ON A THEOREM OF LEVY-RAIKOV 583

nificant at the 5% level. For the FEM test recommended in [3] the critical
value is less than 2.87 so that w s significant. In general the critical values for
the FEM test will be smaller but there is an ‘“ultraconservative” [3] FEM test
which is the same as the REM test.

Whether a FEM or a REM test is appropriate is a tricky question involving
the context of the study. Thus since the same set of treatments was used in the
comparison of judges a FEM test would seem to be implied. However, as noted
in [3], there is a possible judge X treatment interaction to consider. In other
words the judges might make self-consistent subjective ratings but there might
be little correlation between the two sets of ratings. If this happened the ratings
would behave more or less as if two different sets of treatments were used (im-
plying a REM test). Actually the judge X treatment interaction does not ap-
pear to be serious so the FEM test seems more appropriate. However, this is an
issue which must be carefully considered in each specific application.
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ON A THEOREM OF LEVY-RAIKOV
By A. DEviNaTz!
Washington University

TueoreM oF LEvy-Raikov. If ¢, ¢2 are characteristic functions and ¢ = ¢y ¢,
18 analytic, then so are ¢, and ¢, and the strips in the complex plane where ¢, and

@2 may be extended analytically are at least as large as the strip where ¢ may be.

extended analytically.

This theorem was originally proved by P. Lévy [2, 3] for the case where ¢
may be extended analytically over the entire plane, and by Raikov [5]. Another
very simple proof may be found in [1].

The purpose of this note is to give a sharpened version of this result.

THEOREM. If ¢1, ¢2 are characteristic functions and ¢ = ¢ ¢2 ts differentiable
2n times, then so are ¢, and ¢z . For any real a let Yo(x) = €*¢(x); then there
exist numbers a; , m; such that

(1) 6% (0)] < m; [P 0)], j=1,20=<k=n

If ¢ 1is infinitely differentiable and the Hamburger moment sequence
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{(—=9)'¢®(0)}5 is delermined, then so are the Hamburger moment sequences
((=0)'e°(0))5,7 = 1, 2.
Proor. Let

#i2) = [ &= ar (), i=12
then

#() = [[ =4 ap(0) amu(),

We shali suppose that the intervals (— e, 0] and [0, <) both have non-zero
measure with respect to dF, . If this is not the case, then by a suitable choice of a
real number a, the measure corresponding to the characteristic function e*“¢z(x)
has this property.” We would then work with the functions yo(z), ¢:1(z) and
equ(ﬁg(.'l:) .

Let us set (see [4])

Aig(z) = ¢(z + h) — ¢(z — k), Aig(x) = Ai AL 7'6(x).
We get

—(—2;—)2;A:"¢(0) = (=1)" ff I:Sl_ni(}_i_jlfﬁ)]zn dFy(t) dF,(r).

If $“™(0) exists, then the left side approaches this value as h — 0 and hence
the integral on the right is uniformly bounded as » — 0. This gives

(=176 0) = [[ ¢+ 0™ R aPs(),

and from this it follows immediately that

A
e
I\
¥

(2) (=)'9%(0) = [[ (¢4 »* ar() dFu(r), 0

If we integrate over a closed rectangle 0 < ¢, 7 < a, we get

[[ @+ otaro ar, () < 16 )1,
0 Jo
Expanding by the binomial theorem gives

lim fo.dﬂ(t)fo - dFy (1) < 16™(0)],
since each term in the binomial expansion is non-negative. By hypothesis, the
dFy measure of [0, «) is not zero and hence [§ £*dF,(t) is bounded by a constant
times |¢®(0)|. If we repeat this process for the closed rectangle —a < t, + < 0,
and then repeat the whole process, interchanging the role of ¢, and ¢., we get
the first two statements of the theorem.

2 We could, in fact, choose @ so that the corresponding measures of (—», 0] and [0, )
are both = 1/2. As our proof will show, we could then take m; < 2.
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To prove the last statement of the theorem we shall suppose that ¢ is infinitely
differentiable, the Hamburger moment sequence u, = (—1)"¢"(0) is-deter-
mined, but the moment sequent », = (—1)"${™(0) is not determined. By ex-
panding the integrand in (2) by the binomial formula we see that the left hand
side remains fixed if dF) is replaced by any solution of the v,-moment problem.

By (2) it is clear that the unique solution dF of the u,-moment problem is
given by

dF = dGy * G,

where dG; * G, is the convolution of the measures dG; and dG, for any solutions
of the corresponding moment problems. The characteristic function of dF is
the product of the characteristic functions of dG; and dG, respectively. If dG,
is fixed and dG, changes, then the characteristic function of dF must change,
and hence dF must change, which contradicts the initial hypothesis. Hence the
assumption that the v,-moment problem is not determined is untenable.

CoRroLLARY. The previous theorem includes the Lévy-Raikov theorem. Moreover,
if un = (—3)""™(0) and

£ 1/ —

the same is true for the moments corresponding to ¢; and ¢..

Proor. The first statement follows by the formula (1) and the fact that if ¢
is analytic so is ¥, for any a.

To prove the second statement we note that if we set u,(a) = (—2)"¥i™(0),
then for n even

pn(a) = En: <Z) pni @

k=0

A

3 (3) w®lalt = ™ + fair

k=0

Hence,
Zo 1/(uzn(@))'™ = oo

and our assertions follow from the inequalities (1). This proves the corollary.
Finally, we remark that the inequalities in (1) are the best possible in the

sense that there exist ¢;, ; = 1, 2 such that (—i)"¢§"’(()) = (—i)"¢z.§f)(0)

for even n and some real a;. For example, let ¢:(z) = €, ¢o(z) = ™
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NOTE ON THE FACTORIAL MOMENTS OF THE DISTRIBUTION OF
LOCALLY MAXIMAL ELEMENTS IN A RANDOM SAMPLE

By M. O. GLascow
University of Texas

0. Summary. The results reported by T. Austin, R. Fagen, T. Lehrer, and
W. Penney [1] are.extended to include a general recurrence relation for the
factorial moments of the distribution. This recurrence- relation is solved for the
mean and second factorial moments, and it is shown that the method applied
may also be used to obtain a-general solution for any desired factorial moment
of higher order.

1. Introduction. Austin, Fagen, Lehrer, and Penney [1] have discussed the
distribution of locally maximal elements in a random sample. Among other
results, the authors defined certain elements in an ordered random sample of
n distinet real numbers to be locally k-maximal, provided such an element is the
greatest of some set of £ consecutive elements of the sample. Denoting by
Jx(n, t) the number of sequences of the first n positive integers which have
exactly ¢ elements which are locally k-maximal, and defining a generating func-
tion, vk(xy ?/),

(1.1) n(z, y) = ;fk<a, Bz’ /al,

a recurrence relation and partial differential equation were then derived:

(12) filr+1,r4+1) = 2: (;’;)fk(m, Dfi(n — m,r — t), n=k—1

k—2

(1.3) e/dz = yop + (1 — y);o(t + 1)z’

Unless specified otherwise, the range of a summation variable may be taken as
(0, + ) in these and the subsequent surs.

The relations (1.1) and (1.3) may be employed to obtain a general recurrence
relation for the factorial moments of the distribution. Information on such
moments would be useful in any application of the distribution as a non-para-
metric test, and would generally be of value in characterizing the distribution.

2. Recurrence relation for the factorial moments of the distribution. Let
the r-th factorial of B be defined as g" = BB — 1)---(B — r + 1), with
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