LIMITING DISTRIBUTIONS OF HOMOGENEOUS FUNCTIONS OF SAMPLE SPACINGS¹

By LIONEL WEISS

Cornell University

- 1. Summary. Suppose T_1 , T_2 , \cdots , T_n are the lengths of n subintervals into which the interval [0, 1] is broken by (n 1) independent chance variables, each with a uniform distribution on [0, 1]. Moran [1], Kimball [2], and Darling [3] have shown that if r is a positive number, then the asymptotic distribution of $T_1^r + T_2^r + \cdots + T_n^r$ is normal. It is the purpose of this note to extend this result in two directions: more general functions of T_1 , \cdots , T_n are handled, and the joint distribution of several such functions is discussed. The proof is short and very simple.
- **2. Notation and assumptions.** As already indicated, T_1 , T_2 , \cdots , T_n are the n subintervals into which the unit interval is randomly broken. U_1 , U_2 , \cdots , U_n are independent chance variables, each with the density function e^{-u} for $u \geq 0$, zero for u < 0. $S_n = U_1 + U_2 + \cdots + U_n$. $V_i = U_i/S_n$ for i = 1, \cdots , n. It is known (and is very easily verified) that S_n is distributed independently of (V_1, V_2, \cdots, V_n) , and that the joint distribution of

$$(V_1, V_2, \cdots, V_n)$$

is exactly the same as the joint distribution of T_1 , T_2 , \cdots , T_n . We are given k sequences of functions:

$$\{G_{1,n}(U_1, U_2, \cdots, U_n)\}, \cdots, \{G_{k,n}(U_1, U_2, \cdots, U_n)\},\$$

- $n=1, 2, \cdots$. These functions are assumed to satisfy the following conditions: (1) $G_{i,n}(U_1, \cdots, U_n)$ is homogeneous of order r_i for all n, r_i a positive quantity:
 - (2) the joint distribution of

$$\frac{G_{1,n}(U_1,\cdots,U_n)-A_1n}{B_1\sqrt{n}},\cdots,\frac{G_{k,n}(U_1,\cdots,U_n)-A_kn}{B_k\sqrt{n}}$$

approaches a k-variate normal distribution with zero means and covariance matrix C, say, as n increases. A_1, \dots, A_k and B_1, \dots, B_k are positive constants. (The results hold for any values of A_1, \dots, A_k . The assumption that they are positive is merely a convenience.)

We denote the element of C in row i and column j by c_{ij} .

3. The asymptotic distribution of $G_{1,n}(T_1, \dots, T_n), \dots, G_{k,n}(T_1, \dots, T_n)$. Theorem. Under the assumptions of Sec. 2, the joint distribution of

$$\frac{n^{r_1}G_{1,n}(T_1,\dots,T_n)-A_1n}{B_1\sqrt{n}},\dots,\frac{n^{r_k}G_{k,n}(T_1,\dots,T_n)-A_kn}{B_k\sqrt{n}}$$

Received July 8, 1957.

¹ Research supported by the Office of Naval Research.

approaches a k-variate normal distribution with zero means and covariance matrix

$$\left\{c_{ij} - \frac{r_r r_j A_i A_j}{B_i B_j}\right\}$$

as n increases.

Proof. By assumption, the distribution of the k-dimensional vector $\bar{V}(n)$ whose ith element is

$$\frac{G_{i,n}(U_1,\cdots,U_n)-A_in}{B_i\sqrt{n}}$$

approaches the k-variate normal distribution with zero means and covariance matrix C. We rewrite the *i*th term of $\bar{V}(n)$ as

$$\frac{G_{i,n}(U_1, \dots, U_n) - S_n^{r_i} A_i n^{1-r_i} + S_n^{r_i} A_i n^{1-r_i} - A_i n}{B_i \sqrt{n}}$$

Now S_n/n converges stochastically to one as n increases; therefore the distribution of the k-dimensional vector $\bar{V}'(n)$ whose ith element is

$$\frac{G_{i,n}(U_1, \dots, U_n) - S_n^{r_i} A_i n^{1-r_i} + S_n^{r_i} A_i n^{1-r_i} - A_i n}{\left(\frac{S_n}{n}\right)^{r_i} B_i \sqrt{n}}$$

approaches the k-variate normal distribution with zero means and covariance matrix C. $\bar{V}'(n)$ may be written as the sum of two vectors, $\bar{V}_1(n)$ and $\bar{V}_2(n)$, whose ith elements are respectively

$$\frac{n^{r_i}G_{i,n}(V_1,\cdots,V_n)-A_in}{B_i\sqrt{n}}$$

and

$$\frac{A_{i}n-n^{r_{i}+1}A_{i}S_{n}^{-r_{i}}}{B_{i}\sqrt{n}}$$

We note that $\bar{V}_1(n)$ and $\bar{V}_2(n)$ are distributed independently of each other. Next we examine the distribution function, say $F_n(x_1, \dots, x_k)$, of $\bar{V}_2(n)$.

$$F_{n}(x_{1}, \dots, x_{k}) = \Pr\left[\frac{A_{i}n - n^{r_{i}-1}A_{i}S_{n}^{-r_{i}}}{B_{i}\sqrt{n}} \leq x_{i}; i = 1, \dots, k\right]$$

$$= \Pr\left[\frac{S_{n} - n}{\sqrt{n}} \leq \sqrt{n} \left\{ \left(\frac{A_{i}n}{A_{i}n - \sqrt{n}B_{i}x_{i}}\right)^{\frac{1}{r_{i}}} - 1\right\},$$

$$i = 1, \dots, k\right].$$

As n increases, the distribution of $(S_n - n)/\sqrt{n}$ approaches the standard normal distribution, by the univariate central-limit theorem. And for any fixed x_i ,

$$\sqrt{n} \left\{ \left(\frac{A_i n}{A_i n - \sqrt{n} B_i x_i} \right)^{\frac{1}{r_i}} - 1 \right\} \rightarrow \frac{B_i x_i}{r_i A_i}$$

as n increases. Thus, if Z denotes a chance variable with a standard normal distribution, $F_n(x_1, \dots, x_k)$ approaches

$$\Pr\left[\frac{r_i A_i Z}{B_i} \leq x_i; i = 1, \dots, k\right]$$

for each vector (x_1, \dots, x_k) .

Next, we denote by $\rho_{1,n}(t_1,\dots,t_k)$ the characteristic function of $\bar{V}_1(n)$, by $\rho_{2,n}(t_1,\dots,t_k)$ the characteristic function of $\bar{V}_2(n)$, and by $\rho_n(t_1,\dots,t_k)$ the characteristic function of $\bar{V}'(n)$.

We have $\rho_n(t_1, \dots, t_k) = \rho_{1,n}(t_1, \dots, t_k) \cdot \rho_{2,n}(t_1, \dots, t_k)$, or

$$\rho_{1,n}(t_1,\cdots,t_k)=\frac{\rho_n(t_1,\cdots,t_k)}{\rho_{2,n}(t_1,\cdots t_k)}.$$

As n increases,

$$\rho_n(t_1, \dots, t_k) \rightarrow \exp\left\{-\frac{1}{2} \sum_{i,j=1}^k c_{ij} t_i t_j\right\}$$

and

$$\rho_{2,n}(t_1, \cdots, t_k) \to \exp\left\{-\frac{1}{2}\left[\sum_{i=1}^k \frac{t_i r_i A_j}{B_j}\right]^2\right\}.$$

Therefore, as n increases,

$$\rho_{1,n}(t_i, \cdot \cdot \cdot, t_k) \rightarrow \exp\left\{-\frac{1}{2} \sum_{i,j=1}^{k} t_i t_j \left[c_{ij} - \frac{r_i r_j A_i A_j}{B_i B_i} \right] \right\}.$$

This proves the theorem.

REFERENCES

- [1] P. Moran, "The random division of an interval," J. Roy. Stat. Soc., Suppl., Vol. 9 (1947), pp. 92-98.
- [2] B. F. Kimball, "Some basic theorems for developing tests of fit for the case of non-parametric probability distribution functions," Ann. Math. Stat., Vol. 18 (1947), pp. 540-548.
- [3] D. A. DARLING, "On a class of problems related to the random division of an interval,"

 Ann. Math. Stat., Vol. 24 (1953), pp. 239-253.