MAXIMUM-LIKELIHOOD ESTIMATION OF PARAMETERS
SUBJECT TO RESTRAINTS

By J. Arrcaison anp S. D. SiLvey
University of Glasgow

Summary. The estimation of a parameter lying in a subset of a set of possible
parameters is considered. This subset is the null space of a well-behaved function
and the estimator considered lies in the subset and is a solution of likelihood
equations containing a Lagrangian multiplier. It is proved that, under certain
conditions analogous to those of Cramér, these equations have a solution which
gives a local maximum of the likelihood function. The asymptotic distribution of
this ‘restricted maximum likelihood estimator’ and an iterative method of solv-
ing the equations are discussed. Finally a test is introduced of the hypothesis
that the true parameter does lie in the subset; this test, which is of wide appli-
cability, makes use of the distribution of the random Lagrangian multiplier
appearing in the likelihood equations.

1. Introduction. Quite frequently in statistical theory the natural way of
building up a mathematical model of an experiment leads to the description of
the experiment by-a random variable X whose distribution function ¥ depends
on s parameters 6, 6, ---, 0,, which are not mathematically independent
but satisfy r functional relationships Ai(6;, 6z, ---, 6:) = 0,2 = 1,2, --. | 7,
r < s. In many cases where such a natural description arises it is possible to
solve the r equations h:(6y, 62, - -+, 6;) = O for r of the parameters in.terms of
the remaining s — r, to express the distribution function F in terms of these
remaining parameters only and, given observations on X, to estimate these
s — r unrestricted parameters by the method of maximum likelihood. This
procedure has two disadvantages. First, it may be impossible to express r of the

parameters explicitly in terms of the remaining s — r and second, interest may

lie in estimating all of the parameters simultaneously, in which case a sym-
metrical procedure for so doing is certainly desirable. The natural symmetric
method for maximum-likelihood estimation in this case is athieved by the in-
troduction of Lagrangian multipliers and it is this method that we will consider
in this paper.

2. Formulation of the problem. In this section we will formulate more pre-
cisely the problem to be considered.

We will denote m-dimensional Euclidian space by &™, m =1, 2, 3, --- .
A point in ®°, denoted by 8§ = (6, 6z, - - - , 6,) will represent a value of a param-
eter. There is a particular point 8, = (6, 65, - - -, 6”) in ®* which is the true,
though unknown, parameter value. Corresponding to each 6 in some neighbour-

Received February 18, 1957.
813

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [&

&4

The Annals of Mathematical Statistics. RIKORS ®

WWw.jstor.org



814 J. AITCHISON AND S. D. SILVEY

hood of 8, say in U, = {6:]/6 — 6| < a}, is a probability density function
fo defined on ®' and we will denote the value of f; at the point ¢ £ &' by f(¢, 6).
The probability density function fs, defines a probability measure on ®' and we
will assume that, with respect to this measure, for almost all ¢, the partial deriv-
atives 9 log f(t, 0)/36;,1 = 1,2, --- , s, exist for every 8 in U, .

There is given a continuous function h from ®’ into &', r < s, defined by
h(8) = (h(6), ha(6), - - - , h.(6)), which is such that, for every 8 in U+, , the par-

tial derivatives o0h;(6)/06;,7 = 1,2, --- ,s,7 = 1,2, -+, r, exist. The function
h has the further property that h(6) = 0.
A point in ®" denoted by z = (2;, 2, - - - , 2,) will be regarded as represent-

ing a set of n independent observations on a random variable whose probability
density function is fo, and we use the fact that points in ®" are being so regarded
to define, in the usual way, a probability measure on ®", for each n. Subsequent
statements regarding the probabilities of sets in ®" will refer to this particular
probability measure.

It will be convenient to use also matrix representation for points in ®”™ and
for linear operators from one Euclidian space to another and we will use the con-
vention that, for example, 0 is the s X 1 column vector representing the point
6in &’, and H, an s X r matrix, represents a linear operator H from & into ®’.

The log-likelihood function L is defined on a subset of ®" X ®° by

L(x, 6) = Z:; log f(x;, 6).

If H, denotes the s X r matrix (6h;(0)/06;), and if \ is a Lagrangian multiplier
in ®", then we propose to estimate the unknown parameter 6, by a solution, if
such exists, of the equations

@2.1) t(z, 0) + H\ = 0
2.2) h(6) = 0,

where {(z, 0) is the point in ®’ whose 7th component is oL(z, 6)/99; .

We will shew that, under certain fairly general conditions, if x belongs to a
set whose probability measure tends to 1-as n — «, these equations have a
solution é(z), A(z), where 6(x) is near 8, and 6(z) maximises L(z, 6) subject to
the condition #(8) = 0. The definition of § and A will then be extended in a
natural way to the whole of ®" and we will show that the random variables thus
defined are asymptotically jointly normally distributed. We will then consider
an iterative procedure for solving the equations (2.1) and (2.2). Finally tests of
the adequacy of the model will be introduced.

3. Existence of a solution. The proof that we will give of the existence of a
solution of the equations (2.1) and (2.2) is based on the same principle as a proof
given by Cramér [2] of the existence of a maximum likelihood estimate of a
parameter in ®'. However the presence of the restraining condition () = 0 in
the situation we are discussing makes our proof more intricate in detail than a
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straightforward generalisation of Cramér’s proof to a parameter in ® would
be. And we start by indicating the main lines of the proof.

We set out to show that, under certain conditions, if & is a sufficiently small
given number and if n is sufficiently large, then, for a set of x whose probability
measure is near 1, the equations (2.1) and (2.2) have a solution é(x), A(z), where
0(z) € Us . We will demand that in U, the function log f(z, -) should possess
partial deérivatives of the third order and the components of the function A
should possess partial derivatives of the second order. Then it will be possible,
by expanding the components of £(x, 6) and h(8) about 6, to express the equa-
tions (in matrix notation) in the form

(3.1) 1(z, 60) + M., 0,(6 — 060) + v¥(z, 6) + H = 0,
(3.2) Hy, (0 — 8) + v¥(6) = 0,
where

(i) M, ,s, is the matrix (8’L(z, 6o)/86:96;),

(ii) v®(z, 6) is a vector whose mth component may be expressed in the
form (0 — 0,)'L..(6 — 6), L, being the matrix (8°L(z, 6"™")/36.9636;),
i,7=1,2 ---,s and 6™ a point such that || 6™ — 6| < || 6 — 6|

(iii) v®(0) is a vector whose mth component is (6 — 6o)H..(6 — 6)), H,,
being the matrix (0%hm(6'™>)/86:30,), 5, j = 1, 2, -+, s, and 6™ ® a point
such that || 6™ — 6,] <[/ 0 — 6.

Further conditions imposed on f, which are almost a straightforward generali-
sation of Cramér’s conditions [2], will ensure that, for large enough n, there is a
set of x whose probability measure is near 1 such that, if x belongs to this set,

() || (I/n)l(z, 60) || is small,

(ii) —(1/n)M.,, o, is near a certain positive definite matrix By, and

(iii) the elements of (1/n)L, are bounded for 6 ¢ U; . By dividing (3.1) by
n we will then be able to express this equation in the form

(33) _By, (0 — 0) + %H,). + (2,6 = 0

where || v®(z, 6) || is bounded for 8 £ U; . In addition we will demand that, for
6 £ U, , the second order derivatives of the components of & should be bounded.
Then we will be able to express (3.2) in the form

(3.4) H;, (6 — 6,) + 8v¥(6) = 0

where || ¥(6) || is bounded for 8 £ Us .

If the equations (3.3) and (3.4) have a solution, then by pre-multiplying (3.3)
by Hs,Bs. and substituting for Hp, (0 — 6) from (3.4) we find that the values
of 6 and X satisfying ‘these equations also satisfy an equation of the form

(3.5) H,, B;'H, (}L a.) + 6v®(z,6) = 0.

We will impose conditions on k& which ensure that the matrix Hy By, H, is non-
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singular and the elements of its inverse are bounded functions of 6 for 6 £ U, .
Then it will be possible to solve equation (3.5) for A in terms of 6 and on sub-
stitution in (3.3) we will obtain the result that any value of 6 in U; for which
equations (3.3) and (3.4) are satisfied is also a solution of an equation of the
form

(3.6) —Bo,(0 — 0) + &'v(z, 6) = 0

where || v(z, 6) || is bounded for 6 & U; .

Conversely it will be shown that if the equation (3.6) has a solution é(z) ¢ U,
then (z) leads to a solution 6(z), A(z) of equations (2.1) and (2.2). We will then
use the fact that By, is a positive definite matrix to prove that, if § is sufficiently
small, (3.6) has a solution in Us; .

This outline of the method of proof to be adopted provides the motivation for
the introduction of conditions on f and A which we now discuss.

Conditions on f. The following conditions on the function f appear complicated
and restrictive from the mathematical point of view. In fact they will be satis-
fied in most practical estimation problems.

F1. For every 6 € U, and for almost all t ¢ ® (almost all with respect to the
probability measure on ®' defined by fa,), the derivatives

2 3
a log f(t, 0), 9 log 1¢,6) . 9 logfG, 0)’ ik
ET 30, 00, 39: 00,00,
exist, and the first and second order derivatives are continuous functions of 9.
2. For every 6 ¢ Uy and for ¢, j = 1,2, ---, s, | 9f(¢, 6)/36;| < Fy(t) and
| 8%f(t, 6)/36:00; | < Fy(t), where Fy and Fy are finitely integrable over (— =, «),
53. For every 0 e Us and 4, j, k =1, 2, --- , s, | 8 log f(t, 6)/38:00,06, | <
Fs(t), where [ZoF5(t)f(t, 6o) dt is finite and equal fo k; , say.

F4. by = 9 lOgagft’ 0) 9 lOgag(t, 2) f(t, 6o) dt
L) T 7

|s finste for 3,5 = 1,2, --- , s, and the matriz By, = (bs;) ts positive definite with
mensmum latent root po .

=12 --,s,

The conditions F3 and F4 are apparently less stringent than a straightforward
generalisation of Cramér’s corresponding conditions would be. In §6 we return
to this point.

If f satisfies these conditions then for any given positive numbers § < a and
e < 1 and for sufficiently large n, say n = n(3, €), there exists a set X, C ®"
with the properties '

xl. Pr {X,} > 1 — e

<& fzreX,.

€2, " 1 £(x, 6o)
n

a3. ;; M., ¢, can be expressed in the form —Bg, + dm,, ,
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where m, 4, is an s X s matrix the moduli of whose elements are bounded by
l,ifzx ¢ X,

x4. For every 6 e U, and 4, j, k=1, 2,---, s,

1 8°L(z, 6)

7 96;90,00,| ~ 2

fzeX,.

The proof of these results is similar to the proof of the corresponding results
given by Cramér [2] in the case of a parameter in ®' and we merely remark
that the conditions $1-4 imply (as they are designed to imply) that

(i) (1/n)X(-, 6y) converges in probability to 0 ¢ &',

(ii) (1/m)M. 4, converges in probability to —Bs,, and

(iii) if G(z) = 1/n2 i~ Fs(z:), then the random variable G converges in
probability to « and

1 l ’L(z, 6) |

% 8° log f(x:, 6)
7 | 30, 99; 66, < G(a),

i=1 00;00;00;

1
n

by 3.

In future when we refer to a set X, we imply that » is sufficiently large for the
existence of a set in ®" with the properties 1-4 and that the set X, referred
to has these properties.

As has already been indicated, one of the main purposes of the introduction of
the conditions & was to ensure that (3.1) could be expressed in the form (3.3).
Now if the conditions ¥ are satisfied, if x ¢ X, and 6 ¢ U;, it is easily verified
that

(i) by %2, (1/n8")|| £(x, 60) || < 1,
(ii) by %3, (1/8)]| me0(6 — 60) | < &,

@iii) by o4, (1/n8")|| vV (x, 8) || < (1/8)sk) 6 — 6 |° < s .

It follows that (3.1) can then be expressed in the form (3.3) and

|v®@, 0] <1+ s+ s, when zeX, and 8¢ Us.
Conditions on h. We impose the following conditions on the function A.

3el. For every 0 € U, the partial derivatives 0hi(6)/96;, ¢ =1, 2,---, s,
= 1,2, ---,r, exist and these are continuous functions of 0.

302. For every 0 &€ U, the partial derivatives 3°hi(8)/00:00;,14,j =1, 2, -+-,
s k=1,2,--, r evist and | 8°hi(6)/00:00; | < 2xkz, a given constant, jor all
1,7 and k.

3¢3. The s X r mairiz Hy, is of rank r.,

The condition 32 is introduced to ensure that when (3.2) is expressed in the
form (3.4), || v*(6) || is bounded for 0 £ U; . It is clear that it does ensure this
since, as is easily verified, by 362, || v®(6) || < s%: || 6 — 6 ||" and so || v (6) || =
1/ v®0) || < % if 0eUs.
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Also the condition 3¢3 implies that the matrix Hy,Bs, Hy, is positive definite,
since the matrix By, is positive definite. Since the elements of Hj are, by 3cl,
continuous functlons of 6 it follows that there exists a neighbourhood of 6,
in which det (Hy By, Hy) is bounded away from zero, and we may assume that
this neighbourhood is U, . (This assumption merely involves choosing « small
enough initially). This means that when 6 ¢ U, we can solve the equatlon (3 5)
for A in terms of 6. Furthermore the elements of the matrix (HsBs, Hy)™" are
then contmuous functions on U, since the elements of Hy are continuous and
det (HooBo,, Hy) is bounded away from zero. Since U, is a closed set it follows that
the elements of (Hs,Bs, Hy)™* are uniformly bounded on U., . This result, together
with the results that || v®(x, 6) || and || »®(6) || are bounded on Us, enable us to
prove that when 2 is eliminated from (3.3) and' (3.4), and (3.6) is obtained,
then in (3.6) || »(z, 6) || is bounded on U;, if z ¢ X, .

We have now gone a considerable way towards proving the main part of the
following lernma.

LeMMA 1. Subject to the conditions F and 3C, if 6 < a and ¢ < 1 are given posi-
te numbers and if v ¢ X, , then the equations (2.1) and (2.2) have a solution
0(z), A(z) such that b(x) € Us , if and only if 6(x) satisfies a certain equation of the
form — By, (0 — 6,) + 8°(x, 8) = 0. In this equation v(z, -) is a continuous func-
tion on U; and || v(z, 6) || is bounded for 0 € U, by a positive number s , say.

Proor. The fact that the condition is necessary has virtually been established
already. On eliminating A from (2.1) and (2.2) by the method outlined at the
beginning of §3 we obtain, in matrix notation, the following explicit expression
for (3.6)

—By,(0 — 60) — Hy(Ho,By, Hy) ' {v® (0)

3.7

(D + Hy By, v (z, 0)} + v®(z, 6) =
where

(3.8) v(z, 0 = v (z,0) = }zl(x, 6) + By,(6 — 60),

and

(3.9) v?(6) = 8 (0) = h(6) — Hy, (6 — 6).

Hence in (3.6),

v(z, 9) = —Ho(Hs,Bo, Ho) " {v'(6) +
(3.10)
H; Biiv¥(z, 6)} + v¥(z, 0).
The fact that »(z, -) isa continuous function on U, and that ||.z(z, ) || is bounded
for 6 ¢ Us follows from (3.8), (3.9) and (3.10), in virtue of the discussion of
v®(z, 6), v¥(6) and (HyBs,Hs)™ above.
Turning to the sufficiency of the condition we now suppose that the equation
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(3.7) has a root 8(x) € Us . Then, writing 6 instead of 4(z) for brevity, we obtain
on premultiplication of (3.7) by Hs,By,,

(3.11) —H;, (0 — 6) — v (d) = 0,
i.e., by (3.9),
h(d) = 0.
Substitution for v (8) from (3.11) and for v®(z, 6) from (3.8), in (3.7) gives
I(z, §) = Hi(Hs,Bs, Hs) "Hs, B 1(z, 6),
or, if we write Qs for (Hs,Bs.Hs) "Hs,Biy,
(3.12) I(z, 6) = HiQil(x, 6).
If we now define d(z) by
A@) = —Qil(, ),

then

Iz, 6) + HA ) = 0,

and 6(z), A(z) satisfy the equations (2.1) and (2.2).
In order to prove that the equation (3.6) has a root in Us, if 6 is sufficiently
small, we will require the following lemma.

Lemma 2. If g s a continuous function mapping ®° into itself with the property
that, for every 6 such that || 6| = 1, 6'g(6) < 0, then there exists a point 6 such
that || 8] < 1 and g(d) = 0.

Proor. For the proof of this result we are indebted to Mr. J. M. Michael who
has proved that this result is equivalent to Brouwer’s fixed point theorem [4].
A direct proof from the latter theorem is as follows.

We suppose that g(6) > 0 for any 6 such that || 6 || < 1. Then the function
g1, defined on the unit sphere in ®° by

9(6)
lg® 1’

is a continuous function mapping this unit sphere into itself. Hence by the fixed
point theorem there is a point 6* in the unit sphere such that 6* = ¢:(6*). Also
since || g1(6) || = 1 for every 6 in the unit sphere, it follows that || 6* || = 1, and
0¥'g(6*) = 60* = 1 > 0. But this contradicts the fact that 6’g(6) <0
(and consequently that 6’g,(§) < 0) for every 6 such that || 6 || = 1.

Hence there is a point 6 in the unit sphere such that g(8) = 0. It is obvious
that || 6| > 1. Hence || 8 || < 1.

We are now in a position to prove the following existence theorem.

g1(0) =

TrEOREM 1. Subject to the conditions § and 3C, if & is a sufficiently small given
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positive number, € is'a given positive number less than 1 and if x € X, , then the
equations (2.1) and (2.2) have a solution d(x), A(x) such that 6(z) € Us .

Proor. We suppose 8 < a and z ¢ X, . We consider (3.6) and define a func-
tion g on the unit sphere in ®’ by

g <0 —5 00) = —By,(6 — 60) + &°v(z, 0).

By Lemma 1, v(z, -) is 2 continuous function on U;. Hence ¢ is a continuous
function on the unit sphere in ®&’°. Also

ye—wzC;“)=—yo—wmum—w+ww—%W@w

1
< —sml0 =6l +bull6 — ol
if @ £ Us, since By, is positive definite with minimum latent root uo and, by
Lemma 1, || v(z, 6) | < xs when 6 ¢ Us . Hence for every 6 such that || 6 — 6o || =
8, we have

1 —
3 (0 — 6)'g (0 5 00) < 8(dks — po)

<o, if s<.
K3

Hence if 8 < po/ks , it follows by Lemma 2 that there exists a point 6(x) such that
b(z) € Us and g((6(x) — 65) / 8) = 0, i.e., 6(z) is a solution of (3.6). The result
follows by application of Lemma 1.

4. Existence of a maximum of L(z, 6). In this paragraph we will show that
for sufficiently small 8, if z £ X,,, any solution of (3.6) in U; maximises L(z, 6)
subject to the condition k() = O.

We suppose that = & X, , that & is small enough for Theorem 1 to apply and
that 6(z), written 6 for typographical brevity, is a solution in Us of (3.6). We
let 6 be a point in a neighbourhood of § contained in Us, such that h(6) = 0.
(Such a neighbourhood exists since 8 is an interior point of Us;.) Then by expand-
ing L(z, 6) about § we have
(4.1) L(z, 8) — L(z, 6) = V(z, 8)( 6 — &) + 3(6 — 6)'M.,(6 — )
where M, ¢ = (3’L(z, 6*) / 80:30;) and 6* ¢ Us.

We now consider separately the two terms in the right hand side of (4.1).
By (3.12)

(z, 6)(6 — &) = I'(z, 6)QiHi(6 — ).
Now
0 = h(6) — h(d) = Hi(6 — &) + x(6),
where, because of 32, by the same argument as was applied to »?(8) in (3.2),
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(4.2) | 7)) < %10 — 62
Hence

(4.3) U(z, 6)(6 — 8) = —[Q4l(z, 6)]'r(6).
By (3.8)

%l(x, 9) = —Bao(é - 00) + v(e)’(x, é)y
and so
4@ 0| < s + wed, since b U,

where «; is a positive number depending only on the elements of By, , and, as
above, ks = 1 + &' + s . Also the elements of Q; are bounded by a number
independent of 8, since 6 ¢ U,, . Hence

(4.4) L@l ) [ < w8 + 8,

where «; , k; are positive numbers independent of 8. From (4.2), (4.3) and (4.4)
it follows that

(4.5) %W@@@—@|<%a+a$&mo—mﬁ
We now consider the second term of (4.1). By expanding the elements of

M. 6+ about 6, we find that

1 1 *
- z,0¢ = — Mz.o., + mg, g,
n n

where, as is easily shown using %4, the moduli of the elements of the matrix
my 4 are less than 2sk16. Also by %3,

1
ﬁMz.ﬂo = —Boo + 6m=,00)

and so

1
- z,08 = —Boo + 3m,
n

say, where m is a matrix whose elements are bounded by a number independent
of 6. Hence

(4.6) % ®~ 8)'M, e (06— 8 = —% (6 — 6)'By, (6 — &)

1 A A 1 A
+58(6 — )'m(o — ) < —gull0 =0 F + w0 —d]f
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since By, is positive definite with minimum latent root po, and the elements of
m are bounded. Here «s is a positive number depending only on the elements of
m. Using (4.5) and (4.6) in (4.1) we find that there exist positive numbers
K9 , K10 , independent of 8, such that

:—&-[L(x, 0) - L(x, é)] < <—%Mo + K96 + K1062) “ 6 — é ||2.

It follows that if § is sufficiently small then L(z, ) < L(z, 8), i.e., L(z, ) is a
maximum value of L(z, 0) subject to h(f) = 0.

We have thus established the fact that, if the conditions ¥ and 3C are satis-
fied, there exists a consistent maximum likelihood estimator 8 of 6, satisfying
the condition A(6) = 0.

6. Asymptotic distributions. We return now to consideration of (3.1) and (3.2).
We suppose that z ¢ X, and that 8(z), A(z) is a solution of these equations with
6(z) € Us , & being small enough for such a solution to exist. Then, considering
the equations from a slightly different viewpoint we have,

61 16,8 — By + B@IBE) — 6l + [H, + 6] 246 = 0,

(5.2 [Hy, + h*(x)][ﬁ(x) — 6] =0,

where b(z), h(z) and h*(z) are matrices whose elements tend to 0 as § (and
hence || 8(x) — 6 |]) — 0. We now prove the following lemma.

LemmaA 3. The partitioned matriz
Boo _Hf’o
— H/y, 0
s non-singular.

Proor. For brevity we omit the suffix 6, . Then we wish to find a matrix

P Q
Q" R
such that, in the usual notation,

(e §-16 1)

and this requires

(5.3) BP — HQ' = 1,,
(5.4) BQ — HR = 0,
(5.5) HP = 0,
(5.6) ~H'Q =1,.

These equations are easily solved since B is positive definite and H is of rank
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r so that H'B™'H is non-singular. We obtain

R = —(H'B'H)7,
Q = —BH(H'B™'H)™,
P = B'[I, - HH'B'H)'H'B!].

We note at this stage, though we do not require this result immediately, that
the matrix P has rank s — r. For, from (5.5) since rank (H’) = r, rank (P) =
s — r. While from (5.3) we have s = rank (P — HQ’) < rank (P) 4 rank
(HQ’) = rank (P) + r,and sorank (P) = s — r.

We return now to equations (5.1) and (5.2). If 4 is sufficiently small then the
matrix

[ By, + b(x)  — [H, + ﬁ(x)l] ,

also will be non-singular and we will write
[ By, + b(z) —[H,, + fl(x)]]—l _ l:f:‘(x) 0.()
—[H, + h*(@)] 0 L0 R@ ] '
Hence, from (5.1) and (5.2), for sufficiently small é, if x ¢ X, , we have

o 0@ —a] [ﬁ(x) Qlw] 1z, )
. %5.(:0) Q:z) R(@)

0

If the functions § and A were defined for the whole of ®&" we could now dis-
cuss immediately the asymptotic distribution of these functions. However this
is not necessarily so, and we go through the formality of extending the defini-
tion of these functions to the whole of ®". We will then show that the random
variables thus defined are asymptotically normally distributed and, in this
sense, we may say that a consistent maximum likelihood estimator § of 6y’is
asymptotically normally distributed. ‘

We let (6.), (em) be decreasing sequences of positive numbers, such that
a < 1,8 < uo/xs (see Theorem 1), and 6, — 0 and e, — 0 as m — «. We
then define an increasing sequence (n,) of integers such that, if n = n.,, , there
exists a set in ®” with the properties X1 to %4 for ¢ = € and 6§ = 6, . For
m=1,2 --+,if nw = n < Nmy we choose a set X, with the properties X1
to o4 for ¢ = en and 6 = 6, . Hence Pr {X,} > lasn — « and if n, S n
< fimy1 and z & X, , the likelihood equations (2.1) and (2.2) have a solution
0.(z), \a(z) such that || 8.(xr) — 6] < 8s. Moreover for sufficiently large m,
b,(z) is a maximum likelihood estimate of 6o, by §4. We now extend the defi-
nition of 6, and A, to ®&”" by letting

61&(37) - 00 _ [P Q] ,}Ll(x; 00)

1x , if zeX,.
ﬁln(x) Q, R

0
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We have thus defined sequences (8,), (A), # = %m , Nmyz, - - - of random vari-
ables which have the property that 6, converges in probability to 6, and with
probability tending to 1 as n — «, §,, A, satisfy the likelihood equations 2.1)
and (2.2).

TuEOREM 2. The random variables n'*(6, — 60), n %\, are asymptotically
Jointly normally distributed with variance-covariance matriz

[6 )

Proor. If x £ X, , we define P(z) = P, Q@) = Q, Q.(z) = Q’ and R(z) =
R. Then for sufficiently large n, by (5.7) we may write

Vn(b, — ) a Aol 1
- _ [P Qj] V7 1(+, 6o)
\—/—; dr R

The elements of the matrix

»

2

[ﬁ Ql]
¢ R
are random variables which converge in probability to the corresponding ele-

ments of the matrix
P Q
Q/ R b

since in (5.1) and (5.2) b, h and h* tend to 0 as & — 0. Also the s-dimensional
random variable n™2¢(-, 6o) is asymptotically normally distributed with zero
mean and variance-covariance matrix By, (Cramér [1]), and the (s 4 r)-dimen-
sional random variable (n"V*¢(-, 6,), 0) is asymptotically normally distributed
with zero mean and variance-covariance matrix

By, O
0 ol

It follows by an extension, to a multi-dimensional random variable, of a theo-
rem of Cramér [2], that v/n(6, — 6,), n '\, are jointly asymptotically nor-
mally distributed with zero mean and variance-covariance matrix.

[p Q] [Boo o][p Q] 3 [PBoOP PBo.,Q]

Q" RJLO0 0f]Q" RI |QByP QBy,Q]

(We omit details of the proof of this extension though this result, in contrast
to Cramér’s result for real-valued random variables, is best obtained by con-
sidering characteristic functions). Now from (5.3), PBs,P — PH,Q’ = P.
Since P is symmetric, PH;, = P'Hy, = 0 by (5.5). Hence PBy,P = P. Simi-
larly PBs,Q = 0 and Q'B;,;Q = —R.

0
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This completes the proof of the Theorem. We note, however, that, as might
be expected, the asymptotic normal distribution of the s-dimensional random
variable n"*(8, — o) is improper, being by the note in Lemma 3 of rank s — r.

6. Numerical solution of likelihood equations. In this section we will discuss
an iterative procedure for solving (2.1) and (2.2) numerically, which yields an
estimate of the matrices P and R.

In any practical situation we do not know 6, , and the only way in which we
can verify that the conditions § and 3C are satisfied is to find that, for every 6
belonging to some set U, tn which we know 6, lies, the following conditions ’,
3¢’ are satisfied.

5’1, 2. For every 0 ¢ U, 1 and F2 are satisfied.
5’3 For every 6 e Uand 2,5,k = 1,2, -+ s,

8* log (¢, 0)

36,06,00, | < Fa(®

and
!’

f Fi)f(, 0) dt < x1,

a finite number.
F'4. For every 0 ¢ U,

] Iog f(t 6) 9 log f(t, 6)
f a6, 1@, ) dt,
= 1,2, ---, s, are finite, the matrix By = (b”,(o)) is pos1t1ve definite and,
]f wp 1S the minimum latent root of By, then us = uo where uo is a given number
greater than 0.

301, 3¢'2. For every 0 ¢ U, 3¢1 and 32 are satisfied.
3¢’3 For every ¢ ¢ U, Hy is of rank r.

The conditions ' are a straightforward generalization of Cramér’s condi-
tions [2].

We will now assume that the conditions ¥’ and 3¢ are satisfied, that z is such
that the likelihood equations (2.1) and (2.2) have a solution 8(z), A(x) and that
9 is an initial approximation to 6(z) such that || 6% — 6(z)|| is small. Then
to a first order of approximation

I(z, 6) = 1(z, 6°) + M. e (6 — 6",
h(d) = h(6®) + Hyir(6 — 0.

Also if n is large, (l/n)i(x) is near 0 for “most’’ . We assume that z is a point
for which (1/n)A(z) is near 0. Then we also have to a first order of approxima-
tion
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Hi- = Hpn - A

:u—-
Slr—

Since 6(x), A(x) satisfy (2.1) and (2.2) then, approximately, we have

—o®

1 M. 1y —Hpn 0 L 1(z, 6°)
(6.1) n R n
by

1
—Hym 0 n h(®)

The normal situation, if n is large, is that f(z) is near 6, . Consequently since
0 is near 6(z) the matrix —(1/n)M.,ec»r-approximates — (1/n)M,, which in
turn approximates By, . Then By approximates By, and we propose to replace
—(1/n)M_,ec1> in (6.1) by By, and to obtain a correction to 8, and an initial
approximation to (1 /n))\ by solving the equation

A
l: By —Hou):l 6o %l(x, ™)

(62) C =
—H;(l) 0 l

S|=

h(o(l))

The idea of replacing —(1/n)M, ¢ by Bsc1)isnot original though the authors
do not know where it originated.
Because of 4, 3¢'3, by Lemma, 3, the matrix

Byy —Hun
—Hym 0
is non-singular and we will denote its inverse by

Bl

[ Qi Ry

We define 6, A\ by
0@

- 1 N
I =[0 +[Pl, Ql] nl@ 00
- A 0 | Q: R h(e™)

and, more generally, 6, A” by (with the obvious definition of P,_,, Qr_1

and R,_;),
(r)
0 [0(1‘-—1):' N [Pr—l Qr——l] "% 1(z, 0(1‘-—1))
| ) = !
1-13. 0 Q1 R, h(o(r—l))
If the sequences (), (\"”) converge then they converge to a solution of the

likelihood equations, as is easily verified. We do not attempt to give rigorous
conditions under which these sequences do converge. However the fact that

we may expect them to converge in most practical situations follows from the
heuristic argument leading to (6.2).
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We have thus established an iterative procedure for solving the likelihood
equations. The heaviest part of the computation involved in this method is the
inversion of a matrix and computation will normally be reduced by considering
the sequences (6), (A\*’) defined by

A(r) A(r—1)
8 o [Px Qljl %l(x, §°7") + Hie—n %l('—l)
Q{ Rl h(’é(r—l))

r=1,2 ---, where ¥ = 6® and A = A\®. Again if these sequences con-
verge, they converge to a solution of the likelihood equations since

28]
Ql Rl
is non-singular. And again we do not attempt to give conditions under which

they do converge. The main justifications we put forward for this computa-

tional procedure are

(i) the similarity between this method and Newton’s method, and

(ii) the fact that similar modifications of Newton’s method have been used
successfully elsewhere, for example in probit analysis [3]. The main advantage
of this method of solving the likelihood equations is that it involves inversion

. of only one matrix.
7. Tests of the model. In a situation such as is outlined in §1 two natural
questions arise in practice regarding the adequacy of the model introduced to

describe an experimental situation.
(i) Does the true parameter point 6, satisfy the condition k(6,) = 0?
(ii) Is the true parameter point some hypothetical point * such that

h(6*) = O?
And this is the natural order for these questions since the second would be

asked only if the first were answered in the affirmative. We now propose a pro-

cedure for answering these questions in this order.
(i) The most natural approach to the first question would be as follows. We

would calculate an unrestrained maximum likelihood estimate 8,(z) of 6, , and
for 8,(x) we would have £(z, 8,(x)) = 0. If h(6.(z)) were in some sense “‘near
enough’’ 0 ¢ ®&" then we would decide that in fact ~(6)) = 0. Dually, we might
calculate a maximum likelihood estimate 8(z) subject to the restraint

h(b(x)) = O

and then decide that h(6,) = 0 if £(z, 6(z)) were “near enough’’ 0 ¢ ®*. And the
test we propose is based on the second possibility. We note that, by (2.1),

H;d(z) = —1(z, 6(2))

and it seems reasonable to decide that k(6)) = 0 if X(x) is in some sense ‘near
enough’ 0 ¢ ®".

1

1 1 50D
n

30 1
n
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We have seen in Theorem 2 that when h(6)) = 0, n A is normafly dis-
tributed asymptotically with variance-covariance matrix —R, which is of rank .
Consequently -—(l/n)i’R"‘i is asymptotically distributed as x* with r degrees
of freedom, when h(6,) = 0, and, in obvious notation, —(1/n)VRF. also is
approximately, for large n, distributed as x* with r degrees of freedom. We
propose to choose as a region of acceptance of the hypothesis that k(6) = 0
the set of « for which

- 717/ 5/ ()RGL M) < K,

where k is determined by
Pr {xty = k} = 0.95.

This gives a test of size 95% of the hypothesis that h(6) = 0.

(ii) The natural corollary of using the asymptotic distribution of A in this
way is to use the asymptotic distribution of 6 as established in Theorem 2 to
answer the second question. If 6% = 6, then n(§ — 0%)'Bs(6 — 6*) is approxi-
mately distributed as x° with s — r degrees of freedom if n is large. This is
easily established by noting that a consequence of equations (5.3)—(5.6) is
that B~ = PBP — QR'Q’, and hence that

LB = (6 — 0)'B(6 — 8) — =~ AR
n n

We use this fact as in the previous paragraph to establish a region of acceptance
of the hypothesis that the true parameter point is 6*.

Here no attempt is made to justify this test on other than an intuitive basis.
Since the Lagrangian multiplier test seems to be of wide applicability and of
considerable importance in practical statistics, it will be fully discussed both
from the theoretical and practical points of view in subsequent papers.
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