SEMIMARTINGALES OF MARKOV CHAINS

By Joun G. KeMENY AND J. LAURIE SNELL!

Dartmouth College

1. Introduction. We shall deal throughout this paper with absorbing Markov
chains with a finite number of states. An absorbing Markov chain is one that has
a set of “boundary’’ states which once reached cannot be left, and such that from
any state the process reaches the boundary with probability 1. The chain is
given by the transition matrix P, with entries p,; .

More precisely, a state 7 is a “boundary” state if p;; = 1. The remaining states
will be called ““interior” states. We must require that it is possible to reach the
boundary from every interior state, not necessarily in one step. We assume,
that there are r absorbing states and s interior states. The set of boundary states
will be called B, the set of interior states I.

An upper semimartingale is a function on the states of the chain, such that
the expected value of the function after one step from any state is greater than
or equal to the value of the function at the state. A lower semimartingale is
defined similarly, with the inequalities reversed. A martingale is a function on
the states that is both an upper and a lower semimartingale.

A function on the states can be conveniently represented by a column vector.
Such a vector z is an upper semimartingale if Pz = 2, a lower semimartingale if
Pz < 2z, and a martingale if Pz = z.

We assume that a set of nonnegative boundary values is assigned to the ele-
ments of B, v; being assigned to state j. We denote by U the set of all non-
negative upper semimartingales and by U* the set of all nonnegative lower
semimartingales having the right boundary values. Thus U is the set of all
vectors such that

(@) Pz=2z ((b)z=0, (c) {2}; =v; for jeB.

The set U* consists of the vectors satisfying conditions (b) and (c), and con-

dition (a) with the inequality sign reversed.
Throughout the paper {z}; will denote the jth componnet of the vector z.
Inequality signs between vectors will assert that the inequality holds com-

ponentwise.

A representation theorem will be developed for all nonnegative semimartin--

gales with the prescribed boundary values in terms of martingales of modified
chains. A modified chain is one obtained by adding interior states to the bound-
ary, and assigning value O to them. The representation is unique and leads to
a simple geometric interpretation. U will be represented (except in certain de-
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generate cases) by a convex cubic s dimensional polyhedron. In degenerate cases
the polyhedron reduces to smaller s dimensional polyhedra, including an s-sim-
plex in the most degenerate case. U* will be obtained from a reflection of U
through the unique martingale.

These results will be applied to a treatment of certain sequential games, and
to discrete’ subharmonic functions. In the latter application we will see that
discrete subharmonic functions can be expressed as convex combinations of
certain harmonic functions. And it is well known that the discrete harmonic
function for given boundary values may be interpreted as the expected final
value of a random walk. Hence we have a method of obtaining all discrete sub-
harmonic functions in terms of certain random walks.

2. The basic semimartingales. Let T be a subset of I and denote by P(T) the
transition matrix obtained from P by changing the states in 7' into absorbing
states. Let Q(T) = lim,.,, [P(T)]". Then the #jth entry of Q(T), ¢:;(T) repre-
sents the probability, that starting at state 7, the process will reach state j
before reaching any element of 7. Let ¢;(T) denote the jth column of Q(T).
Then since

Q(T) = P(T)-Q(T),
agei(T), 12T,

¢:ii(T) = ka 2(T) z‘z

1eT,

we see that
Pgi(T) 2 ¢i(T), jeB.

Thus ¢;(T) is an upper semimartingale. It has the boundary value of 0 on all
states of B except j, and has the value of 1 on this state. Thus the vector z(T')

given by
2(T) = 2 0 (T)
=

is a nonnegative upper semimartingale with the prescribed boundary values;
z.e., for each T, 2(T) is an element of U. We shall refer to 2(T') as a basic upper
semimartingale.

The vector 2(T") may be interpreted in a game played as follows: The process
starts in a given state, and continues until it reaches a state in T', or a state in
B, and is then stopped. If it stops at a state 7 in B the player receives v; ; if it
stops at a state in T, he receives 0. Then {z(T)}; represents the expected value
of the game to the player starting at state 2. We shall appeal to this interpreta-
tion for certain simple results, rather than give detailed proofs. For example:

Lemma 1. Assume that Ty and T, are subsets of I such that Ty & T, . Then
2(T1) = 2(T,).

From this interpretation we can easily determine 2(¢) and 2(I). If T = ¢,
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then our game is always played till the boundary is reached, and hence z(¢)
is the unique martingale with the prescribed boundary values. If T = I, then
we can never reach the boundary from 7. Hence

L Vi, 1¢B

teD}s = {0, ieI}'

It can be seen from Lemma 1 that z(¢) and 2(I) are the largest and smallest
2(T), respectively. Since we will see later that all elements of U are convex

combinations of z(T)’s, we see that z(¢) is the maximal and z(I) the minimal
element of U.

3. A special case. We shall first solve the problem of describing U for the case
where the following hypothesis is satisfied.

Hyrotarsis A: The boundary values v; are all positive, and for any state © in I
there s at least one j tn B such that p;; > 0.

In the case that hypothesis A is satisfied the game interpretation for z(T)
makes it clear that the following lemma holds.

LemMma 2. Under hypothestis A, the z(T) have the property that

{Pz(T)}: = {2(T)}:i >0 foriel — T

and
{Pe(T)}i > {2(T)}i =0 forieT.

Thus fer each component of 2(T) exactly one of the equalities in the defining
conditions (a) and (b) of U holds. ,

Lemma 3. Let x1, 22, -+, Zn be distinct nonnegative vectors. Let W; be the
set of components of x; which are 0. Assume that if W; & Wi then x; = 2 . If s0
the vectors are convexly independent.

Proo¥. Assume that z; = D_; a2 with @z > 0 and k 5 ¢ and D s ar = 1.
Then a component of z; can be 0 only if all the x; have this component 0. Hence
W: € Wi, and z; = z; for all k. But this can only be true if z; = z; for all %,
contrary to hypothesis.

DErFNiTION. A convex n-dimensional polyhedron is cubic if in every j dimen-
sional face for each ; — 1 dimensional subface there is a unique nonintersecting
j — 1 dimensional subface (j = 1,2, --- , n).

TaroreEM 1. If hypothesis A is satisfied, then U is a convex cubic polyhedron
with 2° corner points. These corner points are the z2(T) for T & 1.

Proor. We observe first that the 2° 2(T') are distinct and convexly independent.
This follows from Lemmas 1 and 3. We shall now prove that the convex set
spanned by the 2z(T) is a cubic polyhderon.

A j dimensional face of the convex set spanned by the z(T)-is-determined by
picking any r — j interior states and requiring that one of the equalities

(@) {P2(T)}s = {2(T)}s,
(b) {(T)}s = 0
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hold for each 7 in the set chosen. To obtain a j — 1 dimensional subface of this
face we impose an equality on one more component—say k. It follows from
hypothesis A that Pz > 0. Hence it is not possible to have equality (a) and
(b) for the same state. Hence this ; — 1 dimensional face cannot intersect the
face obtained by choosing the other equality for the kth component. By Lemma
2 we can find a 2(T) which has any prescribed set of equalities one for each of
the pairs (a) and (b). Thus any ; — 1 dimensional face obtained by choosing
an equality for a component ¢ # k must intersect that obtained by choosing an
equality for component 7. Thus the set spanned by z(7T') satisfies the conditions
for a cubic polyhedron.

To complete the proof of the theorem we must show that if z is in U then
it must be in the cubic polyhedron spanned by the basic upper semimartingales
2(T). But if z is in U it must satisfy

(a) Pz = 2,
(b)z = 0.

Thus for each interior state ¢ it must lie between the hyperplane obtained by
requiring {Pz}; = {z}; and the hyperplane obtained by requiring {z}; = 0
But this means that z must lie between each pair of opposite faces in the cubic
polyhedron spanned by 2(T"). Hence it must lie inside of this polyhedron.

DEFINITION. A sequence To C T; C --- C T of subsets of I is called a chain.
The corresponding sequence of corner points 2(To), 2(Th), - - - , 2(Ts) is called
a z-chain. If k = s, the chain is called mazimal.

It is clear that the elements of a z-chain are linearly independent and hence
span a simplex. A simplex spanned by a z-chain will be called a z-simplez.

LemMa 4. Every face (of every dimension) of the cube U has a mazximal element.

ProoF. In the s-dimensional cube U, every jface (j = 0, 1, - -+, s) is a j di-
mensional cube. This is clear from the definition of the cubic polyhedron. The
face of the cube is specified by imposing equalities of type (a) or (b) on r — j
components.

Since we have a polyhedral set, it suffices to show that there is a maximal
corner. The corners are specified by imposing equalities of one of the two types
on each of the j remaining components. It is a direct consequence of Lemma 1
that a corner 2(T) is maximal if its 7 is minimal. Hence we get a maximal corner
by imposing equalities (a) on all 5 of the remaining components.

LeMMA 5. The intersection of two z-simplexes (if not empty) is a z-simplex which
18 a common face of the two original simplexes.

Proor. Let ToC Ty C --- C Trand To € Tt € --- C T . Let the two
simplexes be determined by the corresponding 2’s. If there is a nonempty set of
T’s that the two chains have in common, then they span a common face. We
will show that this is the intersection of the two simplexes.

It will suffice to show that all the remaining corners of the second simplex
(if any) lie outside the first simplex. Let T” be one of the sets in the second chain
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that is not in the first chain. If 2(7”) lies in the first simplex, then it is a convex
combination of its corners. But this is impossible, since the z(T')’s are convexly
independent. This completes the proof.

LEMMA 6. Every point of U lies in at least one z-simplex.

Proor. Let 2, be a point of U. Starting with ¢ we will construct a chain so
that 2z will lie in the simplex spanned by the corresponding z-chain.

First of all, draw a line from 2(¢) through z, and continue it till it hits a face
of U (of dimension less than s). Say it meets this face in the point z . Then 2
is in the set spanned by 2z(¢) and z;. In this face we pick the maximal point
2(T;), which exists by Lemma 4, and draw a line from it through 2, till we hit a
face of lower dimension at a point 2, . Since 2 lies in the set spanned by 2z(T:)
and z;, we know that z is in the set spanned by z(¢) and 2(T,) and 2z,. We
iterate this procedure until some z, turns out to be a corner 2(7T,). This must
happen, since the dimension of the face decreases at each step. Then we will
have z, in the set spanned by 2(¢), 2(T1), - - - , 2(T%).

At each step we first introduced the minimal 7T in the face, hence the T”s
are monotone decreasing and hence form a chain. Thus the corners we found
form a z-chain and the set they span is a z-simplex, which contains z, .

THEOREM 2. Any 2 in U can be written uniquely as

k
20 = Zo a; z(T,-),
ju=

witha; > 0 and Y a; = 1, where the 2(T)’s used form a z-chain.

Proor. Let 2 be any point in U. By Lemma 6 it lies in at least one z-simplex
Form the intersection of all z-simplexes that contain z, . This intersection is not
empty and hence by Lemma 5 it is a common face of all the z-simplexes. This
smallest possible z-simplex serves the purpose of our representation. Its corners
form a z-chain, and we can write 2y as a convex combination of these. The weights
a; must all be positive, or else the point 2, would lie in a smaller z-simplex.

To show the uniqueness of our representation we need only recall that the
representation of a point in a simplex in our (barycentric) representation is
unique. To get a representation of our form, the z-chain used must span a simplex
containing 2z, . Hence the minimal simplex is a face of it. Hence the a;’s can be
all positive only if the simplex is the minimal one we found. This establishes the
unique representation.

It is worth remarking that the theorem established only the uniqueness of the
smallest z-simplex containing z, . If this simplex is of a dimension smaller than
s, then it is a common face of several z-simplexes. If hypothesis A is satisfied,
then there are s! maximal z-chains, and correspondingly s! maximal z-simplexes.
The cube is divided into these, and they overlap only in that they have common
faces of lower dimension. If a point is in the interior of one of the maximal
simplexes, then it is expressed by putting positive weights on all s 4 1 corners.
If it is on a face, we must apply the same consideration to the smaller simplexes
in which it lies. ‘
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4. The general case. If we drop hypothesis A, most of the previous considera-
tions still apply. However, the argument as to the distinctness of the 2(T)’s
breaks down. But by a continuity argument we can see that any case where the
hypothesis is not fulfilled is a limiting case of ones where the hypothesis holds,
and hence the worst that can happen is that some of the 2(T')’s coincide, and
hence we have fewer corners on U. While it is still a polyhedron of dimension s,
it need not be cubic, and there will be fewer distinct z-simplexes. We will show how
the distinct z-simplexes can be found in the general case.

Let B* be the set of boundary points which have nonzero values assigned.
We assume that B* is not empty.

DEFINITION. A set T is fundamental if from any point in I — T it is possible
to reach B* without going through T'.

Let T be any set which is not fundamental. Add to T all states which are cut
off from the set B* by T. The new set T’ is fundamental and 2(T) and 2(T") are
the same. On the other hand the z(T)’s whose T is fundamental have 0 com-
ponents exactly on T, and hence are distinct. Thus the extreme points of U are
given by the z(T)’s with T fundamental.

LumMA 7. There exists at least one z-simplex of dimension s.

Proor. Let the index of an interior state be the minimum number of steps
required to reach a state of B* from it. Reorder the states in such a way that
their indices are nonincreasing. Then from any state it must be possible to
reach the boundary without going through a state appearing earlier in the
sequence. Let T; be the set of the first j states. Then To, Ty, Ty, -+, Tsis a
complete chain with all the T;s fundamental. Hence 2(To), 2(T4), - - , 2(Ts)
form the corner points of a z-simplex of dimension s.

Lemma 7 is all that is needed to insure the construction used in Theorem 2.
Hence the representation theorem applies equally well to the general case.
The lemma also establishes that even in the degenerate cases U has dimension s.

5. The set of lower semimartingales U*. The set U* of all lower semimartingales
having prescribed boundary conditions is determined by replacing the condition

(a) Pz = =
by the condition
(a’) Pz = =.

It is easy to determine the set U* from what we know about U. Each face (of
dimension j — 1) of U lies in a hyperplane determined by an equality {Pz}: = {z}:
or {z}; = 0. The latter type faces lie in the coordinate planes. The former nor-
mally protrude, and they have the martingale z(¢) as maximal corner. U* is
obtained by taking the set that lies on the other side of the hyperplanes
{Pz}; = {z}:. Thisis-an s dimensional cone with z(¢) as minimal element. Thus
U* is the reflection of U through z(¢)—and its linear extension. We also see that
the martingale is the maximal upper semimartingale and the minimal lower
semimartingale—the only point U and U* have in common. It is possible to
represent these lower semimartingales in terms of the 2(T)’s. In fact let 2* be
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any point in U*. Then a line from z* through z(¢) will intersect a coordinate plane
in a point z in U. Then z may be uniquely written in the form

2 = 2(¢) + A(2(¢) — 2),

where A is a nonnegative constant. On the other hand, by Theorem 2
= ;a2(T;),a;>0,and > a; = 1. Thus

2* = 2(¢) + A(2(¢) — 2 a; 2(T)),
and 4 and the a;’s are unique.

We can summarize this by saying that we have a unique representation for
lower semimartingales:

k
2t = q 2(T;),
=0

where a; < 0forj > 0,and D a; =1, with¢ = Ty, Ty, C --- < T} forming
a chain.

6. Arbitrary boundary values. We have assumed that specific boundary values
were given. The particular convex polyhedron obtained for U depends on these
boundary values. However, the extreme points z(T) are easily obtained from
Q(T) for any choice of boundary values. In fact 2(I) is the vector with r com-
ponents given by the boundary values and O for all other components. The
vectors z(T) are given by 2(T) = Q(T)z(I). The matrix Q(T) does not depend
upon the boundary values, thus when we find these Q(T')’s we have essentially
solved the problem for all possible conditions.

7. Two examples. We shall give here two examples, one where hypothesis A
is satisfied and one where it is not. For the first case let P be

00
P =

N O O =t
Quk - O
B e O
B o O

The states B = {1, 2} are the boundary states and I = {3, 4} are the interior
states. Assume that »; = 2 and v, = 1. The corner points are given by

2 2 2 2
Martingale = 2(¢) = é ; 2({38)) = (1) ; 2({4)) = 1 ; 2({38,4}) = (1) .
2 % 6 0

The set of all upper semimartingales consists of the set of all vectors

2

8 M=
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III

7/5, 9/5)

(0,4/3)

(0/, 0) (1/2,0) x
Fig. 1

where (z, y) is a point in the quadrilateral in Fig. 1. There are two maximal
chains {0}, {3}, {3, 4} and {0}, {4}, {3, 4}.

The regions above and below the dotted line, indicated by I and II, respec-
tively, are the corresponding simplexes. The lower semimartingales are given by
region III.

As an example of a case where we.do not get a cubic polyhedron we consider
the problem of random walk on the line with states 0 and s 4+ 1 absorbing.
Then the interior states are I = (1, 2, --- , s). We require that v(0) = 0 and
v(s + 1) = 1. It is clear that many subsets of I are not fundamental. In fact the
only fundamental sets are the sets ¢ and T; = {1,2,---,j} forl £ j < s.
Thus U is the s-dimensional simplex with corners 2(¢), 2(T1), 2(T2), - - - , 2(T.)
These corner points are easily found from the ruin probabilities. They have
coordinates for the interior states given by

0, 1 = J,

{2(Tp}: = iy Y
¥ T=; J<u

Thus any upper semimartingale vector

with ao = 0, a;1 = 1,isgiven by z = ;20 £;2(T;), 2 ¢; = 1. In this case it is
easy to reverse the process and to find the #’s from the 2’s. In fact for given 2

to = (8 + l)al,
b=+ 1—-lajm—2e;+a4], 1=5j=s.
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8. Application to sequential games. Consider an absorbing chain with r ab-
sorbing states and s interior states. Assume that we are given a vector

Urte
which determines the following game: The player starts in one of the states of
the chain. If he is at an interior state ¢, he may either quit and collect v; ,-or he
may move on with the given transition probabilities. If he reaches a boundary
state %, he collects v; and the game ends. Let z; be the value of the game to the
player if he starts in state 7. We wish to find the vector

zr+l
This is a special case of a problem considered in [2]. However, we can give a

more precise description of the solution in the case considered here. It is clear
that

(6] 2z = max [, Pz],

since the player may by quitting or continuing have either of these. We shall
now find a z having this property and then show that it is unique. Define

2 Z=inf, (2 = v,z = Pz).

That is, Z is the smallest lower semimartingale greater than v. If- 2 did not have
the praperty (1), then we could obtain a smaller semimartingale greater than v
by replacing {Z}; by max (v; , { PZ},) in any component ¢ for which {Z}; > max
(vs, {PZ};. Hence Z must have the property (1).

Assume now that, for some other z, (1) is true. Let T be the set of interior
states for which {z}; = v;, then

P(T)z = 2
and thus
Q(T)z = E.lﬂ [P(T)])"z = =
On the other hand,
P(Tr sz
so that

Tz =z
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From the interpretation of Q(T') (see Sec. 2), we know that Q(T)z depends
only on the components of zin B u T'. And this is the set where z = ». Hence,

Q(T)z = Q(T)w.
Thuse
z2=Q(T)z = Q(Tw = QT3 = =

But since z = » and = Pz we see from (2) that z = Z. Therefore, z = z. Hence
Z is the unique vector satisfying (1), and its components are the value of the game
for various starting positions.

The optimal strategy is to continue on any component where v; < {z};.

A similar analysis shows that if the player.wishes to minimize his fortune he
should find the largest upper semimartingale z less than or equal to » and play
only on states ¢ such that {z}; < v; . This latter problem has application to statis-
tical decision: theory (see [2]).

For the first example given in Sec. 7, let the payoff vector be

2
V3 '
Uy,
Consider the case of the maximizing player. The various possibilities are indi-
cated in Fig. 2. If (33) is in the interior of region IV then z = z(¢), v; < 2, and
4
v
v
interior region II or its dotted boundary, then the smallest lower semimartin-
gale greater than v is the point on the lower boundary of region I vertically above

-4 < 2, . Hence the player should play on each interior state. If ( 3) is in the
4

2y 111

--------- z(8) = (7/5, 9/5)

(0,4/3) 1

(0,0 (1/2,70) Z3
F1a. 2
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v. Thus 23 = v;3, 24 > v,. The player should stop on 3 and play on 4 in this
region. Similarly, in region III he should stop on 4 and play on 3. If (Z“) isin

4
region I, then 2 = » and he should not play on any state.

9. Games with a fee for each play. The results of Sec. 8 can be extended to
a game in which the player must pay a fee ¢; if he wishes to continue playing in
interior state 7. Alternatively, we may think of ¢; as the cost of carrying out an
additional experiment. Let ¢ be the column vector which is 0 in B and has com-
ponents ¢; in I. Then by an immediate extension of the previous argument, the
vector z giving the values of the various states satisfies

3) z = max(v, Pz — ¢).

Let d be the column vector such that d; is the expected cost to reach the boundary
from state 7. It can be shown that if we take the matrix § — P, where 4 is the
identity matrix, truncate it to the s X s matrix obtained by eliminating the
boundary states, and take its inverse, then the ¢jth entry of the resulting matrix
gives the expected number of times the process will be in state j if it starts in
state 7. (See [3], Chapter VII, Sec. 4.) This matrix multiplied into the truncated
c-vector gives the truncated d-vector. Remembering that both vectors are 0 in
B, we see that

(99— P)d =c.
Hence
(4) Pd =d —c.
Since d is a fixed vector, we have from (3) that
2+ d=max( + d, Pz — ¢ + d)
and from (4) we see that
29 d = max(v + d, P(z + d)).

But this is the problem we solved above. The vector z + d is the least lower
semimartingale greater than v 4 d. Thus the value of the game is given by the
vector z that is found: First we find the least lower semimartingale greater than
v + d, then we subtract d.

Thus the game with the cost vector ¢ is strategically equivalent to a costless
game in which the payoff vector v has added to it the expected cost of reaching
the boundary.

10. Application to discrete subharmonic theory. Consider the lattice of points
in the plane of the form (m, n) where m and n are integers. A random walk in
the plane is a.process which moves from (z, y) to (x + 1, %), (x — 1, ),
(z,y + 1), (z, y — 1) with equal probabilities.

Let B and I be finite sets of lattice points such that from any point of I a
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random walk can reach a point of B but cannot reach any point not in B u I
without going through B. Then B is called a boundary set and I an interior set.

Consider a boundary set B and interior set /. Assume that boundary values
v(j, k) are given on B. Then there is a unique lattice function f defined on B u I
having the property that

fG, k) = 1/4fG + 1, k) + 1/4/G, k + 1) + 1/4/G — 1, k)
+ 1/4f(j, k — 1), G, k)el,
and
1G, k) = 0@, k), - G, k) eB.

This function provides the discrete analogue for the solution of the Dirichlet
problem; the function f is a discrete harmonic function. One should ask the
corresponding problem for discrete subharmonic functions. That is, a function
f is a discrete subharmonic function with prescribed boundary values if

fG, k) = 1/4fG + 1, k) + 1/4f(G, k + 1) + 1/4f(G — 1, k) + 1/4f(j, k — 1),
G, k) eI,
fG, k) = v(j, k), (, k) € B.

In this case the solution would not be unique.

The random walk in 7 u B forms an absorbing Markov chain. Assume that
the boundary values are nonnegative. The harmonic function f is given by the
vector 2(¢). The subharmonic functions are the semimartingale vectors. Thus
the set of all subharmonic functions forms.a convex polyhedron and each such
function may be represented in terms of a finite number of basic semimartingales.
Each basic semimartingale z(T) is simply the unique solution for the Dirichlet
problem for boundary B u T with the given values on B and 0 on T'. Thus the
set of all subharmonic functions for a given boundary B may be represented as
convex combinations of the harmonic functions for the boundary sets Bu T.

We have reason to believe that these results obtained for discrete subharmonic
functions will lead to analogous results for ordinary subharmonic functions.
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