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1. Introduction. Let the members of a random sample from a distribution
F(z) with probability density F'(x) = f(z) be in order of magnitude z;, ---,
Tmy )y Tny, -+, an,Withz; £ 2ipu,2=1,---, N — 1,and m < n. We
shall compute the moments of the distribution of z,, and of the joint distribu-
tion of z,, and x, .

The results are derived under the assumption that F~ (x), the inverse of
F(z), is a polynomial. Then we discuss the applicability of the results to any
distribution for which F~'(z) is differentiable at m/(N + 1) and n/(N + 1).
In this general case no restriction on F(z) is imposed other than the differ-
entiability; in particular, the interval on which 0 < F(z) < 1 can be finite,
semi-finite, or infinite.

2. Present status of the problem. This problem is handled through analyses

of several specific distributions in reference [1] listed at the end of this paper.
It is suggested that any one of the Pearson type frequency curves can be ade-
quately approximated by one of the density functions handled in that paper.
Although a general method is employed, there is no general development or
general results; each distribution requires special, extensive computations. In
contrast to these earlier results, the present paper contains a general develop-
ment with results that are easily specialized to particular distributions.

Following [1] there have been discussions of asymptotic distributions. It is
known that if m and N increase with m/N approaching a limit different from
zero and one, under quite general conditions the distribution of z., is asymp-
totically normal; see [2] or [3]. Also it was pointed out in [4] that with some
restrictions on the distribution function the limiting distribution of z. as N
increases, but m is fixed, has the probability density

m™exp [my — exp (—y)l/(m — 1)!

where y is a normalization of z., ; see [5]. However, it is suggested in [6] that
in the case of the normal distribution if m = 1, one should have a sample of
size 10", and Mr. Kendall concludes in [5], p. 221, that “For practical pur-
poses, therefore, there is still no adequate general approximate form for the
distribution of mth values.” However, a contribution to the asymptotic case of
this problem is made in [6]. In contrast to these asymptotic results, the present
paper is concerned with the exact sampling distributions for any sample size.
In the case of large samples, known approximations concerning moments are
equivalent to the leading terms of some of the expansions of this paper.
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3. The moments of the distribution of z,, . The probability density function
of z,, is

(1) [B(m, N — m + DI7'[F(@)]" (1 — F@)""/(z)

where the coefficient is the reciprocal of the beta function.

We shall use the random variable ¢ = F(z,) whose probability density func-
tion is [B(m, N — m + )™ " (1 — £)" ™. We denote the central moments
of this distribution by »;, 7 = 0, 1, 2, --- . Using p to denote the mean, we
compute that p = m/(N + 1).

At first we shall assume that the inverse of F(r) is

r

2 Fl(z) = 2 aiz — p)'.

=0

Later we-shall remove the restriction that F~'(z) is a polynomial.
The kth raw moment of the distribution of z,, immediately reduces to

1
w = [Bm, N — m + l)l_lf0 FOre'a - 9" ™d,  k=0,1, -

For each k we can write as a finite sum
F7OF = 2 b0 — p)’
where the coefficients b; are functions of a; and k. In this notation we have
(3) we= 2 bwi.
We calculate that

v; = g (;) m = 1)1'\221\/ —m (—=p)’ ‘[ FomL ] e gy

S (Y m ) m =~ 1) gyl Y
- ot g -y () fpd D b L= D e

This expression will be reduced to a more convenient form. We use the identity

m—+ A _ Agp~! 1 _._N-m+1
NFAFD "TNFaFT T 7P yET

and reduce »; to

L : i\ Tt Agp™* ) .
V*’"pjgo(_l) <]>E(l+m , 1—0,1,2,"'

In this formula

= Agp™ : Agp™’
AI=-II<1+N+A+1>=A=1(1+N+A+1>=1'

From this result we get vo = 1, » = 0, and
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_ g
TN F 2
_ _ 2pglg — p)

N +2)(N + 3)’

o = SPCN + 3pa(2 — 5pg)
N+ IN +IN + 9

20p°¢*(q — P)N + 4pglq — p)(6 + 5pg)
N+2)(N+3)N+4HN +5)

15p°¢’ N’ 4+ 10p"¢’(13 — 40pg)N + 5pg(24 — 94pq + 370°¢)
N+2)(N+3)(N + (N F 5)(V + 6)

We shall use the notation z, = F'(p), and f* = f”(z,). We can express
the a; in (2) in terms of the derivatives of F(z) at x, by means of the relations
between the derivatives of a function and its inverse. From the a; we calculate
the b; , and with the use of (3) we get the raw moments. These include

wo= =1 P =G 2pelg — p)
PR N +2 6 N+ 2V +3)
+ 100" — 75 = 157 3p'¢'N + 3pg(2 — 5pg)
2417 N+ 2)(N +3)(N + 4)
Here as elsewhere derivatives are denoted by primes and powers by arabic

numerical exponents. Finally the central moments u; are obtained, such as the
following.

p L. _Pe__ S 2pelg — p)
fFN+2 f* (N+2)(N+3)
" [51”’2 f”:l 3p°¢N 4 3pg(2 — 5pg) 7 p'¢ ey
48 3PN +2)(N +3)(N +4) 45 (N + 2)°
y= L. __2p4q — p) 3" 3p"¢'N + 3pg(2 — 5pq)
TR N+ 2 W+ DWW FIW + 4)

3 p¢ )
Top wropt

P—

.o
’

oy

1 3p°¢’N + 3pg(2 — 5pg)

MR N+ FIW LD T

From these results we check the well known fact that if N increases with
m/N fixed, the asymptotic distribution of z,, has the mean and variance z, and
po/f’N respectlvely (see [3]). Furthermore the known result that for large N
the distribution is approximately normal is suggested by the following which
are obtained from the leading terms of the above expressions.
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B3 _ Nl [2(4 - P) _ 3f’\/5‘}] 4+ e

e NG f
e _ 5N + 12
u%”?’[‘ <N+3><N+4>]+ ‘

We next discuss the applicability of the results to distributions for which
F7'(z) is not a polynomial. We note that the factor

(F@)]™ L — Fa)"™"

in (1) assumes its maximum value at (m — 1)/(N — 1). Hence (1) indicates
that the probability density of z, is practically zero except in a small neigh-
borhood of F~'[(m — 1)/(N — 1)].* Hence the moments of the distribution
of z, can be determined with great accuracy from a knowledge of F(z) in a
small neighborhood of F'[(m — 1)/(N — 1)]. But this knowledge of F(z) is
given by a few derivatives of F(z) at xz, because z, is near

F7{(m — 1)/(N — 1)].

In other words, the first few terms of the Taylor expansion of F'(z) at z,
should be enough to permit an accurate determination of the moments. Hence
the above derivation holds with very little error if (2) is understood to be a
few terms of the Taylor expansion.

4. The median. The results simplify in the case N = 2m + 1. We can com-
pute that

fo l t — 1/2)%"1 — H™ dt,

which is clearly zero when j is odd, reduces when j is even to

m!

PG DG+ G F2em+ D)

the reduction is achieved by the substitution of ¢ = sin® # and use of a known
integral (see [7]). This reduces, after multiplication by Bl(m + 1,m + 1)]7, to

o 1-3-5---(2 — 1)
T EOm + ) @m 4+ 5)---C@m + 2+ 1)

b. The efficiency of the median. As a numerical illustration we shall compute
the efficiency of the median as an estimator of the mean of a normal distribu-
tion. We consider o(z) = (2r) %" and ¢ = ¢(0). The derivatives of F'(x)
at z = 0 are calculated from those of ¢(z). Using (3) with k¥ = 1, 2 and the
formulas of section 4, we obtain the variance of the median of a sample of size

i=1,2 -

1 This statement is true even when m — 1 or N — m is small. If, for example, m — 1is
small, F(z) < (m — 1)/(N — 1) for z < F[((m — 1)/(N — 1)], and [l — F(z)]¥m
is clearly small if = is at least a little greater than F-[(m — 1)/(N — 1)].
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N = 2n 4+ 1 in the form

_ 1 {1 + 1 n 13
= 15 @n + 3) 3220 + 5) ' 960'2n + 5)@n + 7)
287
T O T F I 9 T }

Since the sample mean is efficient, and since the variance of the sample mean is
1/2n + 1), if E2n + 1) is the efficiency of the median,

E@n+ 1) = [(2n + D™

Evaluating ¢ we obtain

1 _ 15707963(2n + 1)
E2n + 1) 2n + 3
1.5707963 5.3460357 26.484528 !
'{1 Yt ot Tt @t e et N@n T T }

A tabulation of this four term approximation appears in Table I.
The series for the reciprocal of the efficiency converges slowly for small

2n + 1.

In cases n = 1, 2, 3, the fourth term contributes 2.8% , 1.6%, 1.0%, respec-
tively, of the tabulated value. To check the accuracy of the approximation we
have calculated accurately (as described below) the reciprocal of the efficiency
in cases n = 1, 2, 3. The values correct to three decimal places are given in the
table. The relative errors are 5.6% , 2.2% , 1.1% , respectively.

TABLE I
Efficiency of the Median, Normal Distribution
N=on+1 s dour term (E@n + DI, exact E@n+1)
© 1.571 1.571 .637
201 1.567 .638
101 1.564 .639
51 1.557 .642
31 1.549 .646
21 1.538 .650
11 . 1.503 .665*
9 1.486 .673*
7 1.457 1.473 .679
5 1.402 1.434 .697
3 1.270 1.346 .743

The third decimal places in E(11) and E(9) are in doubt.
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The correct values of the reciprocal of the efficiency are obtained as follows.
If n = 1, the reciprocal of the efficiency is, except for the factor

(2n + 1)/B(2, 2) = 18,
with F'(z) = o(z),

.[wsz(l — Flodx = [:Fd(—xgo+ F) — [:de(_w+p)

L]

= l‘fw(‘x“’JfF)*"d“"lJ“L(‘WJf F)2Fp do
2 2 3 2
[, F | [2F] © (e
[§+5]_w+["3—]4+2[w”(§>

o 2
—1/2 +2/3 — 2[ ¢ pds

0

=1/6 — (2m)~¢ fwe B2 gy
1
=1/6 - 27:'\/ 3
Multiplying this last number by 3/B(2, 2) we get
15 33
E(@3) T
= 1.346

as given above.
For n = 2, 3 the reciprocals of the efficiencies were calculated by numerical

evaluation of

(2n+1) e 2 _ n
B+ inFd) wa"(l F)" dz.

6. The moments of the joint distribution of z,, and =, , m < n. We consider
next the joint distribution of z.. and z. , m < n. The probability density is

N!
(m—1ln —m— 1IN — n)!

[F(@n)l"F(z) — Fla)l"™" 1 — Fa)]" ™f(@m)f (x2).
The probability density of ¢ = F(z.) and v = F(x,) is

ZV! m—1 n—m—1 N—n
(.m_l)!(n—m—l)!(N—n)lt (w — 1) 1 —-w)
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The expected values of ¢ and  are p, = m/(N + 1) and p, = n/(N + 1) re-
spectively. If ».s is the expected value of (! — pm)*(w — p.)°. we calculate that

Vo = ____mem .
N+ 2

Yin = P
N+2’

v = Lol
N+2°

vy = 2pm qm(qm = Dm)
N+ 2)(N + 3)°

— 2men(Qm - pm)
(N +2)(V + 3)°

Yo = 2Pm qn (Qn - pn)
2T+ 2)(N + 3’

oz = 2pn Gn (Qn _ pn)
TN+ +3)

v = 3P Gn N + 3Pngn (2 ~ 5pmgn)
“ N+2IN+3 N +4

302 0m@n N + 3Pmn (2 — 5P qn)

ME TN £V + )NV T+ 4

- pm inl - (p‘m + Qn) + 3pm Qn]N + menll + 5(pm + Qn) - 15pm qn]
% (N ¥ 2)(N + 3)(N + 9

v = 3PnPada N + 3pna (2 — 5pnga)

. N+2N+3WN +4

- 3pn qu + 3ann (2 5qu‘n)
T TN W +IWN F 4

If uep is the expected value of zazh, ,

. NI
M“m—nm—m—mw—w£“
[ O P 7~ 07—
(]
Let the Taylor expansion

FOIF WP = an + awn(t — pm) + au(n — pu) + au(t — pm)’
+ au(t — pm)(® — Pa) + an(u — pa)’ + -
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be finite. Then
7
Mag = Qoo + Ggoveo + @ivyn + Goaves -+ Qzovse + - v - .

The coefficients a,; are expressed in terms of the derivatives of F(z) at F'(pn)

and F(p,).
As in the 1-dimensional case, if the Taylor expansion does not terminate,

these results are approximations.
As an illustration of the results obtained in this manner, the covariance of

Zm and z, reduces to

_ 1 ' _i. 2Dm G (g — Pm)
W%””—EEJW+2:mﬁ(N+mw+&

_ f:l . 2pmgn (gn — pn)
2fsfm (N + 2)(N + 3)

+ 3f1,n2 - fmfn,z, . 3p12anQnN + 3pm qn (2 - 5mem)

6ffn N+ 2)N+3)N + 4
4 3w =SS 3pnPaduN + 3pnga(2 — 5pugs)
6f%fm N +2)N+3)N+ 49
, men[l - (pm -+ Qn) + 3men]N
4+ Indn + Pngall + 5(Pm + gn) — 15pmga]
4f 515 WN+2)(N+3WNV + 49
— A A, F .-

where
ff(n‘) = f(')[F_l(Pm)], 1= O’ 1’ Y

A=-J . P 3" —f"  2pglg—p) , 10ff" = — 156"
2f* N+2 6f° WN+2WNV+3) 24f7

39" N + 3pg(2 — 5pg)
N +2)N + 3)(N + 4)’

A, is obtained from A by affixing the subscript m to every f, p, and ¢, and
A, is obtained similarly.

Using p. as calculated above, we obtain from the last result the first two
terms of the coefficient of linear correlation in the form

1/2
DPm Qn A
m s Tn) = 1] — =
(em s 22) (qmpn) { N+2}

" fnfa "
A= ‘{F PmQm — 2f72nfi PmQn + 4f[—fqpnq,.-

in which
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The following special cases are easily obtained. If f(x) = exp (—xz),
A = {[Pngm exp (22m) — 2Pmgn €XP (Tm + Za) + Pagn €xp (224)].
If f(z) = (2m)™"" exp (—2%/2),

2 2
T T

A_4f2pmm_2fmfnmen 4f2ann-

If f(x) = exp (—z)z/T(r),
= HTOII(r — 1 — 20)z2" exp (22m)Pmgm
—2(r — 1 — 2u)r — 1 — 2,)(@mTn) ' €XP (T + Z0)Pm@n
+ (r — 1 — 2,)’277 exp (224)Pngn -
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