ON THE DISTRIBUTION OF A STATISTIC BASED ON
ORDERED UNIFORM CHANCE VARIABLES

By SHanTI S. GUpTA! AND MILTON SOBEL

Bell Telephone Laboratories

1. Summary. The exact distribution of a statistic based on the r smallest of
n independent observations from a unit uniform distribution is derived. In
life-testing terminology, this statistic includes as special cases (i) the sum of the
r earliest failure times, (ii) the total observed life up to the rth failure, and (iii)
the sum of all n failure times. The density, cumulative distribution function
(c.d.f.) and first four moments of the general statistic are summarized in Sec. 2.
Section 3 gives the derivation of the density and c.d.f. The moments are obtained
from the moment generating function in Sec. 4. Asymptotic normality under
certain conditions is proved in Sec. 5 and illustrations of the rapidity of approach
to normality are given in Sec. 6.

2. Introduction and statement of results. We shall consider the statistic
(2.1) T =ti+tp+ -+t + (m — i,

where #; = #{™ is the th smallest of » independent observations and m is greater
than - — 1 but is not necessarily an integer. For m = n this statistic can be
interpreted as the total observed life in a life-testing experiment without replace-
ment. When the underlying distribution of the unordered #’s is exponential,
ie., f({) = (1/6)¢™*", then it is known [3] that 2T% /0 is distributed as chi-
square X3, with 2 degrees of freedom.

Before stating further results let us introduce for 0 < ¢ < m and non-nega-
tive integers p, ¢, n

@y - (PN _ (P} =D (p> ¢—2"" _ .
22 4520 = () 55 - (1) =+ (e —
where m > p, n = 1 and the summation is continued as long as the arguments
t,t —1,¢— 2, --- are positive. It is understood that the binomial coefficient

p) = 0 forp < j so that there are at most (p + 1) terms in the above summa-
tion.
It is clear from (2.1) that T is the sum of all the n observations. When the

underlying distribution is unit uniform, then the density of T is given on p.

246 of [2] by
n 1 n\ ;a1 n n—1 _ n,n
@9 120 = 25 (@) e - () e- v+ - a0,
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ORDERED UNIFORM CHANCE VARIABLE 275

(We have removed the superscripts and subscripts from the chance variables and
put them on f and on F below which are the symbols for the density and c.d.f.,
respectively.)

Using the symmetry of the above density about { = n/2, we can replace ¢
by n — ¢ in (2.3) obtaining

) = 0 1)|{<n E 1) (n — . "

n—1 (n—l—t)"—l nn

where 0 £ ¢ £ n. The form (2.4) is more comparable with the results derived
here. It is shown below that the density and c.d.f. of T are given by the com-
parable results

(24)

(2.5) Fim@) = AZiam — )
and
(n) (n,n+1) _

from which we get as special cases the densities and c.d.f.’s of (i) T (i) T
and (iii) T'¢").

Barton and David [1] have derived another equivalent formula for the density
£{"(2), ie., in the special case (i). Their result, with two typographical correc-
tions taken into account, is

en 20 =53 e () [T

The total life statistic arises as an optimum statistic under exponential dis-
tribution assumptions in [3]. In the present paper we give the distribution of
this statistic when the exponential distribution assumption is replaced by the
uniform distribution. Hence these results can be used to study the robustness of
the tests based on the total life statistic. The results on asymptotic normality
are also of interest in this connection since under the exponential assumption
the distribution of 2T% /8 is that of x2, which, for large r, also is close to that of a
normal distribution. It is felt that the model of a uniform distribution from 0 to
6, 8 > 0 and unknown, and the results of this paper may prove to be useful in
some life-testing problems.

3. Derivationof results. Let u = & + to + - + 1, v = &, w = u/v
and y = T = u 4+ (m — r + 1)v, where #; = t(”) is the ¢th smallest of n
independent chance variables uniformly distributed from zero to one. The con-
ditional distribution of w given v is exactly that of a sum of » — 1 independent
uniform chance variables and is given by (2.3) with n replaced by r — 1. Hence
the joint density of v and w is given by
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!
n! vr—l(l _ v)n—f 1

r—DIn — )t (r — 2)!

A5 )= (),

where0 < w = r — 1and 0 < » < 1 and the joint density of » and v is given
by

gw,v) = 0
3.1)

n!
r—=2)I(r — Dli(n —r)!

{3 - (T umrs o

where 0 < 4 = (r — 1)» and » £ 1.
If we now derive the density of y, then the full range of y from 0 to m is broken
into r parts. For 0 < y < m — r + 1, the density of ¥ becomes

W n!
m(y) = =210 = Din — !

/ﬂ/ (m—r+1)

h(u,v) =

32)

[y —(m —r + 1)o]°Q — )" dv
(33) o .
- (’ " 1) [ ==t 200 — o ao

_ y/(m—1)
el () | SR R R

/m

Using the finite difference operators &, A (with & = 1 + A),

20 - = (VE( 7Y

v/ (m—r+142) .
(—8)" {j;/m [y — m —r 41+ — o)™ dv},

where & operates on z and it is understood that z is then to be set equal to 0.
Using the relation between & and A,

20 = L5 (")
v/ (m—r4 142}
e[ - 1 - o]

If we now integrate by parts, the first term vanishes at the upper limit and also
at the lower limit because of the operator A", After »r — 1 such integrations we

obtain
(36) () = _._ﬁ___[ — {(m —r4142— y)”"}] .

(34)

(3.5)

r— 1! (m—1r+1+4 )
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Using A = & — 1 we ohtain
fim @)

_ n r—1 (m—y)"—l__ —1\m—-1-y™*
6 = e 25{(5") Tt - (1) Tt }
Ag:lﬂm(m

where 0 £ y < m — r + 1 and A7) is defined in (2.2).

We shall now show that the expression (3.7) gives the result for all y(0 = y =
m).Form —r+isy=m-—-r+14+¢@GE=12 ---,r— 1) the only
difference is that the first < upper limits of integration in (3.3) are all changed to
unity. For the jth integral (j = 1, 2, - - - , ©) we have to add to the complete set
of r terms in (3.7) the quantity

mfr—1 n!
(=17 < )(r—2)'(r— Di(n — )

(338) : f == I — 0

— (1)1 n r—1 (m_r_l_j__y)n-—l
== (T—l)!(j—l) (m =1 + jyr—rHt -

For each j(1 = j = ¢) the quantity on the right in (3.8) cancels the jth term
from the end of the complete expression with r terms in (3.7). Hence for

m—r+i1Ssysm—r+i+1

the density is given by the first r — 7 terms of (3.7) which are pre(nsely those
terms with positive arguments. This proves that the expression 4" (m — y)
of (3.7) gives the result for all y(0 < y < m).

The c.d.f. F{"(y) of y is easily obtained by mtegratlng (3.7) between the
limits 0 and y and is given by

(3.9) Fil(y) = - @ + T D AL (m — y).

4. Moments of y = T . Using the expression for the density it can be
shown that the moment generating function My(y) of y = T'% is given by

it =[5 Ko (7))

.pa 1 e Oy _ — n—1
8 { =y fo e'lm — z — y) dy}:L_(J

_ nl (—0)7 i il
(4.2) =5z 1)!,;0(].’_*_ n)![A (@ — )™ oo

(4.1)
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Thus we have for the jth moment

(4.3) E@=_iiﬁﬂ—mﬂ@—m”ﬂm

(r — Di(n + j)!
— (—l)jj!n! - _18B8 (T — 14 r—1_r—1+j—p
(44) = oD i U g )T e,
It can be shown that forj = 0 and r = 1
r—1
r—1_r+j X (1’ - 1)! a, atj
(4.5) [A x J],,..o = EFI_)![A x ]p-O-

The results for various values of j in (4.5) are known and are given, for example,
in [4], p. 127. Using these we have from (4.4)

@) B ="CnoriD

@2n+1) °
N rir + 1) 2 _ _
47) E@H = 2+ D T 2) [12m —12m(r — 1) + (r — 1)(3r 2):|,

. 2y _rln—r+1)2m —r 4+ 1)° rr 4+ 1D —1)
) W = Ty TR F DG

B r(r + D(r + 2)
Bw) = 8(n + D(n + 2)(n + 3)

4.9
. |:8m3 — 12m*(r — 1) + 2m(r — 1)(3r — 2) —r(r — 1)2],
EGY) = 1o+ D +2)¢ +3)
2(n + 1)(n + 2)(n + 3)(n + 4)
(4.10) . [2m‘ —4m’(r = 1) + m'r — 1)@r — 2) — m(r — 1%

+

(r — 1)(15° — 157 — 10r + 8)]
120 :

Since the computation of cumulants leads to no simplification, they have not
been given here; they can be obtained by the usual formulae. It should be men-
tioned that the above expressions for the moments can also be obtained directly
by using the moments of the order statistics.

6: Asymptotic normality of y = 7). We shall randomize the order of the
chance variables 4, f, -+ -, _; and thus define new unordered equi-correlated
and identically distributed chance variables u;, ug, -+ - , u,_; . Furthermore, if
we consider the conditional joint distribution of the u; given » (=¢#,), then we
have independent chance variables which are uniformly distributed from 0 to v.
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Let

y — E(y)

(5.1) y* = L= 5 and N E(y|v)

a(y|v)

where y = Tﬁ',',.) =wm+u+ -+ uy+ m—r+ Lo
The characteristic function of y* is given by

s [ [ [ (a0 4]0

)

- Lo(ylv) |y — E(y|v)
(62) B fo -l -[ P {n a(y) [ o(y[v) ]
o(v) [EQy|v) — E(y):l} i 17 4w
+au o[ B2 (1% ot @
where
(53) Ely|v) = (r — 1)g+ (m—r+1p=0Cm—r+ 1)%,
_ /r—l. _ 1 r(n —r 4+ 1)
(54) ao(ylv) = v U () = m+ 1 nF2 ’
and
n' r—l n—r
(6.5) glv) = CESNCE) (1 —o)".
Letting
' a(ylv) , _ u_(vz r—1
(56) P Y =tw [m ( 2 >:|
and z; = u;/v(z = 1,2, --- ,r — 1), we obtain
(%)) or(t) = ‘/0. gl j; \/E(H) daé:lr—l e“'[v_:i# g(v) dv

» e r—1
1 sin (t, —'—;—1) Y v—E (v)
(58) = /; __7.3_ “ “o(v) . g(v) dv.
/
L ! "/r -1

Since for r = An and n — « we have

_ 1 r(n —r+1) _ 1
69 Bw) = ———x and o) = 1 4/ _o(%),

then we shall write v = A 4+ O(1/4/n) in the expression (5.6) for # which is
needed for the first part of the integrand in (5.8). For m = yn we obtain the
two asymptotic relations
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o(ylv) o, v
(5.10) o'(y) - '\/3(1 — N2y — N2 42
- VR 10 (L)
V31 =Ny — N+ N Vn
and
o(v) r=1\1o V30 =NCy =N
(5:11) o(y )[ ( 2 )] T30 = N@y — N+ N

80 that if we denote the first term in the right hand members of (5.10) and (5.11)
by @ and b respectively, then o> + b = 1. Taking the limit in (5.8) as n — «
with » = \n, m = yn and using the Lebesgue theorem, we can bring the limit
operator under the integral sign. Then, using (5.10), we obtain

1 2,2 r—1 v—E (v
(512) oF(t) = f m[1 ~ g+ 0 (nﬁ,z)] tim 615 Jg) dv
G’C’

(5.13) T f im "5 g () do.

Using the same Lebesgue theorem the limit operator can be taken outside the
integral sign. Then, using a result on the asymptotic normality of quantiles
given on page 369 in Cramér [2], we obtain

262 b22 2

(5.14) o) e e 2 =¢ ¢

since o> + b® = 1. This proves the asymptotic normality of y for r = An,
m = yn (yand \ fixed with0 < A < landA <y < w)and n— .

It should be noted that the above proof holds no matter how fast m tends
to infinity. If m/n — « then ¢ = 0 and b = 1 and (5.14) still holds.

6. Illustration of rapidity of approach to normality. To illustrate the rapidity
of approach to normality of the statistics, we shall use the Edgeworth series
expansion

P26 = (0@) ~ {540 @)

+{H(-3) 0+ R(8) o)+ -,

where ®(z) is the standard normal c.d.f., " (z) is its rth derivative-and z de-
notes the standardized variate corresponding to . We wish to compute one, two,
and three terms of (6.1) as indicated by the braces for the two special cases of
T : viz., (i) m = r and (ii) m = n. These have been computed for n = 10,
r = 5 and the results are compared in Table I below with the exact values com-
puted from (2.6).

(6.1)
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TABLE I
Comparison of exact probability PITi™ < ] and Edgeworth approximations
Approximations
Case ! x Prfb:%(i:ltity
1 term 2 terms 3 terms

@) 1.5 0.26656 .6051 .6340 .6318 .6327
r=25 2.0 1.24393 .8932 .8851 .8849 .8839
m=25 2.5 2.22131 .9868 .9761 .9780 .9769
n = 10 3.0 3.19868 .9993 .9975 .9969 .9973

(ii) 4.0 0.30754 .6208 .6312 .6261 .6259
r = 5.0 1.15329 .8756 .8736 .8681 .8671
m = 10 6.0 1.99902 L9772 .9723 L9741 .9739
n = 10 7.0 2.84475 .9978 .9963 .9976 .9979
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