A MULTIVARIATE TCHEBYCHEFF INEQUALITY!
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0. Abstract. A multivariate Tchebycheff inequality is given, in terms of the
covariances of the random variables in question, and it is shown that the in-
equality is sharp, i.e., the bound given can be achieved. This bound is cbtained
from the solution of a certain matrix equation and cannot be computed easily
in general. Some properties of the solution are given, and the bound is given
explicitly for some special cases. A less sharp but easily computed and useful
bound is also given.

1. Introduction and outline. Tchebycheff’s inequality states that if y is any
real random variable with mean 0 and variance o2, then

(1.1) P(ly| = ko) = 1/K%.

Berge [1} has generalized this result as follows. If y; and ¥, are any real ran-
dom variables with means 0, variances o; and o3 respectively, and correlation
p, then

(1.2) P(|yi| = kor or |ya| = kes) < 1—41—‘%———1"’2

Berge gives an example where the inequality is achieved.

Suppose ¥y = (y1, - -, ¥p) is a random vector with mean 0 and nonsingular
covariance matrix 2. We seek an upper bound, depending on Z and %, ---,
kp , for P(ly:| = kio; for some 7).

The problem can be reduced by letting z; = y;/(k0:). Thenz = (z;, -+, zp)
has mean 0 and covariance matrix I = K 'RK ", where R = (p;;) is the cor-
relation matrix of ¥ (and of z), Il;; = o0y;/(oiwikik;) = pij/(kik;), and K is a
diagonal matrix with diagonal elements &, , - - - , k, . Furthermore, |y;| = k.o, if
and only if |z;| = 1, so P(|ys| = k.o for some 7) = P(|z;| = 1 for some 7).

Suppose 4 is a p X p matrix such that

(1.3) zde’ 21 if |x] =1 for some 7.
Then, looking at scalar multiples of z, we see that

(1.4) zdz’ 21 if |z =1 for some 7,
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and that
(1.5) zdAx’ = 0 for all z,

i.e., 4 is positive definite. Therefore
Lemuma 1.1. If A satisfies (1.3), then
(1.6) P(lyi| = kioi for some ) = P(|x;| = 1 for some i) < E(zdz’) = tr All,

where tr denotes trace.
Each A satisfying (1.3) therefore gives an upper bound for

P(|z;| = 1 for some 7).

The smallest bound obtainable in this way is the minimum of tr AII over all 4
satisfying (1.3). The set @ of all such matrices 4 is obviously convex, closed,
and bounded from below, and tr AII is linear in A4, so this minimum is achieved
at an extreme point of @ In Theorem 3.3 it is shown that A is an extreme
point of @ if and only if A™ is positive definite and has 1’s on the main diag-
onal. Furthermore, there is a unique extreme point of @ minimizing tr AII,
namely that extreme point A such that AIIA is diagonal (Theorem 3.5). The
bound thus obtained is the best possible, inasmuch as, if it is less than 1, there
is a distribution for x (with mean 0 and covariance matrix II) under which it
is achieved, and otherwise there is a distribution for  under which

P(|z;] = 1 for some z) = 1

(Theorem 3.7).
The minimizing matrix is easy to compute explicitly only in some special

-1
cases (Sec. 5). Inthe case p = 2, ky = ke, = k, Berge lets 4 = <¢11 111) , shows

that A satisfies (1.3), and minimizes tr AII with respect to a. Following this
lead, in Sec. 2 we let A .= [(1 — a)I + ae’e]™, where e = (1, ---, 1), show
that A satisfies (1.3) for 1 > a > —1/(p — 1), and minimize tr AII with re-
spect to a, obtaining the bound in Theorem 2.3. Though the minimum over
such A is in general, except in the case p = 2, not the minimum over all 4
satisfying (1.3), it provides a useful and easily computed bound. Lal [3] con-
siders a matrix similar in form to that of Sec. 2. However, this does not lead
to the best bound, as Lal asserts, and indeed his bound is not as tight as that
given in Theorem 2.3 unless p = 2 or p;; = 0 for all 7 = 7.

2. A multivariate inequality. We will now carry out the program of the last
paragraph.
Lemma 2.1. A = [(1 — a)] + ae’e]™ satisfies (1.3)if 1 > a > —1/(p — 1).
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Proor. A = [(1 — a)] + ae’e] " = (I — ae’e)/(1 — a), where
a=a/ll + (p — 1)a). z[I — adelr’ =Y i — aQ z:)°

a2l if 02az —1/(p—1), Iie, a < 0;
{(1 —pa)) z; if 0<a<1, ie., 0<=a<l/p

(The second case follows from (3 z;)* < p>_ «;.) The right-hand side becomes
infinite with Y, 27, so the minimum over all (p — 1) — vectors 2 of

(1, (I — ae’e)(l, 2)’
occurs at a finite 2. Differentiating
(1, 2)T — ae’e)(l,2) =1+ 28 — a(l + 2 2)’

with respect to each z; we find that the minimizing z must satisfy 2z; — 2«(1- +
> 2;) = 0 for all 4,or 2 — aze’e — ae = 0. (Here e has p — 1 coordinates.)
It follows that all 2; are equal, and that > z; = (p — 1)a, so z = ae. There-
fore the minimum over z of (1, 2)(I — ae’e)(1, 2)’ is 1 — a, and thus the mini-
wmum over z of

>

(1, 24(1, 2)’

is 1. The lemma follows. (See also Lemma, 5.1.) || (This symbol will be used to

indicate the end of a proof.)
Lemma 2.2, tr[(1 — a)] + ae’e] 11 4s minimized for 1 > a > —1/(p — 1)

by

_t—Vupt —uw)/(p - 1)

u— (p— 1t ’
where t = trII = E o, = 2 1/’63 and u = elle’ = ZH;,’ = Z p;j/(k,‘kj).
Proor. tr[(1 — a)] + ae’e] ' = tr (I — ae’e)ll/(1 — a) = (t — au)/(1 — a).
The derivative of this quantity with respect to a has zeros at
_tE Vulpt — uw)/(p — 1)

u— (p— 1t :
The condition 1 > a > —1/(p — 1) is satisfied if and only if

FVult — w/(p — 1)
is between u/(p — 1) and (pt — u). The upper sign is impossible because
u/(p—1) and  (pt — u)

are both positive. The lower sign is possible because Vu(pt — w)/(p — 1) is
the geometric mean of u/(p — 1) and (pf — u). The extremum is a minimum
since (! — au)/(1 — a) = o asa—lora— —1/(p — 1). ||

Substituting (2.1) in (1.6) and simplifying, we obtain, by Lemmas 1.1, 2.1,
and 2.2,

(2.1) a

a
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TueoreM 2.3. P(lyi| = k.o, for some i) = P(|zi| = 1 for some 1)

p—1 p—2 2
s St et Vet — W — 1)

= [Vu+ vVt — v — DI'/p"

In the case p = 2, we obtain

1
P(ly1] = kroror |y2] = kaoa) = 202 (%3 + & + Vi + k) — 40%2 k3,

which is Lal’s equation (B), and is to be compared with Berge’s result, (1.2).

3. The sharpest inequality. In this section we seek the tightest bound ob-
tainable from Lemma 1.1, and show that it is sharp, following the outline in the
next-to-last paragraph of Sec. 1. What we seek, then, is the minimum of tr AII
for A satisfying (1.3), i.e., for A € @. As remarked before, the minimum occurs
at an extreme point of G@. We start by characterizing, in Lemma 3.2, the mat-
rices in @, and, in Theorem 3.3, the extreme points of @. We use the following
lemma, which has some independent interest.

LemMa 3.1. If A is positive definite, the minimum of xAx' for xy = 1 4s 1/bn
and occurs at (1, b/ bu), and only there, where

()Y
b Ba a  An
Proor. It is easily checked that
by = (an — add)”, b= —buads, Bn= An + Andbueds .
“Completing the square,” we have
(1, 2)AQ, 2)’ = au + 202’ + 24457
= ay — adnd + (z + aA;;)Agg(z + ad3)
= bit + (z — bu'b)Am(z — biid)'.
Since Aj, is positive definite, the lemma follows. Alternatively, (1, 2)A(1, 2)’

could be differentiated with respect to each coordinate of z, as in the proof of

Lemma 2.1. ||

It follows from this lemma and (1.5) that

LemMmA 3.2. A @ if and only if B = A7 is positive definite and by; = 1,
1= 1’ cee D

TurorEM 3.3. A is extreme in G if and only if B = A~ is positive definite and
bu=1¢=1,---,p.

Proor. (i) Suppose B is positive definite and all b;; = 1. Then, by Lemma
3.2, 4 £ @. Suppose A = (4; + A2)/2, A; € @, A; € G. For each 7, by Lemma,
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3.1,
1 = 1/b; = min zA2’ = % [min 24, 2’ + min 24, 2'],
zy=1 zi=1 z;=1
min 24; 2’ = 1. min z4: 2’ = 1.
z;=1 z;=1

It follows that

min z4; 2’ = 1 = min z4. 2,
zy=1 zy=1
and the minima occur at the same point. This implies, by Lemma 3.1, that the
ith row of A7! equals the ¢th row of A3". As this is true for each ¢, 4; = A,.
Therefore A is extreme in @, which proves the “if”.
(ii) If B is-not positive definite, A ¢ @, by Lemma 3.2. Suppose B is positive
definite but b;; < 1 for some ¢, say by < 1. Let

_ 6 O\ _(bu+d b

B@) = B + (o 0) = ( % Bn)'

By Lemma 3.2, B7'(8) £ @ for § small enough. If we can choose & = 3, such

that B7'(3) ¢ @, B7(8) ¢ @, and

(3.1) A =B =6B7s) + (1 — 6)B7(5)

for some 6, 0 < 6 < 1, we will have shown that A is not extreme in Q.
According to the first sentence of the proof of Lemma 3.1, with 4 and B in-

terchanged, B~'(8) is a linear function of its upper left element a;(8), so (3.1) is
equivalent to

ay = au(O) = 0(111(61) -+ (1 bnd G)au(&z).
Furthermore,

1 = 1 = an
bu+ 6 —bBnbd &4 1l/an 1+ dan

Therefore (3.1) is equivalent to
D (1 —6)0 _

14+d&au 144 620n ’

and it is clear that & and &, can be chosen as desired. ||

This reduces the problem to that of minimizing tr B™'II for B ¢ ®, where ®
is the set of positive definite matrices with ones on the main diagonal. We will
now show that tr B~'II is minimized at a unique interior point B of ®, (Theo-
rem 3.4), and characterize B (Theorem 3.5).

THEOREM 3.4. tr B'II ¢s a strictly convex function of B for B ¢ ®, and has a
unique minsmum, which occurs at an interior point B of ®.

Proor. Let B(¢) be a straight line in ®&. Then dB/df is a symmetric matrix,

an (5) =
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d’B/dff = 0, and

d. pa _ o1 (dBY oo

S4B = — tr B (W)B 1,

&, - (dB) - (dB) -1
a‘—tztrB II—2,trB —J-t- B —% B H>0.

This proves the strict convexity. The rest follows, since ® is convex
and bounded, and tr B™'Il — « as B approaches the boundary of ®. The latter
follows from the fact that

tr BMI = (tr B™")(smallest eigenvalue of II). I

_ TueoreM 3.5. B is the unique point of G such that B"TIB™, or equivalently
BB, is diagonal.
Proor. By Theorem 3.4, B is the unique point of ® for which

d ., 0 . (B . . (dB
d_b,-;trB II =trB (%Z)B I = tr(dbij
for ¢ > j, where C = B~'IIB™", and dB/db.; is a matrix with all elements zero
except the (¢, 7)-th and (j, ¢)-th, which are one. ||

We note that B™IIB™" = C if and only if

B = H1/2(H1I2CH1I2)—1/2H1/2 = C—1/2(CII2HCI/2)1/20—1/2

By Theorems 3.3, 3.4, and 3.5, the tightest inequality obtainable from Lemma
1.11is
THEOREM 3.6. P(|y:| = kio: for some i) = P(|z:| = 1 for some 1)

< tr B7'MI = tr BB,

)B"‘IIB" =2¢; =0

where B is the unique positive definite matriz having ones on the main diagonal
such that BII"'B is diagonal.

We note that tr B™'II = tr (B"IB™)B = tr BB, since B™'NB™ is
liagenal and B has ones on the diagonal.

According to the following theorem, the bound given in Theorem 3.6 is the
~mallest possible bound except when the smallest possible bound is the trivial
bound 1.

TuEOREM 3.7. Let © = BB~ and 6,, ----, 0, be its diagonal elements.
Then

tr B0 = tr BB = tre = 0.
IfY 6; < 1, equality holds in Theorem 3.6 if and only if
Pz =b) = P(x = —=b") = 0,/2, i=1,---,p,

@2 Pz=0)=1- 26,
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where b', - - -, b® are the rows of B. Ion; > 1, P(|zs| = 1 for some) = 14f
33) P(x=\/—z—0ibi)=P(x.= -—\/ZO,-bi)= 0i/(220e'),
| i=1,--,p.

Proor. If 2 6; < 1, (3.2) is a distribution for z, and if = has this distribu-
tion, equality holds in Theorem 3.6. If z has the distribution (3.3) and Y_ 6; > 1,
then, with probability one, |z = / > 6;: > 1 for some 4. In either case, « has
mean 0 and covariance matrix

E@'z) =2 05" = BoB = 1L
This proves the ‘“if”.

It remains to prove the ‘“‘only if”’. Suppose > 6; < 1and equality holds in
Theorem 3.6. Then, by the relation of (1.6) to (1.4) and (1.5), with probability

one,
xB7%" =1 if |z = 1 for some ¢,
and
zB™'2’ = 0 otherwise.

It follows, by Lemma 3.1, that the distribution of z is concentrated at 0 and
+b', -+, b”. Then
E(x) =2 [P(x = b%) — P(zx = —b )b'.

But E(z) = 0 and b, --- , b” are linearly independent, since they are the rows
of a non-singular matrix, so P(zx = b*) = P(x = —b") for all 7. Then

E(x'z) =2 2P(z = b)b"d* = BDB,
where D is a diagonal matrix with diagonal elements
2P(x = b'), .-+, 2P(z = b").

But

E(@@'z) =1, so D= B"IB" = o,
and (3.2) follows. |

4. On the solution of BB = II. From II = BOB, we find that
I; = 2 abiababas s

and for 7 = j we have the system of equatic.ms

1/’03:25?“0,,, i=1-,p

If we write B X B = (b%,), then
B, -+, 0,) = (kx*, -+, kz)(B X B)™.
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Thus given B and k;, -+ - , k, , we can solve for © and II. The matrix B X B
is the Ha,damg,rd product, and is positive definite if B is ([2], p. 143). Given
ki, .-+, kp, B results from some II if and only if B ¢ ® and

%, -+, k)(B X B
has positive elements. The following example shows that this last condition is
not automatically satisfied.

1 8 8 9375 —4800 —.4800
B=(8 1 5), |BXB|(BXB™=|-—480 5904 .15 |,
8 5 1 — 4800 1596 5904
ki= - =k, =
Every B ¢ ® results from some k; , - - - , k, and II, e.g., for
(krz) e ’k;z) = (1) ] I)B X B.

This section began with a procedqre for determining II from B by standard
matrix operations. It appears that B cannot be obtained from II by standard
matrix operations except in special cases. We now give two properties of the
solution (Theorems 4.1 and 4.2).

TueoreM 4.1. If P is a permutation matriz and PIIP = II, then PBP B.
Proor.

(PBP)I"(PBP) = PBII'BP = Po'P = 6!
PBP ¢ ®, so by the uniqueness in Theorem 3.5, PBP = B.|

_(m AL
TareoreMm 4.2. If II = 0 II) then B = ( 0 B) where B; minimizes

tr B;H;i m ®; 5 7 = 1, 2.
Proor. If BJI;'B, is diagonal, ¢ = 1, 2, then BII"'B is diagonal, and by the
uniqueness of B, the conclusion follows. ||

b. Special cases.
TureoreM 5.1. If II'? has equal diagonal elements, say, d, then

B=10"/4d, e=dI
and
P(lys| = kio; for some ) = P(|zi| = 1 for somed) < tr B7'II = d’p.

This follows from Theorem 3.5. (The result for singular II is an easy conse-
quence of the result for non-singular II.)

We note that IT'? has equal diagonal elements if the group of permutation
matrices P such that PIIP = II is transitive, i.e., every coordinate of x can be
carried into every other one by a permutation of coordinates which preserves



234 INGRAM OLKIN AND JOHN W. PRATT

the covariances, i.e., k; = --- = k,, and every coordinate of y can be carried
into every other by & permutation of coordinates which preserves the correla-
tions. This follows from the fact that PIIV2P = II'? if PIIP = P, since then
(PI'*P)* = PIIP = 1L

B = (1 — a)I + aé'e, i.e., the inequality of Sec. 2 is the best possible, if and
only if the elements of II are

H,',' = ]./k?,

(56.1) a —2 —2 a(l — a) —2
IL; = pij/kik; = 1+ al:lw + k" + m Zka ],

in-which case
(5.2) P(lyi| = kig: for some 4) < tr B7I = Zk7°/[1 + (p — 1)a’].
In the case p = 2, I is always of this form and (5.2) yields (2.6).

Ifky = -+ =k, = k, and II;; = 1/k%, II;; = p/k’, then II is of the form
(5.1) and
P(|y:| = ko, for some 7)) < tr B~
63) - p _lp = DNVT=p+ VT F = Dl
K1+ (p — Dd?] pk? :

This could also be obtained from Theorem 2.3, or from Theorem 5.1.

me = Vi=p; WT+p(=Dp= V1=,
k kp )
For special values of p and p we obtain in addition to Berge’s result (1.2),

the following inequalities.
() p = 1: P(lyi| = ko, for some ) < 1 /k?, which amounts to the univariate

Tchebycheff inequality.

(ﬁ) p=0: For p uncorrelated random variables,

P(lyi] = k.o for some ) < D k77,

whereas for p independent random variables, the univariate Tchebycheff in-
equality yields the bound 1 — JT2., (1 — k7%). ,
(iii) p = —1/(p — 1): P(lys| < ko, for some ¢) < (p — 1)/
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