Attention should be drawn to a paper of Korolyuk [2] wherein the author gives different versions of the probabilities we have presented for the case x = y.

REFERENCES

- [1] J. Blackman, "An extension of the Kolmogorov distribution," Ann. Math. Stat., Vol. 27 (1956), pp. 513-520.
- [2] V. S. Korolyuk, "On the difference of the empirical distribution of two independent samples," Izv. Akad. Nauk. SSSR, Vol. 19 (1955), pp. 81-96.

APPENDIX

By J. H. B. KEMPERMAN

By a path of length n we shall mean an ordered sequence of n+1 integers (z_0, \dots, z_n) , such that

$$z_i - z_{i-1} \ge -1 \qquad (i = 1, \dots, n).$$

For each path $\pi_n = (z_0, \dots, z_n)$, let

$$P(\pi_n) = \prod_{i=1}^n p(z_i - z_{i-1}),$$

(the weight or "probability" of π_n). Here, the $p_i = p(i)$, $(i = -1, 0, +1, \cdots)$, denote given (real or complex) numbers, $p(-1) \neq 0$. Finally, let

$$e_z(n) = \sum_{\pi_n}' p(\pi_n),$$

the summation being extended over all the paths $\pi_n = (z_0, \dots, z_n)$ with $z_0 = 0$, $z_n = z$, $z_i \neq z (i = 0, 1, \dots, n-1)$.

THEOREM. For $n = 1, 2, \dots$,

(8)
$$e_{z}(n) = -zr_{z}(n)/n + \sum_{j=1}^{\infty} j(j+1)p_{j} \sum_{0 \le m \le +z} r_{z}(-m)r_{-j}(m+n-1)/(m+n-1).$$

Here, for arbitrary integers h and s, $r_h(s)$ is defined as the coefficient of w^{h+s} in the formal development

$$(p_{-1} + p_0 w + p_1 w^2 + \cdots)^s = \sum_h r_h(s) w^{h+s};$$

especially, $r_h(s) = 0$ if h + s < 0.

PROOF. Let n and z be given integers, $n \ge 1$. For any path (z_0, \dots, z_n) with $z_0 = 0$, $z_n = z$, we have

$$z_i - z_{i-1} = z - \sum_{\substack{\nu=1\\\nu \neq i}}^n (z_{\nu} - z_{\nu-1}) \le z + n - 1,$$

 $(i=1,\dots,n-1)$, thus, $e_z(n)$ does not depend on the p_i with $i \geq n+z$. Further, $r_h(s)$ does not depend on the p_i with $i \geq h+s$, hence, the inner sum in (8) does not depend on the p_i with $i \geq n+z$; moreover, the *j*th inner sum equals 0 when $j \geq n+z$. Consequently, it suffices to prove the theorem for the special case that $p_i = 0$ for i sufficiently large.

In this case,

$$f(w) = \sum_{i=-1}^{\infty} p_i w^i$$

is analytic at each point $w \neq 0$. Further, for |w| sufficiently small

(9)
$$f(w)^s = \sum_{k=0}^{\infty} r_k(s)w^k,$$

hence, for $s \geq 0$

$$r_h(s) = \sum_{\pi_s}' P(\pi_s),$$

summing over all the paths $\pi_s = (z_0, \dots, z_s)$ with $z_0 = 0$, $z_s = h$. Observing that to each path (z_0, \dots, z_n) with $z_n = z$ there corresponds a unique integer m with $0 \le m \le n$, $z_i \ne z(i = 0, 1, \dots, m - 1)$, $z_m = z$, it follows that

$$r_z(n) = \sum_{m=0}^{n} e_z(m)r_0(n-m)$$
 $(n = 0, 1, \cdots),$

hence,

$$(10) E_z = R_z/R_0,$$

where

(11)
$$R_h = \sum_{n=0}^{\infty} r_h(n)t^n, \qquad E_z = \sum_{n=0}^{\infty} e_z(n)t^n,$$

t denoting a sufficiently small parameter, $t \neq 0$.

Further, from (9), for each integer h,

$$R_h + \sum_{-h \le n < 0} r_h(n)t^n = \sum_{n=-h}^{\infty} r_h(n)t^n$$

$$= \sum_{n=-h}^{\infty} \frac{t^n}{2\pi\sqrt{-1}} \int_{|w|=R} f(w)^n w^{-h-1} dw = \frac{1}{2\pi\sqrt{-1}} \int_{|w|=R} \frac{(wf(w)t)^{-h}}{w - twf(w)} dw,$$

where R denotes a fixed positive number with $f(w) \neq 0$ for $0 < |w| \leq R$. Here, from $p(-1) \neq 0$, the integrand is regular at w = 0. Moreover, for $t \neq 0$, |t| sufficiently small, the equation $f(\xi) = t^{-1}$ has a unique solution satisfying $0 < |\xi| < R$. Thus,

$$R_h = (-t\xi f'(\xi))^{-1}\xi^{-h} - \sum_{0 < m \le h} r_h(-m)t^{-m}.$$

Finally, (10) and

$$\xi f'(\xi) = \xi f'(\xi) + f(\xi) - t^{-1} = -t^{-1} + \sum_{j=0}^{\infty} (j+1)p_j \xi'$$

imply

$$E_{z} = \xi^{-z} + (-1 + t \sum_{j=0}^{\infty} (j+1)p_{j}\xi^{j}) \sum_{0 < m \leq z} r_{2}(-m)t^{-m}.$$

In view of (11), it suffices to prove that, for each integer h and |t| sufficiently small, $t \neq 0$,

$$\xi^{-h} = -h \sum_{\substack{m=-h\\m\neq 0}}^{\infty} r_h(m) t^m / m + c_h ,$$

where c_h denotes a constant. Now, for |t|, $|\xi|$ small, the mapping $t \to \xi$ defined by $f(\xi) = t^{-1}$ is a 1:1 analytic transformation. Hence, integrating along a small positively oriented circle about 0, we have, for $m \neq 0$,

$$\int \xi^{-h} t^{-m-1} dt = -\int \xi^{-h} d(f(\xi)^m/m) = -\frac{h}{m} \int f(\xi)^m \xi^{-h-1} d\xi = -2\pi \sqrt{-1} \frac{h}{m} r_h(m).$$

REMARK. Results and methods analogous to the above may be found in the paper "The passage problem for a stationary Markov chain" by J. H. B. Kemperman, to appear in these Annals.

Let k be a fixed positive integer and choose p(-1) = p(k) = 1, p(i) = 0 for $i \neq -1$, k. Then $e_n(z)$ is equal to the number of sequences (z_0, \dots, z_n) with $z_i - z_{i-1} = -1$ or +k

$$(i = 1, \dots, n), z_0 = 0, z_n = z, z_i \neq z$$
 $(i = 0, 1, \dots, n-1).$

Further, H(i) is equal to the number of sequences $(z_n, z_{n-1}, \dots, z_0)$ with

$$n = -\alpha + i(k+1) \ge 1$$
, $z_i - z_{i-1} = -1$ or k

$$(i=1, \dots, n), z_n=\alpha, z_0=0, z_i\neq \alpha (i=0, \dots, n-1).$$
 Hence,

$$H_{\alpha}(i) = e_{\alpha}(-\alpha + i(k+1))$$

and the above Theorem yields

$$H_{\alpha}(i) = -\alpha r_{\alpha}(n)/n + k(k+1) \sum_{0 < m \leq \alpha} r_{\alpha}(-m)r_{-k}(m+n-1)/(m+n-1),$$

where $n = -\alpha + i(k+1)$. Noting that $r_h(s)$ is equal to the coefficient of w^{k+s} in the expansion of $(1 + w^{k+1})^s$ about 0, formula (1) easily follows.