ASYMPTOTIC DISTRIBUTION OF SERIAL STATISTICS AND
APPLICATIONS TO PROBLEMS OF NONPARAMETRIC
TESTS OF HYPOTHESES

By M. N. Guosn

University of Calcutta

Summary. The asymptotic distribution of a class of statistics, which has
been called serial statistics, has been obtained, for permutations of the observed
sample values. Specific instances of the use of such statistics, for the test of
randomness of a sequence, have been given and the large sample power functions
have been considered, when the alternative is a Markov process.

1. Introduction. In testing for the randomness of a lkinearly ordered set of
observations x; - -+ &, (such as time series), a plausible alternative hypothesis
is frequently the existence of either cyclical or other periodic fluctuations, with
varying amplitudes, including time series of the moving average or the auto-
regressive type as investigated by Yule [16] and Kendall [5]. The whole class of
such alternatives may be characterised by the absence of a strong monotonic
trend and predominance of periodicity in the general sense.

Yule {16] and Kendall [5] have considered the general autoregressive model,

(1.1) i = f@iy -+ Tick) + €

where ¢;’s are independent random variables and x; --- x, is the observed
series. Especially the linear autoregressive model has been successfully applied
to various situations by Yule [16], Kendall [5], Walker [15], and others. The
theoretical model in such cases is determined by a law of succession, involving
at most k successive observations. Thus the relation between neighbouring
observations is more important for the test of the hypothesis of randomness
against such alternatives.

Where the model does not specify the distributions of the random elements,
the test of significance must be nonparametric. The nonparametric serial
correlation test based upon the permutations of the observations z; -+ ,,
suggested by Wald and Wolfowitz [13] as a test for randomness, seems to be
suitable in such cases. In the case where a strong and persistent trend exists,
for example in growth processes, the relations of any observation with all other
observations in the series are obviously important. A test of randomness sug-
gested by H. B. Mann [9] seems to be better suited in such cases. An investi-
gation carried out by G. E. Noether [11] strengthens this conclusion, although
it is difficult to decide between the two types of tests when neither the monotonic
trend nor the periodic element is predominant.

A general class of nonsymmetric statistics S(zy - -+ ,) of the serial correla-
tion type will be considered in this paper. These depend upon the relation between
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neighbouring observations in the ordered sequence and will be called serial
statistics. Serial correlation, number of runs up and down (Wolfowitz [12]),
etc., are instances of serial statistics. In fact most of the existing nonparametric
tests of randomness are either of the serial statistic type or Hoeffding’s [4]
U-statistic type. ‘

A serial statistic S(z; - - - x,) is defined as

1 n
(1.2) Sy -+ x0) = - Zlfi(ﬂvi Ce Tigpe1)
where fi(x; - -+ %iyx—1) are functions of variables z;, Zit1, *+* , Tiys— only. In

the nonparametric method, the conditional distribution of a nonsymmetric
statistic for fixed sample values, when only permutations of the sample values
are considered, is used. Such a distribution we have called a nonparametric
distribution. ’

The nonparametric distribution of a nonsymmetric statistic, such as
S(xy -+ ), depends upon the unordered sample values {r;} and is thus a
random distribution function. It has been shown that the nonparametric
distribution of S(z; - x,) converges stochastically to a normal distribution
when the absolute moments of the functions fi(z; - - - zx) are uniformly bounded
for all values of 7 and a certain relation (B;) holds between the product-moments,
for large samples.

This result has been generalised to the case of p serial statistics Sy(z; - -+ z,) - - -
Sp(2y -+ x,). It is shown that their joint distribution converges stochastically
to the multivariate normal distribution. Under the hypothesis H;, for which
the variables x; --- x, form a Markov process of ‘order p, a stochastically
asymptotic expression for the power function has been obtained, on the basis
of which a nonparametric test for randomness may be chosen, which for large
samples discriminates against this type of alternatives. Thus we get a non-
parametric test of randomness which has asymptotically optimum properties
for alternatives H,. As pointed out by Wolfowitz [2], no test of randomness
discriminates against all alternatives and thus any such test has to be designed
to discriminate strongly against a class of alternatives.

In the case of a stationary Gaussian process, in which the variables are
circularly ordered, the method of this paper gives a lower limit for the power of
the uniformly most powerful test. The existence of an uniformly most powerful
test has been proved by Lehmann and Stein [7] for the nonparametric case and
by Lehmann [6] and T. W. Anderson [1] for the parametric case.

Notations and terminology. Throughout this paper we consider stochastic
convergence of random variables and random distribution functions. These
concepts are explained below. ,

DerinitioN. Two sequences of random variables, {x,} and {y.}, will be
called asymptotically stochastically equal, denoted by =z, =,%., when
Pri{|z, — y.| > ¢} > 0asn— « for any given ¢ > 0.

" If in particular y, = y, independent of n, then we have the usual notion of
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convergence in probability and we write Plim z, = y, a notation due to Wald
and Mann. This also includes the case when y is a constant.

We also consider stochastic order relations.

DEeriniTION. For a sequence of random variables {z.}:

(i) . = Op(n®) implies Pr {n * | 2. | > A} < € holds for 4 > A. and
n > n., for given e, )

(i) z. = 0,(n%) implies Pr {n™* | z, | > 8} < ¢ holds for n > n(e, 8), for
given ¢ and 4. ‘

(iii) For a set of random variables ; - - - & We write {21 * -+ Zm} = 0,(n%),
when

Prin®|m|<é - n%|zn]| <8} >1—c¢ forn > n(e,d)

where m may depend upon n, say m = ¢(n).

We now introduce the concept of stochastic asymptote, which is very useful
for the purpose of this paper. )

DzriniTION. Two sequences of random variables, {z.} and {y.}, will be
called stochastically asymptotic, denoted by z. =y, if Plim z,/y, = 1. Since
Plim z,/y. = 1 also implies Plim y,/z, = 1, the stochastic asymptotic relation-
ship is symmetric.

The following results will be found to be useful.

Lemma C.

(@) %n =sn and  1/yn = 0p(1) implies zn pyn
(il) Tn XplYn and ¢n zz.v‘h(/ﬂ implies x"/ b D’—pyn/\l/n

(1.3)
(i) Zn 2pYn tmplies x5, >~y for any positive r
(iv) Tn =pYn and bn =p¥n implies Tn + dn =pYn + ¥n .
Proor. (i), (iii) and (iv) are obvious. From 1 /y,. = 0,(1),
Pr{l/y. > A} <19 forn > mo .
Let now x, = yYn + e ; then from z, =,yn,
Pr{e. > ¢/A} <9 forn > n > ng.
Thus
Pr{|z./ys — 1| < €} > 1 — 29, when n > n;.

Hence (i) follows.

We consider now a sequence of random distribution functions.

DerINITION. A sequence of random distribution functions {F.(z, o)},
where the ay’s are random variables defined in a probability space, will be
considered to converge stochastically to a distribution function F(z), if, for
n > no(e, 8),

Pr{| Fa(z,an) — F(x) | > €} <6

at all points of continuity of F(z). We denote this as Plim F.(z) = F(z).
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A relevant theorem for the stochastic convergence of a sequence of distribution
functions, from the stochastic convergence of the set of all moments, has been
proved by Ghosh [3] and will be used. An extension of this result to p-dimensional
Euclidean spaces is possible by the same method and we shall make use of this,
without giving a formal proof. Fof a test of significance based on nonparametric
distribution, the power function is itself a random function. The usual notions
of consistency, asymptotically most powerful test, etc., have to be defined in
the sense of stochastic convergence. We shall consider these notions for the case
of nonparametric distributions.

Let {C.} be a sequence of critical regions, corresponding to a test 7' of the
hypothesis Ho in the universe of permutations of sample values, T'n(z; «+ + @n),
and let Pg{C, | 1 --- x,} denote the conditional probability of C. in
T'n(x: « - - x,) under the hypothesis H.

DeriniTION. The test 7' will be called stochastmally eonsistent against an
alternative H; when both

Plim Py {Cn | 21 -+ 2.} = a(constant) Plim Py, {Crn |21 -+ - 2.} = 1.

DeriniTioN. If for a class of alternative hypothesis H,(w lying in a space @)
there exists a function F(C., ), depending only on permutations, but not on
actual values of x; - - - x,, such that

PlimPaw{C,.le---a:,,}/F(C,,,w)= 1 wCQ,
then F(C, , ») will be called a stochastically asymptotic power function of the
test, for w C £, and denoted by

Pg{Cu| a1+ xa) =2, F(Ca\ w).

Obviously, for a class of tests Th, T2, Ts, --- which possess stochastically
asymptotic power functions Fi, F,, F;, ... the notion of most powerful,
uniformly most powerful, etc., tests corresponds stochastically to similar notions
for the functions F,, F., F3, --- which are independent of the unordered

sample.

2. Distribution of serial statistic. Let 2 - - - z. be a sequence of independent
random variables with absolutely continuous distribution function F(x) and
{fu(x1 - - - x:)} be a sequence of functions of z; - - - x; such that

(4) L e a1 dF@) - R < C

holds uniformly for ¢ = 1,2,3, --- ,and for s = 1, 2, 3, - - - We shall consider
the distribution of

@n Sy -+ ) = %g‘lft(xt o Ty

where we put .4; = z, for j > 0.
Now S(x;, -+ x,) is a nonsymmetric statistic of 2; - -+ x, , which assumes
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the values S; --- Sy for N = n! permutations of z; - -+ z, . For given values
of z; -+ ., we shall consider the repartition function (Von Mises [8]) of the
variable S(z; --- %,) in the universe of permutations I',(z; -+ z,). On the
hypothesis H, that the variables 2, - -+ z, are independently distributed with
the absolutely continuous distribution function F(z), the conditional probability
of each point of T'n(xy <+ + .) exists and is equal to 1/N. The repartition of
the variable S(x; - - - ) in T'y(zy - - - x,) thus gives the conditional distribution
of S(xy --- z) in Tu(zy, + -+ z,) under the hypothesis H,. The conditional
distribution of a nonsymmetric statistic S(zx; « -+« ,) in Tn(z1 -+ z,) Will also
be called its nonparametric distribution, and the distribution function of
S(xy -+ - x,) in Tulxy - -+ x,) will be denoted by G.(S, z; - - - x.). The expecta-
tion of the nonsymmetric statistic ¢(z; - - - z.) for the conditional distribution
in Tn(21 - - - z.) under the hypothesis H, is given by

B8 - 2] = 22@ e 3

n!
(2.2)
= [ e a) dGuSm e @)
Tp(zyesezy)
where Y, denotes summation for permutations of x -:- x,. Thus
E'{¢(xy --- xn)} is a symmetric function of x; -+ z.. In particular when

¢(xy - -+ z,) is a function of k variables only, we shall write

o . — Zp‘t’(xil e xik)
(2.3) E'{¢@r «+ xk)}—n(n_l)...(n_k+1)‘
Here the symbol Y, stands for summation for all sets of different suffixes
(%, ++- 1) from 1 to n. When there is no ambiguity we shall merely write
> pd(xy -+ x) instead of 3, p(xs, -+ T4).
We shall denote by E{¢(z; - - - x,)} the expectation of the function ¢(z; - - - x.),
for the distribution of ¢(z; - - - 2,) in the sample space R. . Let

(2{1) My = E'{S8@y - zn)} —IZZ_p_ft(_Zl[_ki____

where n®*! denotes n(n — 1) --- (n — k + 1). Then M, is the conditional ex-
pectation of S(x; - -+ x,) in Ty - -+ za). Let also

(2.5) : M, = E'{[S@1, --- za) — Mi]'} r=234,-

be the rth moment of S(z; - - - z.), for the conditional distribution in T', . We
shall show that when condition (A) and a further condition (B;), to be stated
later, hold

M, 0 when r is odd,
(2.6) Plim >5p = 18 .
r1/2"%(r/2)! when r is even,

2
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so that the nonparametric distribution of
2.7 (8@« xa) — M1}/ M,

converges stochastically to the normal distribution with mean zero and variance
unity, from a theorem of Ghosh [3]. Let

1 n
(2.8) T(xl s xn) = 7-; tzl g;(x; e $t+k—l)

where
ge(xs - - Togr-1) = felwe -+ xt+k——1) - M,
so that E'{T(x; - - - z,)} = 0. We have

(29) M, = E/{[T(xl c xn)] = = E’ {[Z gl(xl cee xt+k—l)-Jr}-

In the expansion of [Y i gi(x: -+ @ets—)]” We get products

Hz':-l lge(ae - -+ $t+lc——l)]m-

Since D p; = r < n for sufficiently large n at most r out of p; --- p, are dif-
ferent from zero. The g-factors g:(x; - - Z:4x—1) With nonzero indices may be
divided into subsets, such that in each subset, a g-factor g.(z; - -+ %:4+—1) has
at least one common z-suffix with another g-factor of the same subset but no
common z-suffix with g-factors belonging to a different subset. We shall call
these subsets P-sets.

Generally, if[ i1 [go,(2i, - -+ 24)]”* be any product of g-factors with nonzero
indices, we can divide them into subsets with the above property and these
again we call P-sets. The grouping of g-factors into P-sets is obviously invariant
for permutations of z; - - - x, . The essential character of a P-set depends upon
the relations between nonzero values a; - - - a; of the p’s and the z-suffixes of
the g-factors, which are invariant for permutations of (21 - -+ ).

Two P-sets will be considered to have the same structure if one can be derived
from the other by a permutation of z; --- z,, the suffixes ¢1 --- g1 of
ge;(xj, ++- x;) being ignored. Thus the structure of a P-set is invariant for
permutations of ; - -+ .. The number of different g-factors in a P-set will be
called its length. A P-set of length one will be called a linear P-set. For given
indices a1 - -+ a;, the number of P-sets with different structures is obviously
bounded (iridependent of n), since P-sets of different structures may be obtained
from the product,

(g1 -+ Tl g (@rrr - - - 2)]™ - [ga(@avrsr - Tw)]™

by proper identification of the z-suffixes, that is, by replacing groups of variables
Xy * 0 T, by Ly ete.

We shall consider two special types of P-sets. A P-set is of type I when, by
a suitable permutation of (z; - - - .), it can be expressed as



224 M. N. GHOSH

l
‘ ot |Qt—Qt+1|<k
:t[sIl [gtu(xq: xq:+k—1)] {QI < Q2 < 0 <L Q.
All P-sets in the expansion of M, (2.9) are of type I.
A P-set is of type II when, by a suitable permutation of (z; - - - z.), it can
be expressed as ‘
Jar (@1 - -+ T)Gay (Toy -+ Ty

where ¢; = (¢, j £ k) and the other suffixes o1 - - - 0% are different from 1 to k.
A P-set of type II is also a P-set of type I whenj = 1 and7 = kand | ¢1 — ¢z |
<k

We may now write

(2.10) Mn = 1% Z,Cr(a, l) Zq:sE’ {g; [gq¢ (xqt et ‘xq¢+k—l)]at}

where I, + -+ 4+ ln = e. The summation ), is taken for all P-sets of type
q

I and given indices (o - -- @y) *** (Qutertlp_g+1 * *° Opyte-etl,) With different
structurespcorresponding to the terms in the expansion of [ gi(xe -+ * Zeqi1)] "
The summation Y’ is taken for all sets of values of a; - - ay4...41, SUCh
that a; + -+~ + ay4...s, = 7, and for different lengths of P-sets, with ap-
propriate coefficients C,(a, I) = Cr{a -+ @) *++ (Qyteeimortt *** Qyteeein)}s
which are equal to the number of ways of grouping r factors in (2.9) in sets
of (a1 L az,), ete.

Before proving the main theorem we shall establish a number of lemmas.

Lemma 1. Let 2, - - - 2, be real numbers. Then

A
Mo, —-—Iz1|+ +|zp|
(2.11) |zl 2p |{S 1 + |Z l)\+l + Izp I)‘+l

where A\ = N+ -+ F A, and N\; > 0.

Proor. Let | zx | be the largest of the numbers | 21 | -+ | 2, [, then by re-
placmg them by | 2 [ the product [ ] - |2 |, only increases. Thus
|zl : zz”l IZMI Zz-1|Z;

lzu" =1 l2u| =

|2t - dp | S 2
P |ZM |7\+1 _S_ lez‘ I)\+l ‘ZMI > 1.
fum

Hence
y:d
AP =1+ ; |2 M

LemMA II. Let
My, = E'{[fu(z -+ @)}
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Then
IE' {;[:_Il [gQi(xJ'.l t xj.k)]ai}

ng M3 + de ; MY Mag+ -+ + da ;M:“.,,, +1 rodd,

= , ,
’ ’
drya 21 Mig; + -+ + dorga El M, 7 even,
= j=

where the x:; belong to x1 - - - x. (the double suffix being used for convenience only),
and dy -+ day2 are independent of n and x1 * -+ T .

Proor. From Lemma I, fora; + -+ + a, = 7,
8

z; [ggs %+ 25,01 r even,
JB

=

JIBII [gq,(x,-,; coe zy ] .
1+ E [gq,'(xj.l o a:,,k)]'“ r odd.

Taking expectations E’ for both sides, the inequality holds for expected values
and

8
‘Zl El[gqi(ij e a:,-,;,)]' r even,
j=

=

l B {JI;II [gqi(xj-l e xi.k)]ai} ?
1+ ;E'[g“(xj'l coe ;I rodd

The result now follows immediately from

’

E,[gq,'(xj.l te xi.k)]r = )‘Z% (—1))\ TC)\MQQ,' Mr—)\.qi’

ete.
Lemma III. Let U = E'{¢(x1 - - - xx)} be a U-statistic of Hoeffding [4]. Then

we have Var (U) £ £k(8k — 1) Var [¢]/n where z; - - - x, are independent random
variables with the same distribution.
Proor.

Var (U) = E{[ZP (d’(xz; cee Ty — (’i))/n[kl]Z}
= ") LB - @i — Bl - @) — B1)

where >, represents summation for all different sets of 4; - -+ 4 and j1 - - - J,
and ¢ = El¢(z: --- z)]. The only nonzero terms in this expression are those
for which at least one of the j-suffixes is equal to a i-suffix. The number of such
terms is not greater than

(n[k])z - n[kl(n — k)[k]

gy m—k) - (n—2k+1)
< @' )Z{I_n(n‘—l) ...(n_lc—l-l)}
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< (n[k])2{1 - (1 S (1 oy 1)}

< ()2 {k + &+ +n. e . 1)} — ™y k(3k2—- -

Also
E{lp(xs, -+ x3) — Sllo(xs -+ x5 — ¢l} = Var [p(z -+ - m)]

for all sets 7; - - - 7 and j1 - - - ji . Hence the result.
Lemma IV. For any given 6 > 0,

(2'12) {M;,I y T M;m ’ M;.l » Tt M;-ﬂ » Tt M:.ﬂ} = op(na)'
Proor. From Lemma III,
Var [M,,, | < 2k@Bk — 1)n™" Var {[fi(x: - -+ zx)]"} £ 36Bk — 1)Ce/n.
Hence
Pr {| M., — E(M.t) | > n**} < 3k(3k — 1)-Ca/n'™*.
Again from assumption (A), | E(M5,.) | = C,, so that
Pr{M,.| <2 s=1---r;t=1---n}>1—3k@Bk— D[C:+ - Col/n’
for sufficiently large n. Hence the result.

In all that follows, whenever we consider a sum _;; in which a suffix ¢ + p
> n occurs, we shall take its value to be ¢ + p — n. The same interpretation
will hold for pairs 4 and j for which | ¢ — j | < k, which will be considered to
hold for values of ¢ and j so that ¢ — j(mod n) < k. We now obtain an asymptotic

expression for M, .
LEmMA V.

(213) an =p [Al - Ag - Aa]/n
. where

b= I'Z'I:<k E'{gi(wi - -+ Tipr) 9@ 00 Tisr-n) }
i—j

Az = Z E'{gi(xs -+ - ) 9i@ppr -+ Do)}

(2.14) |7 <k
1 n k , 1
a=L 35 Blatn @) o w)) = 5 2 L

N ij=1 a,f=1

n

Za.ﬂ = Zl E,{gi(xl M xk) gj(xdl ° ka)}
1,)=
where o5 = ala, B < k) that is the Bth suffix op s equal to o, where of course both
B and « are less than or equal to k, and other suffizes do not belong to 1,2, --- , k.
The summation is taken for all such values of a and B.
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Proor.
1
= ,,7 th(x, ce xi+lc—1)}2
1
== 2 Egiwi - s 955 0 i) }
n I'L—J|<k
+ ,72 | z': E'{gi(xy -+ zn) 9i(@rgr -+ z2) }
i—j
li_;>kE,{gi(xl co @) 95T -0 waw) }
_ f: Zp{gi(xl s Ty) gj(xk+1 oo To) )
= nlH
_ Zp{gi(xl e Ty) gj(xk+1 te Mk)}
17| <k nl2k
2.15) -
@15 = ‘?{2,’;{21 giws - @) 227 9i(e, <+ @)
i,j=
+ y Z g¢(x1 coe ) gi(@ag - x2k)}
"".7

_2[2:] {Z gilw -+ x) X Zp g g5« - - xzk)} .

Here Y. represents summation for sets of values of o7 - - - 0y, at least one of
these z-suffixes being common with an z-suffix of the first g-factor g.(zy - -+ ax).
The last term in the expression (2.15) is zero. In the summation

%,’Z, {Z gi(xy - ) 2" gitay - - x,.)}

when two or more of g1 - - - o1 are common with the suffixes 1 to %k, the number
of these terms is of order O(n**~*) and, considering the values of 7 and j in the
summation »_;;, the number of such terms is O(®™). Also from Lemmas II
and IV, all these terms are simultaneously of the order o,(n’). Thus the sum of
these terms is of order o,(n™**), while the denominator in nM; is ™", Thus
we consider, in the above summation, only those terms for which exactly one of

o1 - - - ox is equal to one of the suffixes 1, 2, - -+ | k; hence the result.
Lemma VI.
: 1
nMy =, = 25 Ef{filwi - 2o fil@s - @i}
N |i—j| <k
1
- 7‘;, I‘ZI {f (xl te xk)fi(xk+l ce xzk)}
=]
1 n k
— 5 4 Z E{fier -+ a0 fi(we, -+ 20)}
n® i,j=1 a,f=1
1 2
{‘“ Z E ft(xl s xk)]} = p2n.
n =
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where oy + - - oy, 18 a fized set of numbers different from 1 to k, except o5 = o, 8 = k)
as before.

Proor.

1 n
n ; E gs(xx oo ) gt+p(xp+l v Tpit) }

1 n
—_ E{/{;;l tnzlft(xl cee xk) f: p(xp-i-l oo xp-i-k)} — EI% = U]. -— M%
Here U, is a U-statistic and

var {-1‘ f_‘: fel@y e+~ Tx) ft+p(xp+l e xp+k)}
=<

_1 Zn;r E{f. S(xl - @) fi (1 -+ + xa) f s+p(xp+l tee ?/p-!:k) f t+p(xp+l tee xp+k)}'

From assumption (A), by the application of Schwarz’s inequality,
E{fu(my «+ - @) fil@r - -+ 22) foro(@pi1 +** Tpir) fean(Tpir *** Tpsr)}

is bounded and the bound depends on the constants C; only. Thus from Lemma
111,

E {% gfz(xx oo ap) f¢+p($p+1 o xﬁb)}

t’i E{fiz -+ 2) ferp(@pi1 ++* Tpin)}

Sll—‘

n 2
M3 =p{% tg Elfxy - - xk)]} =

Hence
1
= 2 E'giwi - visn-)gi(@i - Tive-)}
N |i—ji<k
= > Elfi(ms -+ @apnma) filwi -+ tan-n)] — 2k — 1)pi.
*n |i—j i<k
-~ E'{gi@y* - k) gi(@rsr - Tor) }
N |i-ji<k
=L 3 B o) o ww)) — @ — Dl
N |i-jI<k

Consider the U-statistic

{ Z filwy - - @) fil@ws, - x.;,,)}-

4,5=1
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Since Var {n™> > fi(ws -+ 1) fi(xs, *+* %q)} is bounded from assumption
(A), we have from Lemma III

Z_z;—ﬁ =p’;21—2 .‘,jial E{fiw - x");ff(x"l Tt x’k)} - {% ‘2::1 Elfz; -+ xk)]}2

Hence the result.
The condition (B;) may now be stated as

(By) lim inf gy, > 0.
This implies 1/nM; = 0,(1) and hence from Lemma C (1.3) we have
(2.16) nM, 'zp(l/n)[AI — A — As].

Reduction of linear P-sets. In the expansion of M, , from (2.10), all the terms
consist in P-sets of type I. For given values of the indices a1 « * + ayy4eeet1,, W€
may group together terms with different suffixes for the g-factors such that
there are m P-sets of type I and lengths I; --- I, and with given structures.
Such a sum is represented by

(2.17) :[.1 E' {}:—,11 lg4,(wq, I xqf+b—l)]a‘}-

Let ¢1 be the g-suffix of a linear P-set in (2.17). For fixed values w3 -+ , of
¢: -+ ¢», we consider the summation Y1, for ¢i, satisfying the above con-

q
ditions thatis | gy — = | > k(¢ = 2,3, .-+ s):

Zl Zp g [gQi(in te xq,’+k-l)]ai

q1

(2.18) .
= Zp I12 [gf,(x,,- T xﬂ'i+k-—1)]ai X Zl Z’ Jar(iy - -+ i)
J= q1
where Y.’ denotes summation for all (i; - - %), none of the suffixes belonging

tomi+j(E=2---87=0,1,---,k — 1). Thus

Zl Z’ gql(xil e x,-k) = qial z:‘p gql(xl v xk)

q1

(2.19) .
- qu E” glh(xﬂ e ka) - QZ? Zp"gql(xil T xik)'
1= 1
Here " denotes summation for z-suffixes o1 - -+ o at least one of which is

common with the suffixes 7; + j, and D, is the summation for all values of
a1

q1 such that | g1 — 7; | < k for some ¢ (z = 2 --- s) that is, ¢ is tied to one of
the g¢-suffixes m - -+ m, . Since

) DopGa(m - 1) =0,

=
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e 2 gy (i - x;,) is given by the last two sums of (2.19). By applying the
process of reduction to >y ., 1T5-ilge; (xg; - - - Zq;+4-1)]% We get summations

q
of two kinds. In the first kind of summation, e — 1 g-factors form P-sets of
type I asin (2.17) with the same structlires of P-sets and a g-factor g4, (%o, * - * Top),
where o1 - - - o; have at least one element common with the z-suffixes of ¢ — 1
other g-factors, and ¢; assumes all values from 1 to n. In this case the number
of P-sets is reduced by one. In the second kind of summation, e — 1 g-factors
form m — 1 P-sets of type I asin (2.17), with the same structures and a g-factor
9o, (s, -+ ;) such that ¢ is tied to a g-suffix of the m — 1 P-sets of type I.
These two kinds of summation correspond to summations ».r_, 2.” and

> e 2o of (2.19).

We may apply the reduction process again and by such successive reductions
we get the following type of summation. Let

(2.20) Mo, 1,,6,7) = T, T g [Go, (@11 - - 25001

The factors in (2.20) belong to three sets A, B and C and have p different
z-suffixes altogether. The e-B-y g-factors of A form ¢ P-sets of type I (ignoring
the other g-factors of B and C). The v g-factors of C are tied to the g-factors
of 4, such that v, g-factors are tied to g,, , v2 t0 g4, , etc., with D v; = v, but
have no common z-suffixes. The 8 g-factors of B have common z-suffixes with
other g-factors forming P-sets which always contain a g-factor of A or C. The
g-factors of 4, B and C are so related in the M-sets M (p, ¢, v, 8, v) that there
are v linear P-sets of A, unconnected with g-factors of B and with no g-factors

of C tied to them, which we call free linear P-sets. The summation Y is
q

taken for g-suffixes, so that the ¢-suffixes of A may assume any values between
1 and n, subject to the restriction that these correspond to ¢t P-sets of type I,
with given structures and given values of a;’s. The ¢-suffixes of the g-factors of
C assume all possible values consistent with their relation to the g-factors of A.
The ¢-suffixes of the g-factors of B may assume any value be between 1 and n.

The M-set M (p, t, v, 8, v) depends upon the structures of P-sets, which is the
same for all terms of M, and on the way in which the g-suffixes of C are tied to
the g-factors of A, which together determine the structural relations of an
M-set. The structural relations of an M-set may be of any kind, except that the
g-factors of A form ¢ P-sets of type I and there are v free linear P-sets. Since
the number of z-variables in any term of the M-set is at most p + k(8 + ),
the number of M-sets with different structural relations (including tied g-suf-
fixes) is bounded and independent of n. The process of reduction, outlined
above, may be applied to any M-set M(p, t, v, B, v), where we reduce a free
linear. P-set of A, given by the suffix ¢; (say). If the sum D1 2.p 9o, (&g * - -

1

Xy +1—1) 18 expressed as in (2.19), M (p, t, v, 8, v) can be expressed linearly in a
finite number of M-sets of the type
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(221) 1M(p—w8)t_170176+177)) M(p—(v).,t‘— 1,”2,/3,‘)’"" 1)7

where the suffixes o; - - - o1 have w, suffixes common with other g-factors of A
or C. Also
(2.22) MN=0v—w—1 and =9 — w, — 2

hold in this case. The minimum of v, corresponds to the case when all w, z-suffixes
are from different free linear P-sets. The minimum of »; corresponds to the case
when, moreover, the reduced P-set becomes a g-factor of C and is tied to another
linear P-set. We shall call a pair of g-factors, where one is tied to the other, a
Q-set, when they have no common z-suffix.
We have already defined in (2.17) and (2.20) the summation Y, , which is
q

a g-sum retaining the structural relations of the g-factors. We now consider
another kind of summation Y, , where the summation is taken for all possible
q

structural relations consistent with ¢, » and for given sets of indices (o1 - - - ay,),
etc., of the P-sets of A. We shall now prove the following lemma.
Lemma VII. When v is the number of linear P-sets and m the number of P-sets

of type 1,
1 : ajg m=—[(» —r
(2.23) o > E {I—Il [g0;(; -+ Taser]® = 0pn (G0 /21+5-r12)
q =

where the summation Y., has the same sense as in (2.10), and oy -+ o, are
q

constants such that Y, a; = r and [(v + 1)/2] is the integral part of (v + 1)/2.
Proor. We may write

SR {]Hl g0 (e, - - Ta; +k_1)]°'f} — M(po, m, 0,0, 0)
p =

n [Po]

where py is the number of different xz-suffixes. By successive application of the
reduction process to free linear P-sets we may express M (oo , m, v, 0, 0) linearly
as

(224) ]‘/I(POym) () 0: O)
=Z('—l)jM(Pﬂ'—wl_“\'_wj)m—j’vf’ﬁiy) (J=B+7)

where B of the reduced P-sets belong to B and v to C, and w; - - - @, represent
the number of z-suffixes reduced at different stages. Each term of
Mg — w0y — +++ — w;,m — j,v;,B,v) corresponds to different combinations
of the pg — w1 — -+ — w; z-suffixes from 1 to n and to variations of the g-suffixes
with proper restrictions. Thus from Lemma IV, for fixed values of the g-suffixes,
the sum of terms in the M-set is of the order o,(n** ™'~ “*%). Again the
number of such sums in the M-set is of the order O(n™™"), since the number of
ways in which the g-suffixes of 4 can be chosen is O(n™ ™), while the number
of ways in which the g-suffixes of. B can be chosen independently of the choice
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of g-suffixes of 4 is of the order O(n’), and the g-suffixes of C are tied to those
of A.

Thus M (pp — wy — -+ + — wj,m — J,95,8,7)is of the order o,(n 0“1~ " "¥i+tm=r+s)
If at the sth stage of reduction, a linear P-set is reduced to a g-factor of B, then
the corresponding w; > 0 and thus «

(2.25) w1+ wt o F w2 6.
Also from (2.22)
(2.26) ViZV—w— s —w;—J — Y.

The process of reduction may be continued until »; = 0. Then from (2.26)
wmtwt - Foititr20, 2j = v, Jjz [+ 1)/2]
otwt o Foit+yzB+y 2 [+ 1)/2].

Hence M(pp — w1 — « -+ — wj,m — j,v;, B,7) is of the order o,(n?0 ™ @ +D/21+?)
and
]. 4 a . m— [(V a
(227 —; Zl E' H [ge;(xq; - - - T 0 = 0,(n (D sls=i),
nr/2 7 jei
Since the number of P-sets with different structures is bounded, (2.23) follows
from (2.27).

It follows from above that we need consider only such M-sets for which w;
assumes only the values one and zero, since in all other cases m — [(v + 1)/2] <
r/2 and the sum of all these terms converges stochastically to zero, from what
has just been proved. These correspond to cases where a linear P-set is reduced
to a g-factor of B, which is connected with a free linear P-set of A by common
z-suffix forming a P-set of type II, or it is reduced to a g-factor of C, when it is
tied to a free linear set of A, forming a Q-set. We shall now prove the following
theorem.

TaeoREM I. Let 2, - -+ &, be a sequence of independent random variables with
the absolutely continuous distribution function F(zx), and let {fu(x1 - -+ z)} be a
sequence of functions of xy - - - xi such that the conditions (A) and (B,) hold. Then
the nonparametric distribution of the nonsymmetric statistic

(2.28) [}z tE:_‘{ fe@e,  Topp1) — Ml] / VM,

converges stochastically to the normal distribution with mean zero and variance
unaty. .
Proor. From Lemma VII, in the expression for M, (2.10) the term

1 - «
o ;: E {E [gqi(xqj ce xqi+k—1)] i} Z aj =1
is of order 0,(n™ 1 /A="2*%) when the number of P-sets is m, of which v are

linear. Now
' 2m —v) +v=r or m—v/2 < r/2
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where equality holds when and only when all nonlinear P-sets are of length
two. Thus m — [(v + 1)/2] < r/2 when r is odd and in this case, from (B)),

(2.29) Plim M,/M3* = o.

When r is even, we need consider only terms with 2« linear P-sets and r/2 — u
P-sets of length two, u assuming all values from 0 to r/2. Let v = 2u. Then,
considering highest order terms in M (p, m, 2u, 0, 0), we get two kinds of M-sets
after the first stage of reduction, for example, M(p — 1, m — 1, 2(u — 1), 1, 0),
and M(p,m — 1,2(u — 1), 0, 1), both of which have negative signs and contain
2(u — 1) free (untied) linear P-sets. In M (o — 1, m — 1, 2(u — 1) 1, 0), there
is one P-set of length two and type II, corresponding to each way of combination
of a linear P-set given by ¢ (say), with any other linear P-set. In
M(p, m — 1, 2(u — 1), 0, 1) there is a Q-set corresponding to each way of tying
up a linear P-set with another one.

Proceeding in this manner, we get, after the uth stage, a sum of M-sets with
the coefficient (—1)*, for which there are 8 P-sets of length two and type II,
one g-factor of such a P-set belonging to B and the other to A, and v tied pairs
of linear P-sets forming Q-sets of length two. These 8 P-sets of type II and
v Q-sets are derived in all possible manners of grouping the 2u linear P-sets.
Thus we may write, considering highest order terms in # only, for a = ¢ — 2u
and b = ¢ — 2u + B,

7/2 Z E, {H gq;(x‘I1 e :c‘Ii+k—1)]ai}
1 - s
= plei R ; 2 5‘3:8 {:I=Il [90,(xg; -+ Tgprn-)]*f

(2.30) 8
X H (—l)gs;(xs.-m ce xfi(k))gqi+a(xqi+a te xq;+u+k—1)

v
X III ("1)95’.'(:”&’;(1) s mi'i(k))g‘1i+b(x9o'+b T xq.‘+b+k—-l)}

where the g-suffixes ¢; belong to A and the £; belong to B and the ¢; to C. Since
B8 + v = 2u and po is reduced to py — B, the summation Z, is taken for dif-

q
ferent structural relations of the g-factors such that the x-suffixes £(1) ---
£:(k), £:(1) -+ £u(k) are all different for allz, j (1 =7 =< 8,1 =5 < v) and
different from the z-suffixes of A except that for sets of type II,

Et(x) = (e—2u+i + Yy — 1

holds for just one pairs of values of x and y between 1 and k, for each term in
the summation. Also 8 and v have all possible values satisfying 8 4+ v = w.
We may thus write, considering highest order in terms in # only,
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T Z E {H [ga,(za; - - T ,.H._,)]“f}
SRCDICYT) o0 38 ) AR
{Z Z D0 Giy e 7a) gil@oy ¢+ xﬂ)}ﬁ

el 4,je=1

X {Zp 2 gilma e x) gi(@agr oo x”)}‘/
|i—7 1<k

where o1 - - - o5 have just one element common with 1, 2, - -+ k and where Cy,s
is the number of ways in which 2u linear P-sets can be divided into two groups
of 28 and 2v g-factors, forming P-sets of type II and Q-sets, respectively. Thus

@u)!  (28)! @n! _  (2u)!
@)1 22@)! 27(v)! P B

(2.31)

(2.32) Cup =
We thus have

) . 1 ()
7 Z E {H [905(@ay -+ + Tagen—)] '} ‘—‘P;ﬁézm-%—))g(,y)g

(2.33) —2u
DI i { I—]; [ga;(xg; -+ ~73q1+k—1)]a’} X [=Aql X [—As]”
q J=
where g, *** gq._,. denote the g-factors of nonlinear P-sets of type I.
The nonlinear P-sets are of type I and are obtained from every manner of
grouping r — 2u factors in [ gi(x: - - - ®sx1)]” into pairs. Thus from Lemma

VII, considering highest order terms only, we have

,/2 Z E' {H lgq;(zq; -+ xq,+h-1)]ai}

(2u) 1 , (rl2)—u
TP R(BY) (v )28+ Z E H Goi(ay + * Tapramt) Gor {(Tary +* * Tt 1)

X [=Ad’ X [—Aq] where |g¢; — ;]| <k
(2 )' ’ r[2)—u
= ﬁ'_/;_(ﬁ'—;("ﬁ)—% (2 lzz:fldc gi(xi -+ Tign—) gixi - - Tipe-n)} P
X [—Adf X [—Aq]"
_ 1 (2u)!
Parl2 (B1)(v1)2

neglecting terms of lower order in n which tend stochastically to zero.

We now find the coefficient C,{(1), (1), ---, (1, 1), ---, (1, 1)} with 2u
linear P-sets. These 2u factors can be chosen from r factors in "Ca, ways, and
the remaining r — 2u factors can be grouped into pairs corresponding to P-sets

(2.34)

(A7 [— A [— A",
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of length two and type Iin (r — 2u)!/[(r/2) — u]!2"’®™ ways. The number
of terms of the type (2.34) in M, is

r! (r — 2u)! _ r!
2u) !(r — 2u)! [(r/2) -4 12G—u — Qu)l[(r/2) — ]2’

Thus
WM, =, 2 T & [0 [~ A [ AT
TP 52 By l(r/2) — w2t ? s
> _ 1 r! r/2
(2~3O) = W W/Z)' (Al — Ay — As)
1 r! ,
ﬁpﬁm)—! (A — Ay — A)"?
from assumption (B;). Hence from (2.16) and Lemma C (1.3),
(2.36) Plim M,/M3? = »1/2(r/2)\.

Theorem I follows from (2.29), (2.36) and the theorem on stochastic convergence
of distribution functions [3].

3. Joint distribution of two or more serial statistics. We shall now generalise
Theorem I to two sets of functions {f{" (2, - - - z:)} and {f: Py - -+ x1)} satisfy-
ing condition (A). Let

FO =1 Zf“)(xz v meen,  FP = ! Zfﬁ”(:m L),
(31) N i=1 n =1

M, = B{FY — FOVIFS — FOT
where E'(F") = FP and E'(F?) = F'?. When condition (By) is satisfied by
the functions {f{°} and {f{®}, and (B:), to be stated later, is satisfied, the
limiting form of the joint nonparametric distribution of (F%’ — FP)/N/M,, and
(FP — FP)/N/M,,, for permutations of z; --+ &, is a bivariate normal
distribution with means zero, variances unity, and correlation coefficient p
(defined in B.). Let

32) Gu= (1/n)2gi (@i -+ vipsr) and Ho = (1/n) 2k (@i -+ Tienn),
where

gilwi -+ Tipimr) = fO@i - @) = F,

hi@s + - Tigp—1) = fi'”(xi ces Tppre1) — I’m

so that E'(G,) = 0 and E'(H,) = 0 and M,,, = E'{G,H;} forr,s = 2,3,4, ---

In the expression for M, , we get products of g-factors and h-factors. As in Section
2, we define P-sets consisting of g-factors and h-factors connected by common
z-suffixes. The P-sets consisting of g-factors only will be called P(g)-sets and
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those containing both g-factors and h-factors will be called P(g, h)-sets or
mixed P-sets.

As in Section 2, we have P-sets of type I and II. A P-set is of type I when,
by a permutation of (z; - -+ x,), it can be written as

.

71-11 [gqi (ij e xqi+k—l)]aj[hqj(xq,‘ te xqi.q.k—l)]alj

where | ¢j—¢;4, | < k holds (either «; or a;, may be zero but not both).
All P-sets in the expansion of M, , are obviously of type I.

A mixed P-set is of type II when, by a permutation of #; -+« . , it can be
expressed as gq, (x1 « -+ Tp)hey (e, -+ o), Where o; = 4 for 4, j = k and the
other suffixes o1 - - - o} are different from 1 to k.

The relations of the g and & factors and the z-suffixes of a P-set which are

invariant for permutations of z; - - - 2, will be called its structure. Two P-sets
will be considered to have identical structure if one can be derived from the
other by a permutation of z; - -+ ., both the g-suffixes and the distinction

between g-factors and h-factors being ignored.
We may now write,

n1'+8

(3.3) M,, = ! Z,Cr,s(a, ) Zs £ {111 [gq;(xqi T xqj+k—-1)]ai
.9/ 9=

€2

X Ill [hq;'(xq;' e xq}+k-—1)]a,j} ’

=

where Iy + -+ + lw = e and I + -+ + In = e;. The summation ), is

aq
taken for all P(g, h)-sets of type I with indices (o -+ ai , @i ==+ ai]) *--
(Ot tlmog bl _**° Olperedln s Qliboeeblasg bl " @it where a; =
r, Doar = 8, >l = e, and >l = ey. The summation Y/ is taken for all
systems of values of ay - - - a,, and a1 - - - a.} satisfying Sa;=rand Yo =s
and ly, -+, ln, i, -+, bn, with appropriate coefficients
Crila, 1) = Crof(aa -+ ay, ar v oan) o (Qgeettpogb C oty goetit) },

corresponding to the number of ways of grouping r g-factors and s h-factors
into P-sets with given indices.

It is easy to. see that the Lemmas I to IV may easily be generalised to the
present case.

Considering products of g-factors only or of h-factors only, stochastic
asymptotic expressions for M2, and M, . are given by Lemma V. We now find
the asymptotic expression for M ; .

LemMma V*

(3.4) nM11 =p[A1,0n — Asgn — Aggnl/n
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where
Argpn = E'gi(@; -+ @ipe1) hi(w; -+ Tjge—) }
|i—il <k
— ’ . DR . LR
(3.5) Az g = li_Z”:dE {gt(ml ) ) h](-’lik+1 fvzk)}
k k n
Aogn = Z Zx.u,a.h — Z E E {gi(ml te :L'L) hj(xq cee :l:,k)}
zy=1 N zy=1 ij=1 n
where x, y in Y., assume all values from 1 to k and o, =  (x, y < k) and other
suffizes a1 - - - o1, are different from 1 to k.
Proor.

My, = ;t;E'{ [; gi(ws -+ Tigpv)] [; hi(w; -+ Tipe-1)]}

1 )
= 2 Egiw - g hi(zy oz}
n |i—7| <k

+ l Z E’{gi(ml ceeTp) hj(xk+1 s xzk)} .

n? |72k

E'{gi(ay - -+ x) hi(@ega - -+ 2 }

li—=ilzk

- Zn: Zp{gi(xl oo mp) hi(@pgr - Tw)

A

Zr{gi(xl ceeoay) hi(tpe -+ To) }
nia :

2,5=1

|i~7| <k

Since
Zl 220 hilweg -+ @) = 0,
o

the above expression can be written as

- ’;l(lza {; Zp gi($1 o xk) Z”h.‘i(xn e xak)
Y Saen e ) e e )

t |i—il <k
where D" denotes, as before, a sum for sets of values of o1 - - - o) at least one
of which belongs to 1 to k. As in Lemma V, considering highest order terms in
n, the result follows, since the sum of all other terms converges stochastically

to zero.
Lemma VI*

an,l =p M1,1
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where
1
M1 = = E Ef 5’1)(93»' c xi+k—1) f§‘2)(xj cee xj+k—1)}
N |i=7| <k
(3.6) Z B{fP@ -+ 20 £ @egr - -+ 2o}
T n 1i=7| <k
ZI Zl B f(l) (xl xk) f§’2)(xal et xak)} + kz[-‘l,o MOo,1,
z;-— z,9= .
where o1 -+ - o have just one element common with 1{o k, o, = y (x,y £ k), and

M0 = — ZE Ff@ - w0}, Mo, = EEE{fgz)(xl ez}

The proof of this lemma is analogous to that of Lemma VI and will be omitted.
We now have the condition

(3.7) (By) lim g1,/ 0 X poz = P

exists and is less than one in absolute value.
REepUCTION OF P-sETS. As in Section 2, we define the sum

M(p) t, v, B, 'Y) = ZP Z’l I;Il [gq,'(xi,l e xi,k)]ai
3.8) B

’

[2)
X IIl (hes @i g1 =+ - 25,2670
=

Here there are three sets of ¢ and h factors: e; + e2 — 8 — v ¢ or h factors of
A form ¢t P (g, h)-sets of type I, ignoring g or h factors of B or C;y g or h factors
of C are tied to g or h factors of A; and 8 ¢ or h factors of B have common
z-suffixes with other g or A factors forming P(g, h)-sets, which always contain a
g or h factor of A or C and such that there are v free linear P-sets. The sum-
mation is for g-suffixes so that the g-suffixes of the g or h factors of A may assume
any value between 1 and n, subject to the restriction that these correspond to
t P(g, h)-sets of type I with given structures and indices of P-sets, while the
g-suffixes of the g or h factors of C are tied to the g-suffixes of A and the g-suffixes
of B are free and may assume any value between 1 and n.

The structural relation between these factors must be such that there are v
linear P-sets among them which are not connected with the g or & factors of B
by common z-suffixes and have no g or h factors of C tied to them, and which
we call free linear P-sets.

We may now apply the reduction process described in Section 2 to free linear
sets in a M-set. We get M -sets of type

B9 M@p—w,t—1,0,8+1,7, Mp=—we,t—10v,8y+1),

wherew, =21, n=2v — o, — 1, ws = 0,and vy = v — ws — 2. Also it may be
shown that, retaining terms of highest order in n, we need consider only such
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M-sets for which either w, assumes the value one, corresponding to the case
where the free linear P-set is reduced to a g or h factor of B and is connected
with another untied (free) linear P-set forming a P-set of type II, or w; assumes
the value zero when the free linear P-set is reduced to a g or & factor of C and
is tied to a free linear P-set forming a Q-set.

Now in the expression of M, , all the terms consist of P-sets of type I. For
given values of the indices a; -+ a., and a1 -+ as,, we group together all
terms with different g-suffixes, so that there are m P(g, h)-sets of type I with
any structures, but with indices

’ ’,

(al Tt , 01t a;l)
cee " / e ay ‘)
a;x+...+zm__!+1 QY eeetly, Q) el 1+1 QL)oo tly,)e

Such a sum is represented as

[

o1 2

(3-10) %s i {:I=Il [gqj(xq,’ s xqi+k—l)]ai H [hq;(xq; te xq;~+k—-1)]a;'} .

Proceeding exactly as in Section 2 and from (3.9), we can prove

LemMa VII*. Let m be the total number of P-sets and v linear P-sets in the
expression (3.10). Then the sum (3.10) is of the order o, (n™ 102+

We shall now prove the following theorem.

Tuvorem II. Let {f{’(xy -+ z)} and (FP (@ -+ ax)}, for i =1,2,3, -+,
be two sequences of functions satisfying the conditions (A), (B:) and (B;). Then
the joint nonparametric distribution of

FD — FO)/N Moy and (FD — F)/N/ My

converges stochastically to the bivariate normal distribution with means zero, variances
unity, and correlation coefficient p given by (3.7). ‘

Proor. In the expression for M, , we get sums of the type (3.10) with coef-
ficients 1/7"*°. If in any such sum (3.10) there are m’ P-sets of which »' are
linear, then

2m' — )+ =r+s or m' — /2 £ (r + 5)/2.

where equality holds only when all the nonlinear P(g, k)-sets are of length two.
Thus m’ — [0 + 1)/2] < (r + s)/2 when r + s is odd. When r + s is even,
we need consider sums (3.10) with 2’ linear P-sets and (r + s)/2 — u’ P(g, h)
sets of length two. These nonlinear P(g, h)-sets are of type I and are obtained
from every manner of grouping r + s — 2u’ factors in

[Zg{(:ci o BT 20k (@i igr)]

into pairs. Also by the process of reduction described before, we get a P-set of
type II for each way combining a g or h factor of B with another linear P-set,
while we get a @-set for each way of tying up a g or & factor of C with another
linear P-set.
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After complete reduction of free linear P-sets in an expression of the form
(3.10), with £ P(g)-sets and Q(g)-sets of length two, ¢ P(h)-sets and Q(h)-sets of
length two, and 5 mixed P-sets of length two, we get, exactly in the same manner
as in Section 2, terms like

[Asol [AL]**[Ar,0 4] [ = A 0"

(3.11)
[— Aol [— Az g 1P — As ][ — As ] [ — As 0 1™,
(312) w3 + w2 + w3 = (1' + 8)/2 -_ u’,
Bi+Be+B=8 mtrtr=1 w=8+y
(3.13) w1+ B+ 7 =§ we+ B2+ ve = ¢,

wy + B3+ vz =, 26+ =, 2+ =s

The A1y, Asy, Asp and Ayn, Azp, Az, are given b3‘7 (2.14) for functions of
" and f{?, respectively, while Ay, , Asgs, and Ag, . are given by (3.5).

A term like (3.11) occurs in the reduced form of M, , for each way of pairing
r + s factors in

[20 g:@s, -+ B[ 20 Balos, - -+ wiga)]”

in appropriate manner. Thus the number of terms (3.11) in the reduced form of
M., , is given by

(3.14) K(r,s, w1, we, ws;B1,B2,B55%,7%,7) -

This is the number of ways of choosing 2¢ factors from r g-factors and 2¢ factors
from s h-factors to form: w; P(g)-sets, we P(h)-sets, and w; P(g, h)-sets of type
I; 81 P(g)-sets, B P(h)-sets, and B; P(g, h)-sets of type II; and vy, Q-sets of
g-factors, v, Q-sets of h-factors, and v; @-sets of mixed type. Taking the sum of
all values of wi, ws, w3, B1, B2, B3, 71, v2, v3, satisfying (3.12) and (3.13) we
have, from assumptions (By), (B) and Lemma VI*.

r+s 1
515 My = 220, 8 51, 8) X (A1 — Ao — Bag)"

X (Arn — Ao — As )’ X (1o — Asgn — Asgn)”
{Bp ; L(r, s, & n, O)[Ma0"[M, (Mo o r + s even,
7

=,0 r 4+ s odd.

Where L(r, s, & n, ¢) is the number of ways in which: 2¢ factors can be selected
from r g-factors; 2¢ factors can be selected from s h-factors; and ¢ pairs of
g-factors, ¢ pairs of h-factors, and % mixed pairs of g and h factors may be
formed. Thus
r! s! @ !
L = . Bl A St U
G LOSE) -GG @G - Fa 6"

= 7l sl/E! n! £128F5,
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From (3.15), (38.7), (1.3), and (B.)

rls! r— s —t
(3.17) M,., {—"1’22((#.)/2) 1 P /< D) )”( ) >!’r-l—seven,

[M 2,0} [M,5]* l=p0 r + s odd,

where ¢ assumes even values only when r and s are even, otherwise assuming
odd values only.

Obviously the right-hand side of (3.17) is the coefficient of ziz/r!s! in the
expansion of

(3.18) exp {1(e1 + 2p2120 + 23)}
which is the moment-generating function of the distribution
1/20v/ ({1 — o8 exp {—(1/2(1 — p"))(@" = 2pzy + 3)}.

Thus the result follows from an extension of Ghosh’s theorem [3] to two di-
mensions.
It is possible to extend these results to the case of sequences of functions,

(3.19) P2} - @ @)
satisfying conditions (A) and (B,) and (B,) stated below. Let
P =:;Zf“)(xx"'xi+k—1) t=1,2--,p
=1
(3.20)

PO = B
M5 = E'{[F — FOI)

G = BP — PYOIR — P,

Since the functions {f$”(x; - -+ i)} satisfy the condition (By),

(3.21) aM§? >4 and lim inf % > 0,
for all ¢. Let

(3.22) u? = E(FP).

It can be shown, as in Lemma VI, that when (B,) holds,
(3.23) AP o, ufi

where "

Z E{f (@ -+ Bogno) F52 (@5 -+ - Ti40))

1
n i
(3.24) :}z Z ff")(xl - ) f;tZ)(xk+1 o ao) )

i Z E fft‘)(xx - T) fa('tz)(xn ce xak)}

4,i=1 a,f=

2 ¢ ¢
RN
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whereo; - - - o1 have just one element common with 1 --- kand o = a (o, 8 < k).
We shall assume condition (B,) that the matrix

Lim g SN D u t#J
(3.25) (B,) a; =1""¢
1 i1=7
exists and is a nonsingular correlation matrix. We may then state

TaroreMm III. Let {f°(xy -+ @)}, ¢ =1 --- p) be sequences of functions
satisfying conditions (A), (B1) and (By). Then the joint nonparametric distribution
of

(FD — FO)YNMP - (FP — FP) /N MP

converges stochastically to the multivariate normal dzstmbutzon with means zero
and correlation matriz (a;;) given by (3.25).

4. Randomised distribution of serial statistics and power function. When the
variables z; - - - z, are independently and identically distributed, the conditional
distribution in the universe of permutations I'z(x; - -+ .) is uniform. When,
however, the variables are correlated or have different distributions, the con-
ditional distribution in I'y(x; - -+ ,) is not in general uniform. For any non-
symmetric statistic 7'(z; - - - x,) which assumes the values

(41) Tl,Tz,“',TN N = n!
for different points of I'»(z1 - - - z,), let the conditional probabilities associated
with these values be m; -+ my (2, m; = 1). By a randomisation (random

permutation) of the sample z; - - - . , we can make the probabilities of 7y - - - T'y
all equal to 1/N, whatever be the alternative hypothesis. The repartition
(Von Mises [8]) of T also gives the probability distribution of 7', when the
probabilities of Ty - -+ Ty are equal, that is for a randomised sample. It will be
called the randomised distribution function of the nonsymmetric statistic
T(zy - -+ x,). When the variables x; - -+ x, form a Markov process of order p
(stationary or not), we shall find the stochastic limiting form of the randomised
distribution of a nonsymmetric statistic

(42) S an) = L3 ez

where the functlons {fi(x1 - -+ xx)} satisfy the condition

(A") [ [t o w1 ahuates - ) <o

for all systems of values of #; - - - %, and for all ¢ and s, Fy,...; (@ - -+ 24,) being
the joint distribution function of z;, - -+ 2 .

_ For the randomised distribution, the expected value E'(S) of the nonsymmetric
funection S is given by
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(4.3) M, = E'(S) = 1 Z prt(xl )

n =t Tl
and the moments M, are given by
(4.4) M, =E'{(S — M,)"} r=234,---

Except for Lemmas III and VI, all the results derived in Section 2, that is,
Lemmas V, VII, and Theorem I, may be applied to randomised distributions.
We shall prove Lemmas III(a) and VI(a), generalising IIT and VI.

Lemma III(a). Let U = E'{¢(xy --- ai)}. Then for a Markov process of
order p, we have, when (A’) holds,

(4.5) Var (U) < kex/n

where k s a constant free Jrom n and the function ¢(z;, -« - x4,), and c; is the upper
bound of the second moment of ¢(x;, - - - x3,).
Proor.

Var (U) = E{[ZP[¢(xtl' : 'xik) - aix"-ik]/n[klf}
= (nlkl)—2Z;E{[¢(x,~l s Ty) — baeealle(@n, o 2h) — Sieqll

where ¢;,...;, = Elp(xi, - - - 4,)] and D, is a summation for all systems 4 - - - 45
and jl e jk . )
We need only consider such terms in the summation j; --- j; for which at

least one lies in the ranges (&1 — p, %1 + p) -+ (4% — p, % + p). The number
of terms satisfying this condition is O(n*™"). Again

Ell¢(iy -+ 24) — Gieealld(@sy -+ 25) — by i}

S VVar [¢(zy - - zi)]Var [p(zy, - ;)] < e
since, from assumption (A’), the second moment of ¢(x,, --- x;) is bounded
by ¢ ; hence the result.

From Lemma III(a), proceeding exactly as in Section 2, we have Lemma,

VIi(a).
Lemma VI(a).

M, = l E Ep E{fz(ﬁ'o T $i+k—1) fj(xj s x,-.,_k_l)}

n li—j|<k n["‘f‘li"‘i”
_1 > 20 B{filwey -+ wa) [i®ay, - i)
n 1i57\<k nl2kl
(46) —_ Z ZP ft(xl xk) fj(xn te xdk)}
n2 =1 a,f=1 n2k—1]
Yo Elfiles, - 2:)I\?
ol E 2 il oo e



244 M. N. GHOSH

where 4 + -+ T, Thaa - %o are any set of 2k different numbers from 1 to n, and
o1 -+ o are any fized set of different numbers, from 1 to n, which have exactly one
element in common with 1 - - - k.

We now assume that the variables z; - -+ x, and the functions {fi(z1 - - - x&)}
satisfy the condition .

B lim inf p2., > O.

TaeoreM IV. Let x; - - - x, be a sequence of random variables forming a Markov
process of order p (stationary or not) and let {fi(x1 - - - xx)} be a sequence of functions
satisfying conditions (A’) and (B'). Then the randomised distribution function of

(4.7) [1% g:l files o+ 2igp) — M 1:' / VM

converges stochastically to the mormal distribution with mean zero and variance
unaty, where (21 -+ + 2.) 18 a random permutation of 1 « -+ Zn.

From the randomised distribution of 7 we shall derive the stochastic
asymptotic expression for the power of a test in T'n(2; - - - 2,), for the alternative
hypothesis H; , according to which x; - - - z, forms a Markov process of order p.

Let the conditional probability density of z; for given values of iy - ++ Z:ip
be gi(xi | iz1 -+ + %i_p). When only z; - -+ z.; (j < p) are given, let the con-
ditional probability density of z; be g:(x: | ;=1 « -+ %i-;). The joint probability
distribution of z; - - - x, is then given by

P
(4-8) I_]1: gs(xi | Tioy *** Z1)

We shall assume that the functions {log gi(zj+1 | z; ++- 2)} G =1 .-+ m,
j =1 --- p) satisfy the conditions (A’) and (B’).

A sufficient condition that the functions {log ¢:(X;41 | X; « -+ X1)} satisfy
the condition (A’) is that there exists a polynomial

n

‘1;1“ gi(xi I Li—y *°° xi-—p) dey « - dza

1=

(4.9a) PXy o Xjpr) = 2 Appeey X34 - X8 j=1,---,p
such that

(4.9b) [log g:(Xjpr | Xj -+- Xa) | < P(Xy -+ Xjn1)

and also that

(4.9¢) f |z |° g:(x) dz < A

for all s, independent of 7, g;(X) being the probability density of z:. These
conditions are usually satisfied for exponential type of populations considered
in statistical theory.

Thus the randomised distribution of the nonsymmetric statistic

?
T= {% [Z log gi(z: | Zie1 -+ - 21)

(4.10) = )
+ Z log gi(2: | 2ica -+ Zi—p):l - Ml}/ VM,
1=p+1 h
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converges stochastically to the normal distribution with mean zero and variance
unity, (21 - -+ 2.) being a random permutation of x; - -+ x, and M, M, being
defined by (4.3) and (4.4) for {log g«(X;| Xi -+ X1)} whens =1 --- p and
for {log g:(X; | X1 - X;p)} when 7 > p.

At any point (2; - - - 2,) in T'» , the probability according to H, is

1 15 &
— II 9:(2i| 2ic1 - -+ ) H gi(zi | 2 - 2icy)
n!C,, =1 impt1
(. independent of the order of z; - - - 2,,

(4.11) (L, exp (n(V/I6T + 210},

szlC_,. exp {nVM, T}, Cu= E {exp (nv/M,T)}.

For two constants, 7" and 77,

Pr{lT" < TE=T'|tn- -2} =Pr{T"<T=ST"|X,}

(4.12) /T, T .
=1 > exp (VM T) _ ._l_f exp (n\/I; T) dGa(T)
Chn rr<r=17 n! Cndre
where G,(T) is the randomised distribution function of 7 in I'n(x: -+ Z,).
Now

C, = E'(exp n\/M,T) = fb exp (nV M, T) dG.(T)
= exp (nV/M,a)[Ga(d) — G.(a)]

where a and b are constants. Since G.(x) converges stochastically to
en? [ e — #/24,

which is uniformly continuous,

(4.13) Gale) — (2m)~ [ exp — £/2dt| < e

with probability greater than 1 — §, whenever n > no, uniformly for x. Thus
. b
Ga0) — Gala) 2 (2m)™ [ exp (— £/2)dt — ¢ > & k>0

with probability greater than 1 — § when n > n, . Hence
Pr {C. = exp (na\/ M)k} > 1 — 4.
Again

j::n exp (n\/_M—z T) dG.(T) < exp (n»\/m ™).
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Thus
P{T" < T = T"| X.} £ 2 exp WVILT")/Cn < 2 exp (nV/MT")/k exp

(nv/M,a) with probability greater than 1 — § Since exp (n\/Mo(T” — a)) — 0
asn— o, when a > T”, from (B’), we find that P{T" < T = T” | X.}
converges stochastically to zero, for fixed (7', 7”), as n — . Thus we have

TureoreM V. For the test of randomness of a sequence X, - -+ X, against an
alternative H, , for which the sequence forms a Markov process of order p, and where
the logarithms of the conditional probabilities satisfy conditions (A’) and (B'),
the acceptance region T < T =< T” is stochastically consistent, T being given by
(4.10).

The randomised distribution of a statistic 7 may be used to find a stochastic
asymptotic form of the power function, so that a nonparametric test criterion
may be selected, having desirable properties for large samples, on the basis of
such power functions.

Two problems will be considered below for illustrative purposes. The first
problem is concerned with the test for positive circular serial correlation in a
sequence of random variables z; --- «,. This problem has been solved by
Lehmann and Stein [7], in which they obtain the most powerful randomised
test function. We shall find the stochastic asymptotic power function of the
corresponding nonrandomised test for large samples. The second problem is
concerned with a more general type of stochastic pattern. In this case also it
may be possible to get a most stringent test for small samples, along the lines
of Lehmann and Stein [7], though this has not been considered before. From
considerations of the stochastic asymptotic power functions we get an asymp-
totically most stringent test in this case.

Consider a sequence of random variables z; - - z, with circular serial
correlation so that the conditional probability density function of x:y, is

(21r)_* exp {—(@ip1 — bz:)/20%} = g(@ina | %)
We have
(1/n) 3 log g(iys | %:)
= —1log2r — log o — dnd’ Y (wiys — bxs)’

= —1log 2r — log ¢ — 2*{(1 + b)) ai/n — (2b/n) Y v&in},

which depends on the nonsymmetric statistic T = > xa@i/n only, since
> z?, being a symmetric function of X; - -+ X, , has the same value for all
points in T (zy * + + ).

As shown by Lehmann and Stein [7], & uniformly most powerful randomised
test function exists in this case for values of b > 0 or b < 0 and depends only
upon values of T = > xxipa/n.

‘We consider only a nonrandomised test. Obviously for a test of significance
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with first kind of error «, the randomised test is equivalent to a nonrandomised

test for some values of .
Let My = E'(T) M, = E'[(T — M,)*] and G.(T) be the randomised distribu-
tion of (T — My)/N/M, . Then

P(T' < T £ T" | X,) = Pra, (" < T < T” | X,)

(4.14)

T

f: exp [bne > (V M, T + My)] dG.(T) fT, exp [bnoe *(\/M, T) dG.(T)

[ e one * (VIRT + MOV dGuT) [ exp lona(VIETI dG(T)

We note that Theorem IV can be immediately extended to a set of circularly
correlated variables. For any given b(#0), P,(T" < T < T” | X.) converges
stochastically to zero. Thus we study the power function for sufficiently small
values of b and we consider b, = 0(1/v/n); say lim,.,, v/nb, = \, A £ 0. In
this case we have

(4.15) Plim nM, = o,

so that the condition (B’) holds, and G.(T) converges stochastically to the
normal distribution with mean zero and variance unity. We have also

(4.16) Ay = banov/M, and Plim A, = A\

Now
TII

T//

[ e ) d6u(T) = lexp Ou TG = [ A exp (ha TIGAT) dT,

T,’ n

@0 [ esp T — T°/2) dT = lexp O DIO(DIE:

T/I
= [ M exp 0w TIo(D) ar,

T
where ¢(T) = (2r)~* f exp (—¢%/2) dt. Thus

fr T exp O T) dGo(T) — (2n)~* fT T exp (T — T?/2) dT
= [G.(T") — ¢(T")] exp M\a T") — [Go(T") — ¢(T)] exp A\ T7)

- fT T” [G(T) — &(T)IN exp (Ao T) dt.
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Since Pr { | G.(T) — ¢(T) | < €} > 1 — 8, for n > ng(e, 8),
T”

T"
l [ exp 01y dGu(m) — oy [ exp T - T2) dTl
’ T

r

< elexp M\ T7) 4+ exp(a T')] + € f A exp (A, T) dT

= o

Tﬁ
< 3eexp A\, T”) < 3¢ f exp A\, T) dT
TI

™
holds with probability greater than 1 — 8. As f exp \T — T?/2) dT is a
-

uniformly continuous function of A\, in (7", T7), we get

PyvilT' < TS T | X}

(4.17) S
= (1 + €/CuV/Zx) fT " exp T — T%/2) dT

with probability >1 — & for n > ne(e”), where ey is a small quantity < ¢”, and
C. = f exp (\.T) dG,.(T). Hence
Pi,vil{T' < T £ T"| Xa}
(4.18) o
o~ , [exp (3\))/CaV/27] fw exp [—3(T — \)* dT.

In order to show that when the parameter b ~ A\/4/n (A # 0) the hypothesis
Hi(b = 0(14/7)) may be discriminated against the hypothesis Ho(b = 0), on
the basis of a sample of size n, we prove the following inequality.

TaeorEM VI.

Pr{P),,,\/;(T' <T=T"|X,)
T”
T

<[ + &/V2r) f exp [—(E——;——W] dé} >1-35

holds for n > ny(e, 8).
Proor.

© T2
Co= [ exp (uT)dGuT) 2 [ exp () dGu(T).
— 00 T
As shown above,

fr " exp (\n T) dGA(T) = , lexp (3A")/V/27] fT " exp [—3(& — N)? dt
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that is,
Ty
f exp (Ao T) dGo(T) > exp (3AD)(1 — &)
T

holds with probability greater than 1 — 8/2 for n sufficiently large. Thus
Pr {C. > exp 3\ — &)} > 1 — §/2.

From (4.17) the result follows when ¢ and ¢” are sufficiently small.

In the case of a single parameter, the optimum test procedure is obtained
without' the help of (4.18), the stochastically asymptotic power function, but
we shall see that in the multiparameter case the stochastically asymptotic
power function is a useful tool for the purpose of finding a test with good power
properties for large samples.

Consider a more general stochastic pattern, in which the probability density

of z; depends upon z;_ - -+ z;—, and is given by
(4.19) g(@i| @ix -+ + Zip)
= (1/V/2r0) exp {— (@i — biwiy — - — byiy)/26%)

the variables x; - - - 2, being considered in circular order.

1
- 2 log g(xi | @i+ -+ @iy)

log 2 1 &
_ — ng T IOgO' - 2_—7}0'221 (xi — blxi—l e — bpxi—p)z
2 3
_log%—loga—-_}_ (1+bf+"'+bi)zx’-—2 Z b byt
2 k 202 n V2

where r; = Y xai;/n and by = 1.

Since Y z; is a symmetric function of z; - - - &, , the probability distribution
in Tp(2; -+ ) depends upon r; --- 7, only and thus we need only consider
the space R, , consisting of all points (r; - - - 7,).

Let r1 --- 75 be standardised variables corresponding to 7y - - r,, that is,
i = (rs — M) /A/M$ where M{? = E'(r;) and M5” = E'[(r; — M{")"]. Let
G.(ri - -- 7%) be the randomsed joint distribution of 71 - -+ 7p in Ta(zy -+« - Zn).
Then G(ry - - - r5) converges stochastically to the normal distrbution with means
zero and dispersion matrix (y;;) and, as in Theorem V, any bounded region of
acceptance C' in R, gives a stochastically consistent test. In particular, the
region of acceptance

»
(4.20) > yiriri < @
i1
gives a stochastically consistent test, for given values of b, -+ b, .

In order to find a stochastically asymptotic expression for the power function,
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we consider b; = 0(1/4/n), say b; = AY/A/n, andlim A{? = A, We have now
(4.21) Plim nM$® = ¢',  Plim aM{;? = 0 i#j
so that (B;) holds and a;; = 8%, where 3! is the Kronecker 8 symbol. For any
bounded region C in R, , we may shqw, as in (4.18),

1
Pogyaaw v (€) =, @r)™ e C,

2
]; exp QA1) exp (— i gd—é)dr'l R

1=1

(4.22)

where

0% sttt

2 F Ty ’ ’
C. = ‘/; exp (Z'L' Z babtr;-—t '\/Més—t)> dqn(rl e TP)~
R,

4
Corresponding to Theorem VI we have
TrEOREM VI(a).

1+
PI‘{P()‘}LI)/\/Z...)‘&)/\/I)(C) < (—2;5%?:"‘

1 @ 1 _
fceXp <— Q;“z,.}; & — N )2) dfl'dsp/ > 173

for any bounded region C in R, and for sufficiently large value of n > (e, ).

For fixed values of b, - -+ b, there exists a most powerful region, but there is
no uniformly most powerful region for values of b; - -+ b, . But we may apply
the well known methods of multivariate normal theory to the stochastically
asymptotic power function and select an optimum test. In the present case we
may consider the most stringent test (Wald [14]) or the most powerful test on
the average (Nandi [10]), the asymptotic power function being averaged over
the spheres \)* 4+ ... 4+ \®)* = ,%. The region of acceptance with these
properties is given by

(4.24) 6D+ o F @) < a

In concluding this paper the author desires to put on record his appreciation
of the helpful criticisms of the reviewer of the Annals, which led to considerable
improvement in the presentation.
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