j—l), (0) 0.1'.1'+1), (0) 07',.1'+2)1 Tty (O) 07',‘): (Gj,t+l, °°)) (0.1'.¢+2) °°)’ R}
(8;%, =), respectively. The above expression is derived by considering the
joint distribution of the k independent s , making the transformation u; =
8;8/sth G=1,2, -+, i = Li+1,7+2 -, k), u; = n)i1sn/20n,
and integrating out u; as a Gamma function. Then renaming the u; to make the
subscripts consecutive, we obtain (13).

The probability (9) can be evaluated using different expressions. The expres-
sion corresponding to (11) will be omitted; the expression corresponding to
(13) is derived in a similar way as (13) and is given by

f r(kn/z)IIui"*””II uf®=2+15 ]
(14) =t s SN
| [r<n/z>1”[1+§(£11“f Ht “>] )
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where we understand that [[f_mus = 1if m > n, and the limits of integration
for Uty vy Uty Uty *°*, Up—1 are (01.2; °°)7 (02.3’ °°), A} (0¢—1.¢’ oo);
(01,641, ©), (Bs,e42, ©), -+, (6s1, »), respectively. The density functions
contained in both (13) and (14) are multivariate generalizations of the F-dis-
tribution. The expressions (13) and (14) can be regarded as the operating charac-
teristic curves with respect to a correct ranking for the procedures of Goals I
and II, respectively.

3.2. Least favorable configuration of the population variances. For both Goal I
and Goal IT we are interested in finding the smallest value of n which will guaran-
tee the requirements specified in Section 2.2. In order to do this it will be con-
venient to define a least favorable configuration of the population variances. For
Goal I this configuration is defined by

(15) 00 = Open = 1; Oi1,0 2 15

and for Goal II it is defined by

(16) oo = 13 Gz 1 i=1,2---,t
Since the probabilities (8) and (9) obviously are increasing functions of the
0iy1,6 (0 = 1,2, -+, k — 1), we see that in order to guarantee our requirements
it is sufficient to evaluate these probabilities at

an e = Ot =1 and Oipa,e = 0tr1,: = 6* (say)

for Goal I, and at

(18) Okerr =1 and iy = 05 i=1,2 - ,1

for Goal II. The desired value of n then is the smallest integer which will make
the probabilities, evaluated at these points, equal to or greater than the pre-
assigned probability specified by the experimenter.

When (12) and (17) hold, the expressions (11) and (13) simplify considerably
and we obfain

(19) [ I = Fa ) dy

0 © 1 1

(20) t c e f f cee f gn(ul’ e, uk—l) dul eee dut—l dut e dulc-—l,
1/6* 1/6* Y0 0

respectively, where g,(u1 , - -+ , ux—1) is the same density function as is displayed

in (13). When (12) and (18) hold, there is no corresponding simplification in

(14), but 6, ; is replaced by 1/6%.,: (¢ =t + 1, -+, k) and 6, ;4 is replaced

by 1/651,: G = 1,2, -+ ,t — 1).

4. Evaluation of the probability integrals. When » is even, the integrals (14),
(19), and (20) can be evaluated in a straightforward manner, and the results
can be expressed as rational functions of the 6;,; . However, when £ = 3 this
method of evaluation becomes increasingly tedious as n increases and is ineffi-
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cient even for small values of n. In some cases the probabilities also can be ex-
pressed as a finite sum of incomplete Beta functions, and using [12] the compu-
tations can be simplified in some cases.

When 7 is odd the integrations are more involved. For &k = 2 and 3 the re-
sults can be expressed in terms of rational functions and inverse trigonometric
functions of the 6;,; ; for ¥k = 4 and n odd, no results were obtained.

For k = 2, the probabilities (13) and (14) coincide and are given by the in-
complete Beta function I, ,/ate,,) (n/2, n/2).

For k = 3 and n even, the probabilities (13) and (14) can be expressed in
terms of finite sums of incomplete Beta functions. We give here three such sums.
For Goal I when (15) holds and 6;41,. = 6, we have for ¢t = 1 and 2, respectively

21 g1vy/042(m, 1/2)Io1040)(0/2, 1/2)
(21) a2 . . .
- 21 b(n/2 — L;n — 1 — 5,1/2) 15645 (n/2 + j,n — j)
=
2T/ (n/2, n) L5040y (n/2, n/2)

(22) a2 . . .
= 2.b(0/2 = L+ = 2,1/ Iwennn +j — 1,n/2 = j + 1)
&

For Goal IT when (16) holds and 63, = 6.; = 6, we have
Torsaro10n (n/2, n) g4y ()2, 0/2)

n/2

(23) —0(1 + 6)* Z}l b(n/2 — 1;n + 45 —2,6/(1 + 6)

T araren(n + 3 — 1,n/2 — j + 1).

In the above, the symbol b(z; n, p) is the binomial probability and is equal to
C:p” (1 — p)" .

For k = 3 and n odd, general formulas were obtained for the probabilities
(13) and (14), but for simplicity we shall give the results only for n = 1 and 3.
For Goal I when (15) holds and 6,,;,; = 6, we have

- _ N/ t=1
(24) g arc tan {\/0 [2(0 i 01) —I; 6+ 2]} 1
T - n =
2 Vo[20 —1)+ve 2  4vee—1)
;a.lctan{ 0 —1 }—l— -0 F 1 P
(25) _
2406 — 1)(6° + 76 + 8) n=3

70 + 1)2@ + 6)°

2 0 t=2
(26) - arc tan Vit i
2 9 2000 — 1)(86° + 76 + 1) t=2
@) Jearctan it S T M@ T n=3
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For Goal II when (16) holds and 6;,; = 6,,; = 6, we have

R t=2
(28) 12—rarctan {\/6[0-—{-1 - »\/02+0+1]}
n =
2 arc tan (V30 + 1 — VEFIF I .,

(29)

+2\/é(o—1).[1+(0—1)(o‘+303+502+3o+1)] n=3

w6 + 1)? 6* + 6 + 1)52
Because of their simplicity we give in addition two general results for n = 2.
For Goal I when (15) holds we have

(30) 1 [I;I1 ( ’Zt:ut + i)]—l ,

\

while for Goal II when (16) holds we have

(31) [1’1 > o,.,,]“l.

=1 j=t¢

6. Large sample approximation to the probability. In Section 4 we pointed out
that it is extremely tedious to compute exact probabilities when # is even and
large, and that when n is odd these difficulties multiply considerably even for
small . In this section we shall show how large-sample theory can be used to find
very good approximations to the required probabilities even for relatively small 7.

We shall illustrate the method using a particular problem. The extension of
the method to the general problem will be straightforward. Our principal tools
will be the use of the transformation y = log, s* (see [2]), and the approach of
certain multivariate distributions to multivariate normal distributions.

As our particular problem we shall consider Goal I for k¥ = 3, ¢ = 1 when
(12) holds. Letting

(32) X; = log, (s*w/ola) i=123
we see that we can write the probability of achieving our goal as
Prsd) < s, s < s@]

(33)
= Pr [Xz - X1 > — IOgg 02'1 ) X3 b X1 > — loge 03,1].

Now it can be shown (see [2]) that the expectation and variance are
(34) E (X} = —(-1-+—1>+0(n‘3) i=123
n  3n?

_d 2,2 4 s 2
(35)  Var {Xi} = — [log. T(z)] =st 5+ 00T) ~——

=N

1 =1,2,3.
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Thus
E {X, - Xl} = 0

2, 2 4 - 4 .

Correlation {X, — X3, X5 — X3} = %

Using the method of characteristic functions, it can be shown that the joint
distribution of the chance variables

37) Yi=vVn—-1)/4Xin — Xy) =12

approaches the bivariate normal distribution with means zero, variances unity,
and correlation coefficient plus one-half. Thus the probability is given approxi-
mately by ’

38) [m f+°° L —2(% — yays + D)) dyud
\/gexp{ 2(y1 — v1y2 + y2)} dyrdy:

1/ =1 logez,1 v—4v/ 71 logebs,y T
This integral is tabulated [11]. When (17) holds the common value of the two
lower limits is
(39) —1v/n = 1 log, 6*.

More generally, for Goal I when (12) and (15) hold, the probability (8) can be
expressed as

+o0
40) ¢ L [G@)] 7L = Guly — V3 — 1) log. 0041,01" ' (0) dy

where ¢.(y) and G,.(y) are the common p.d.f. and c.d.f., respectively, of the
chance variables v/4(n — 1)X; (¢ = 1, 2, 3). Since g.(y) and Gn(y) approach the
p.d.f. f(y) and c.d.f. F(y) of the standardized normal chance variable, it follows
that the expression (40) approaches

+o0
(a) ¢ [ PaNTT - P - OFG) dy

where d = /Z(n — 1) log, 8:41,: . A tabulation® [9] of (41) has been made as a
function of d for certain pairs (¢, k). These tables therefore can be used to find
an approximation to the probability (40). The reader should note that (41)
can also be written as

+o0
u2) k=0 [ PG+ 10 - FOIY) dy

and it is this expression which appears in [9].

4 These tables were computed by the National Bureau of Standards at the Institute for
Numerical Analysis, Los Angeles. They are the basic tables from which Table I in [3] was
derived.
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6. Tables. Tables of the probability of a correct ranking have been prepared
to assist the experimenter in designing experiments for ranking variances. All
of the tables are computed for the case when n is the same for each population,
and the least favorable configuration of the population variances holds, that is,
(15) holds for Goal I and (16) holds for Goal I1. The following key describes the
tables.

Value of
Table Number | Goal Number P . Conditions on the 6;,;
I IorII 2 1 021 =6
II Ior II 3 1 03,1 = 02,1 =0
III I 3 2 03,1 = 03_2 = 0
IV II 3 2 03,2‘ = 02,1 =6
V I 4 1 04,1 = 03,1 = 02,1 =0

All of the tables give the probabilities for n = 1(1)20 and § = 1.0(0.2)2.2.

Two probabilities are given in each cell of the tables (except for some of the
cells in Table V). The correct probability, P.(6, n), is given to five decimal
places; the normal approximation, P,(6, n), (see Section 5) to the correct prob-
ability, is given to four decimal places. The purpose of giving P,(8, n) is to indi-
cate the magnitude of the error of the approximation, and to show for various
goals, k, and ¢t how this error varies as a function of 8 and n. The magnitude of
the error cannot be judged for most of the P,(8, n) in Table V since the P.(6, n)
are given only for n = 2(2)12. Formulae had been developed for the computa-
tion of these P.(6, n) for n even, but such computations were found to be too
laborious for n > 12; no similar formulae had been developed for n odd.

If we let D (8, n) = P,(6, n) — P,(6, n), then the following properties would
appear to hold for all of the tables: 1) For any fixed 6, lim,.» D(8, n) = 0; 2)
For all n, D(1, n) = 0; 3) For any fixed n, D(8, n) is continuous in 6; and 4)
For any fixed n > 1, limy_w D(8, n) = 0.

Based on the behavior of P.(6, n) and P,(6, n) in the range computed, the
following additional properties would appear to hold:

(a) For Tables I, III, and IV: 1) For all » and 6 > 1, D(4, n) > 0; 2) For
any fixed n > 1 there exists a value 6% of 6 such that D(6, n) is strictly increas-
ingforl <8< 6%, and strictly decreasing for 6 > 6%, while forn = 1, 6} =« ;
3) 63 is strictly decreasing with n; 4) For any fixed § > 1, D(8, n) is strictly
decreasing with n; and 5) Max.1D(6, n) is strictly decreasing with n.

(b) For Tables IT and V: 1) For § > 1, D(8, 1) > 0; 2) For any fixed § > 1
there exists a value ng of n such that D(6, n) is strictly decreasing for n < ng
(D(6, n§) < 0) and strictly increasing for n > ng; and 3) nj is strictly decreasing
with 6.

., The normal approximation is the same for Tables IT and III. In general, for
fixed k the normal approximation to the probability of achieving Goal T will be



TABLE I
Probability* of a correct ranking as a function of the true variance ratio 6 and the number of
degrees of freedom (n) from each population:

Plshy < stay). True variance ratio: 672] /a’m =0

Degrees of 0
freedom
) 10 12 , 14 16 18 2.0 2.2
1 0.50000 0.52808  0.55330  0.57412  0.59223  0.60817  0.62236
0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
2 0.50000 0.54545 0.58333 0.61538 0.64286 0.66667 0.68750
0.5000 0.5363 0.5668 0.5929 0.6156 0.6355 0.6533
3 0.50000  0.55779 0.60561 0.64560 0.67938  0.70821 0.73301
0.5000 0.5513 0.5940 0.6302 0.6612 0.6880 0.7114
4 0.50000 0.56799 0.62384 0.67000 0.70845 0.74074 0.76807
0.5000 0.5627 0.6146 0.6580 0.6946 0.7258 0.7526
5 0.50000 0.57685  0.63951 0.69071 0.73274  0.76749  0.79641
0.5000 0.5723 0.6317 0.6808 0.7217 0.7559 0.7848
6 0.50000 0.58476  0.65338  0.70879  0.75364  0.79012  0.81999
0.5000 0.5808 0.6466 0.7004 0.7445 0.7808 0.8110
7 0.50000 0.59196 0.66588 0.72488 0.77195 0.80964 0.83999
0.5000 0.5883 0.6599 0.7176 0.7642 0.8020 0.8329
8 0.50000 0.59861 0.67731 0.73939 0.78822 0.82670 0.85718
0.5000 0.5953 0.6719 0.7329 0.7816 0.8204 0.8515
9 0.50000 0.60481 0.68786 0.75260 0.80281 0.84176 0.87210
0.5000 0.6017 0.6829 0.7469 0.7971 0.8365 0.8676
10 0.50000 0.61064 0.69767 0.76473 0.81600 0.85515 0.88515
0.5000 0.6078 0.6931 0.7596 0.8110 0.8508 0.8815
11 0.50000 0.61614 0.70685 0.77594  0.82800  0.86714  0.89662
0.5000 0.6134 0.7026 0.7713 0.8237 0.8635 0.8937
12 0.50000 0.62137 0.71548 0.78633 0.83897 0.87791 0.90677
0.5000 0.6188 0.7116 0.7821 0.8352 0.8748 0.9045
13 0.50000 0.62635 0.72364 0.79602 0.84903 0.88765 0.91578
0.5000 0.6239 0.7200 0.7922 0.8457 0.8850 0.9140
14 0.50000 0.63112 0.73136 0.80508 0.85830 0.89646 0.92381
0.5000 0.6288 0.7279 0.8016 0.8553 0.8943 0.9224
15 0.50000 0.63570 0.73870  0.81357  0.86686 0.90447 0.93098
0.5000 0.6335 0.7355 0.8104 0.8643 0.9026 0.9299
16 0.50000 0.64011 0.74569 0.82155 0.87479 0.91177 0.93741
0.5000 0.6380 0.7427 0.8186 0.8725 0.9102 0.9366
17 0.50000 0.64436 0.75237 0.82908 0.88214 0.91843 0.94317
0.5000 0.6423 0.7495 0.8264 0.8801 0.9172 0.9426
18 0.50000 0.64846 0.75875 0.83618 0.88898 0.92452 0.94836
0.5000 0.6465 0.7561 0.8337 0.8872 0.9235 0.9480
19 0.50000 0.65243 0.76487 0.84290 0.89535 0.93011 0.95303
0.5000 0.6505 0.7623 0.8406 0.8938 0.9293 0.9528
20 0.50000 0.65629 0.77075 0.84926 0.90129 0.93523 0.95725
0.5000 0.6544 0.7683 0.8472 0.8999 0.9346 0.9571

* The five- and four-decimal place numbers in the body of the table are the correct prob-
abilities and normal approximations to the correct probabilities, respectively.
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TABLE II

Probability* of a correct ranking as a function of the true variance ratio 6 and the number of
degrees of freedom (n) from each population:

A

Pls?,y < min (sfz) » 8t5))]. T'rue variance ratio: a’m/a’m = c’}"/afu = 0
Degrees of 0
freedom
) 1.0 1.2 14 * 1.6 1.8 2.0 2.2
1 0.33333 0.35835 0.38020 0.39958 0.41696 0.43269 0.44705
0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333
2 0.33333 0.37500 0.41176 0.44444 0.47368 0.50000 0.52381
0.3333 0.3704 0.4027 0.4312 0.4567 0.4795 0.5003
3 0.33333 0.38792 0.43633 0.47928 0.51746 0.55149 0.58192
0.3333 0.3861 0.4325 0.4734 0.5096 0.5420 0.5710
4 0.33333 0.39880 0.45702 0.50846 0.55379 0.59375 0.62901
0.3333 0.3983 0.4556 0.5059 0.5501 0.5892 0.6237
5 0.33333 0.40838 0.47519 0.53390 0.58515 0.62976 0.66858
0.3333 0.4087 0.4752 0.5333 0.5839 0.6280 0.6664
6 0.33333 0.41703 0.49156 0.55663 0.61284 0.66113 0.70254
0.3333 0.4179 0.4925 0.5572 0.6131 0.6611 0.7023
7 0.33333 0.42498 0.50654 0.57725 0.63766 0.68886 0.73209
0.3333 0.4262 0.5081 0.5787 0.6389 0.6900 0.7331
8 0.33333 0.43238 0.52042 0.59618 0.66016 0.71362 0.75807
0.3333 0.4339 0.5225 0.5982 0.6621 0.7155 0.7599
9 0.33333 0.43933 0.53339 0.61369 0.68070 0.73590 0.78106
0.3333 0.4411 0.5358 0.6162 0.6832 0.7383 0.7835
10 0.33333 0.44590 0.54559 0.62998 0.69956 0.75605 0.80153
0.3333 0.4478 0.5483 0.6328 0.7024 0.7588 0.8043
11 0.33333 0.45209 0.55713 0.64523 0.71697 0.77436 0.81982
0.3333 0.4542 0.5600 0.6483 0.7200 0.7774 0.8228
12 0.33333 0.45813 0.56808 0.65955 0.73310 0.79106 0.83622
0.3333 0.4603 0.5712 0.6628 0.7363 0.7942 0.8393
13 0.33333 0.46386 0.57852 0.67305 0.74809 0.80633 0.85097
0.3333 0.4662 0.5818 0.6765 0.7514 0.8096 0.8541
14 0.33333 0.46937 0.58849 0.68580 0.76205 0.82033 0.86427
0.3333 0.4718 0.5918 0.6893 0.7655 0.8236 0.8674
15 0.33333 0.47469 0.59805 0.69788 0.77508 0.83319 0.87628
0.3333 0.4772 0.6015 0.7015 0.7785 0.8365 0.8794
16 0.33333 0.47983 0.60723 0.70934 0.78727 0.84503 0.88715
0.3333 0.4824 0.6107 0.7130 0.7907 0.8483 0.8902
17 0.33333 0.48481 0.61606 0.72024 0.79869 0.85594 0.89699
0.3333 0.4874 0.6196 0.7239 0.8022 0.8592 0.9000
18 0.33333 0.48965 0.62456 0.73061 0.80940 0.86601 0.90592
0.3333 0.4923 0.6282 0.7343 0.8128 0.8692 0.9088
19 0.33333 0.49434 0.63277 0.74050 0.81947 0.87532 0.91403
_ 0.3333 0.4971 0.6364 0.7442 0.8229 0.8784 0.9168
20 0.33333 0.49892 0.64069 0.74994 0.82893 0.88393 0.92140
0.3333 0.5017 0.6444 0.7536 0.8323 0.8869 0.9241

* The five- and four-decimal place numbers in the body of the table are the correct prob-

abilities and normal approximations to the correct probabilities, respectively.
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TABLE III
Probability* of a correct ranking as a function of the true variance ratio 0 and the number of
degrees of freedom (n) from each population:

2 2 2 : 0 o2 2 2 2
Plmax (sf,, , sm) < s%4y)]. True variance ratio: "m/"m = "(31/"[21 =9

Degrees of o
freedom
) 1.0 1.2 14 « 1.6 1.8 2.0 2.2

1 0.33333 0.36729 0.39650 0.42200 0.44450 0.46456 0.48258
0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333

2 0.33333 0.38503 0.42982 0.46886 0.50311 0.53333 0.56019
0.3333 0.3704 0.4027 0.4312 0.4567 0.4795 0.5003

3 0.33333 0.39827 0.45473 0.50372 0.54633 0.58350 0.61609
0.3333 0.3861 0.4325 0.4734 0.5096 0.5420 0.5710

4 0.33333 0.40927 0.47539 0.53244 0.58156 0.62388 0.66046
0.3333 0.3983 0.4556 0.5059 0.5501 0.5892 0.6237

5 0.33333 0.41889 0.49340 0.55726 0.61165 0.65790 0.69730
0.3333 0.4087 0.4752 0.5333 0.5839 0.6280 0.6664

6 0.33333 0.42755 0.50954 0.57929 0.63803 0.68732 0.72867
- 0.3333 0.4179 0.4925 0.5572 0.6131 0.6611 0.7023

7 0.33333 0.43549 0.52426 0.59920 0.66157 0.71318 0.75583
0.3333 0.4262 0.5081 0.5787 0.6389 0.6900 0.7331

8 0.33333 0.44286 0.53787 0.61741 0.68282 0.73618 0.77960
0.3333 0.4339 0.5225 0.5982 0.6621 0.7155 0.7599

9 0.33333 0.44978 0.55056 0.63421 0.70216 0.75681 0.80058
0.3333 0.4411 0.5358 0.6162 0.6832 0.7383 0.7835

10 0.33333 0.45632 0.56247 0.64981 0.71988 0.77542 0.81920
0.3333 0.4478 0.5483 0.6328 0.7024 0.7588 0.8043

11 0.33333 0.46253 0.57372 0.66438 0.73620 0.79229 0.83582
0.3333 0.4542 0.5600 0.6483 0.7200 0.7774 0.8228

12 0.33333 0.46846 0.58438 0.67804 0.75130 0.80766 0.85071
0.3333 0.4603 0.5712 0.6628 0.7363 0.7942 0.8393

13 0.33333 0.47414 0.59453 0.69089 0.76530 0.82170 0.86409
0.3333 0.4662 0.5818 0.6765 0.7514 0.8096 0.8541

14 0.33333 0.47960 0.60423 0.70302 0.77832 0.83455 0.87614
0.3333 0.4718 0.5918 0.6893 0.7655 0.8236 0.8674

15 0.33333 0.48487 0.61350 0.71449 0.79047 0.84636 0.88702
0.3333 0.4772 0.6015 0.7015 0.7785 0.8365 0.8794

16 0.33333 0.48996 0.62241 0.72537 0.80182 0.85721 0.89686
0.3333 0.4824 0.6107 0.7130 0.7907 0.8483 0.8902

17 0.33333 0.49490 0.63096 0.73570 0.81245 0.86721 0.90578
0.3333 0.4874° 0.6196 0.7239 0.8022 0.8592 0.9000

18 0.33333 0.49968 0.63919 0.74553 0.82241 0.87644 0.91388
0.3333 0.4923 0.6282 0.7343 0.8128 0.8692 0.9088

19 0.33333 0.50433 0.647138 0.75489 0.83176 0.88496 0.92123
0.3333 0.4971 0.6364 0.7442 0.8229 0.8784 0.9168

20 ; 0.33333 0.50885 0.65480 0.76382 0.84055 0.89285 0.92791

| 0.3333 0.5017 0.6444 0.7536 0.8323 0.8869 0.9241

* The five- and four-decimal place numbers in the body of the table are the correct prob-
abilities and normal approximations to the correct probabilities, respectively.

285




degrees of freedom (n) from each population:

TABLE IV
Probability* of a correct ranking as a function of the true variance ratio 6 and the number of

P[sfl) < sfz) < sfa)]. True variance ratio: a'fﬂ/a"m = "2(31/"2121 =0
Degrees of 0
freedom
() 1.0 1.2 14 1.6 1.8 2.0 2.2
1 0.16667 0.19716 0.22510 0.25067 0.27412 0.29567 0.31554
0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
2 0.16667 0.21578 0.26223 0.30531 0.34484 0.38095 0.41387
0.1667 0.2053 0.2412 0.2744 0.3051 0.3334 0.3597
3 0.16667 0.23033 0.29168 0.34869 0.40061 0.44740 0.48934
0.1667 0.2225 0.2759 0.3257 0.3716 0.4136 0.4519
4 0.16667 0.24273 0.31696 0.38572 0.44763 0.50251 0.55078
0.1667 0.2362 0.3037 0.3668 0.4244 0.4762 0.5227
5 0.16667 0.25379 0.33951 0.41846 0.48857 0.54962 0.60229
0.1667 0.2480 0.3279 0.4022 0.4691 0.5284 0.5804
6 0.16667 0.26388 0.36009 0.44799 0.52488 0.59063 0.64624
0.1667 0.2587 0.3497 0.4337 0.5083 0.5732 0.6289
7 0.16667 0.27325 0.37912 0.47495 0.55749 0.62675 0.68416
0.1667 0.2684 0.3696 0.4622 0.5432 0.6122 0.6703
8 0.16667 0.28206 0.39693 0.49984 0.58703 0.65883 0.71719
0.1667 0.2775 0.3882 0.4884 0.5746 0.6466 0.7061
9 0.16667 0.29040 0.41368 0.52292 0.61394 0.68750 0.74613
0.1667 0.2861 0.4055 0.5125 0.6030 0.6772 0.7372
10 0.16667 0.29834 0.42953 0.54443 0.63857 0.71323 0.77162
0.1667 0.2943 0.4219 0.5350 0.6290 0.7046 0.7644
11 0.16667 0.30594 0.44459 0.56456 0.66121 0.73645 0.79417
0.1667 0.3021 0.4374 0.5559 0.6528 0.7291 0.7884
12 0.16667 0.31326 0.45896 0.58347 0.68209 0.75745 0.81419
0.1667 0.3096 0.4522 0.5756 0.6746 0.7513 0.8096
13 0.16667 0.32031 0.47269 0.60127 0.70139 0.77650 0.83201
0.1667 0.3168 0.4663 0.5940 0.6948 0.7713 0.8284
14 0.16667 0.32714 0.48585 0.61806 0.71927 0.79383 0.84794
0.1667 0.3237 0.4798 0.6114 0.7134 0.7895 0.8451
15 0.16667 0.33375 0.49849 0.63393 0.73587 0.80963 0.86219
0.1667 0.3304 0.4928 0.6278 0.7307 0.8060 0.8600
16 0.16667 0.34018 0.51065 0.64895 0.75131 0.82405 0.87497
0.1667 0.3370 0.5052 0.6433 0.7467 0.8210 0.8733
17 0.1_6667 0.34643 0.52236 0.66319 0.76569 0.83725 0.88646
0.1667 0.3433 0.5172 0.6580 0.7616 0.8347 0.8853
18 0.16667 0.35252 0.53365 0.67671 0.77911 0.84934 0.89680
0.1667 0.3495 0.5287 0.6719 0.7755 0.8473 0.8960
19 0.16667 0.35847 0.54454 0.68955 0.79163 0.86044 0.90612
0.1667 0.3555 0.5398 0.6851 0.7885 0.8588 0.9056
20 0.16667 0.36428 0.55508 0.70177 0.80334 0.87064 0.91454
N 0.1667 0.3614 0.5506 0.6976 0.8006 0.8693 0.9143

* The five- and four-decimal place numbers in the body of the table are the correct prob-

abilities and normal approximations to the correct probabilities, respectively.
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TABLE V
Probability* of a correct ranking as a function of the true variance raiio 8 and the number of
degrees of freedom (n) from each population:

P[sfl) < min (s%,, , sfa) , 8%4))]. True variance ratio: cr?ﬂ/af” = "2131/"%11 = "2[41/"%11 =48
Degrees of 6
freedom
() 1.0 1.2 14 16 1.8 2.0 2.2
1 0.25000
0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500
2 0.25000 0.28571 0.31818 0.34783 0.37500 0.40000 0.42308
0.2500 0.2843 0.3149 0.3424 0.3674 0.3903 0.4112
3 0.25000
0.2500 0.2991 0.3437 0.3841 0.4207 0.4541 0.4845
4 0.25000 0.30799 0.36195 0.41153 0.45679 0.49792 0.53523
0.2500 0.3107 0.3664 0.4169 0.4626 0.5039 0.5411
5 0.25000 *
0.2500 0.3206 0.3859 0.4450 0.4982 0.5458 0.5882
6 0.25000 0.32541 0.39643 0.46150 0.52010 0.57229 0.61848
0.2500 0.3295 0.4033 0.4700 0.5296 0.5822 0.6285
7 0.25000
0.2500 0.3375 0.4192 0.4927 0.5577 0.6145 0.6638
8 0.25000 0.34027 0.42588 0.50370 0.57256 0.63244 0.68395
0.2500 0.3450 0.4339 0.5136 0.5834 0.6435 0.6949
9 0.25000
0.2500 0.3521 0.4477 0.5330 0.6069 0.6698 0.7227
10 0.25000 0.35349 0.45201 0.54060 0.61741 0.68247 0.73677
0.2500 0.3587 0.4607 0.5511 0.6286 0.6936 0.7476
11 0.25000
0.2500 0.3650 0.4730 0.5681 0.6487 0.7155 0.7699
12 0.25000 0.36556 0.47571 0.57349 0.65643 0.72475 0.77999
0.2500 0.3711 0.4847 0.5842 0.6675 0.7355 0.7901
13 0.25000
0.2500 0.3769 0.4960 0.5994 0.6850 0.7539 0.8083
14 0.25000
0.2500 0.3825 0.5067 0.6138 0.7015 0.7709 . 0.8249
15 0.25000
0.2500 0.3879 0.5171 0.6276 0.7169 0.7866 0.8399
16 0.25000
10.2500 0.3931 0.5271 0.6407 0.7314 0.8011 0.8535
17 0.25000
0.2500 0.3982 0.5367 0.6532 0.7450 0.8146 0.8660
18 0.25000
0.2500 0.4031 0.5460 0.6651 0.7579 0.8270 0.8773
19 0.25000
0.2500 0.4079 0.5550 0.6766 0.7700 0.8386 0.8876
20 0.25000
0.2500 0.4126 0.5637 0.6875 0.7815 0.8494 0.8970

* The five- and four-decimal place numbers in the body of the table are the correct prob-

abilities and normal approximations to the correct probabilities, respectively.
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the same for choosing the ¢ smallest as for choosing the ¢ largest (i.e., the k — ¢
smallest). The following relationships hold for the entries in Tables IT and III:
1) For all n and 6 > 1, P.(§, n|II) < P.(9, n|IIT) and 2) For sufficiently
large n and 0 > 1, P,(6, n | II) <+P,(8, n) < P.(8, n | III).

It should be noted that P,(8, n) is very close to P.(8, n) throughout the range
of the various tables, and that therefore the normal approximation could be
used with very good results to fill out Tables I to V for n > 20. The approxima-
tion also could be used (together with [9] or tables in [3]) for the construction
of additional tables (k = 4) for which exact formulae are unavailable or avail-
able but unwieldy.

All of the P.(6, n) should be correct to the five decimal places which are given.
For Table I exact formulae were used in preference to interpolating in the in-
complete Beta function tables. For Tables II, IIT and IV exact formulae were
obtained for » = 1 (1) 8 (2) 20, and probabilities were computed to 8 decimal
places; for n = 9 (2) 19 the probabilities were computed by interpolation on the
values for even n using Everett’s interpolation formula. For Table V exact for-
mulae were obtained for n = 2 (2) 12.

All of the P4(8, n) were computed by setting Var {X;} equal to 2/(n — 1),
(see equation (35)). The univariate normal, bivariate normal, and trivariate
normal probabilities were found by interpolating in [8], [4], and [9], respectively.
An empirically noted fact which was not only interesting, but also extremely
useful from the viewpoint of checking the tables, was that for given 6 the first
differences of the probability as a function of n were strictly decreasing, and all
of the higher differences were strictly increasing.

7. Example. The following is an example to show how the tables are to be used.
The model of Section 2.1 is assumed throughout.

Given three populations. Suppose that it is desired to find which population
has the smallest variance, and to guarantee that the probability of correctly
choosing that population will be at least a) 0.60, b) 0.90, when o(3;/03; = 1.8.
How many observations must be taken from each population? (The information
in the tables is given in terms of d.f. The conversion of number of d.f. to number
of observations will depend on the nature of the problem at hand.)

a) Refer to Table II. We see that 6 d.f. from each population will meet the
requirements.

b) Refer to‘Table II. We see that 20 d.f. from each population is too small to
meet the requirements. To estimate the correct number we proceed as follows.
We compute v/I(n — 1) log, 63, =+/Z(n — 1) log, 1.8 and set it equal to 2.2302.
(The number 2.2302 is obtained from [3], Table I, column headed & = 3,¢ = 1
opposite P = 0.90). Solving for n we find that 30 d.f. from each population will
meet the requirements.

In terms of the problems considered in this paper, the quantities given in the
body of Tables I and II of [3] are \/i(n — 1) log, 841, and v/ I(n — 1) log,
6i41,: (¢ = 1, 2), respectively. These tables can be used for Goal I (10 = &k =
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2) and Goal II (k = 3), respectively. No corresponding tables exist for Goal II
(k = 4). )
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