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1. Introduction. Let z,, - - -, z, be the distinct elements of a set S. By as-
signing nonnegative numbers v(x;) to the z; and v(x;,) + --+ + v(a;,) to the
set {x;,,~--, s}, we obtain an ordering of the subsets of S, namely, the sub-

sets are ordered in accordance with the values as just assigned.” We denote
by v(«) the value assigned to «, and write o < B if v(a) = v(B). For this order-
ing the following conditions obtain:

Comparability (C): For any a, 8, « < Bor 8 < a (or both).

Transitivity (T): « < 8 and B < v implies @ < v

Additivity (A): Let v be disjoint from «, 8; then & < g if and only if

aUy < BU~.

Also ¢ < v for every v, where ¢ is the empty set.

Let T be the set of subsets of S. We shall say that an ordering of T' obtained
by assigning values to the x; arises from a measure. Conversely, B. de Finetti
[1] (see also [4], p. 40) has asked whether every ordering of T subject to the
above conditions arises from a measure; and moreover has conjectured that it
does; but we show by a counter-example that the conjecture is false for n = 5.
In Theorem 2 we give a necessary and sufficient condition that an ordering
arises from a measure; the proof includes a procedure for checking in a finite
number of steps whether the condition obtains.

The connection with intuitive probability (i.e., the axiomatic theory of prob-
ability) is as follows: one has n incompatible events z; , - -- , z» ; and one sup-
poses that one can confront the disjunction of any subset of them with the
disjunction of any other, being able to say (or judge) whether they are equally
likely, and if not, which is the more likely. Thus one has a transitive ordering
of T; moreover, this ordering is subject to the additivity condition (and, if one
likes, to any further conditions similar to the above which obtain for an order-
ing arising from a measure). The question then is whether one can assign a
numerical probability to the event z, in such a way that the corresponding
ordering of T coincides with the given ordering; or in other words, whether
there exists a strictly agreeing measure. As said, the answer is no.
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1 Prepared with partial support of the Office of Naval Research to the first two named
authors. This paper may be reproduced in whole or in part for any purpose of the United
States Government.

2 By an ordering of a set S we mean an arbitrary, possibly empty, subset of the Cartesian
product 8 X 8, that is, an arbitrary set of ordered pairs (a, b) with a, b elements of S.
If (a, b) 1s such a pair, we write ¢ < b. An ordering is sometimes also called a relation.
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INTUITIVE PROBABILITY ON FINITE SETS 409

In ([1] Section 3, p. 3), de Finetti suggests that if the answer to his conjec-
ture should be 7o, then this is because the “right” axioms haven’t been put
down. In Theorem 5, we show that if we subject our judgment to certain con-
ditions of the same general character as (C), (T), and (A), then we will, in
fact, reject any ordering which does not arise from a measure. The counter-
example is thus only a partial answer to de Finetti’s conjecture; and Theorem
5 completes the answer.

The question of almost agreeing measures (see definition below) is also taken
up. A counter-example is given to show that an ordering can be subject to (C),
(T), (A) without having any almost agreeing measure.

For a systematic treatment of intuitive probability see [4] and the literature
there cited, in particular, [3].

2. Preliminaries. We designate the subsets of S multiplicatively: thus z,v.2;,
for example, is the set consisting of the elements x; ; x,, x;. The empty set is
designated by 1. The set T of subsets of S is thus identified with the monomials
in n indeterminates 2, « - - , z, in which the exponents are 0 or 1. In the stand-
ard terminology for polynomials, the intersection § of two sets «, 8 is their
greatest common divisor. The product a8 need not be in T, in fact will be in
T if and only if § = 1. The union of two sets «, 8 is aB/é.

In addition to the monomials in T, it is convenient to consider the group G
of monomials i, - -, zi* 4 , ***, 1n arbitrary integers; and extend the meas-
ure v on T' to G in such a way that v(aB) = v(a) + v(B). There is, in fact, one
and only one way to make this extension, namely, by placing v(zi’, - - - , zi) =
1w (x) + -+ + 20(x.). We will call a mapping @« — v(a) of G into the addi-
tive group of real numbers for which v(aB) = v(a) + v(B8) a valuation. There
is thus a 1-1 correspondence between measures and the valuations in which
v(z;) Z 0 for every ¢, and such valuations could, without great confusion, be
called measures.

Let v be a valuation of G, corresponding to a measure, and giving rise to an
ordering of 7. In addition to the conditions (C), (T), (A), there are several
other obvious conditions that one can write down. For example: if « < 8 and
v < §, then ay < 5. Here, even if «, 83, v, 6 are in T, oy and 86 need not be.
In order to confine ourselves to T, we consider the case that «, 8, v, é are in 7'
and there exists a monomial e such that ay/e and 86/¢ are in T. The question
then is whether (C), (T), (A) imply that ay/e < Bd/e. A priori either this
implication can be established in a purely formal way, or it cannot, and if it
cannot, the question is whether intuition requires the conclusion ay/e < 88/e.
For the time being, we need not enter into considerations of the latter kind, as
we have the following theorem. We write & < 8 if @ < B obtains but 8 < «
does not obtain.

THEOREM 1. On T let there be a relation (<) subject to the conditions (T),
(A). If a, B, v, 6 are in T and there is a monomial € such that ay/e and B8/ ¢ are
mn T, then a < Bandy < 6 vmplies ay/e < B6/e. If in addition o < Bory < 8,
then ay/e < B8/e.
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Proor. First suppose «, 8 have greatest common divisor 1 and v, & have
greatest common divisor 1. -Then also g.c.d. (o, v) = 1 and g.c.d. (8, 8) = 1.
For if, say, x; were a factor of « and v, then it would not be a factor of 8 or 8,
and there could exist no e such that ay/e and 86/ would be in T'; similarly
with 3, 6. Writing

a=2ad, v=vn, B=8Bm, =70,
7 = ged. (B,7), & = gecd (a50),

one finds y'a < ¥'8 = By < 86 and v'o’ < B¢, from which ay/e < B§/e fol-
lows. In the general case, let A = g.c.d. (a, 8), v = g.c.d. (y, §). Then /A <
B/\, v/u < 8/u, by additivity; also (a/X)(v/i)/(e/Mu) and (8/N)(8/u)/(e/Mu)
are in T. By the first part of the proof, we now have (a/\)(v/u)/(e/Au) <
(B/N)(8/u)/(e/Ms), that is, ay/e < Bd/e. )

For the second part of the theorem, keeping in mind that A < u, u < » and
vy < Nimplies p < A\, » < p, A < », and assuming 8’6 < ¥'a, we obtain y'8 <
Y'a, '8 < By, whence 8 < awand 8 < v. Thus if @ < 8 or v < §, then y'a <
B’6; and ay/e < B8/e follows.

We shall have occasion to refer to the following eondition:

Generalized Additivity (GA): If a; < B:,% = 1, -+, s, and [Jas, []8: are
wmn T, then Hai < Hﬂi. If in addition a; < B: for some t, then Hai < HB,-.

CoroLLARY TO THEOREM 1. Let T be ordered by a relation subject to the condi-
tions (T), (A). Then (GA) also obtains.

The proof is by induction on s. On the other hand, if one drops the assump-
tion that [Ja:, ]I8: are in T and assumes only that there is a monomial e such
that Ha,-/ ¢, |I8:/¢ are in T, then (even assuming (C)) one cannot conclude,
as we shall see from the counter-example below, that [Ja./e < [18:/¢.}

3. Agreeing and almost agreeing measures. Let 7', be an arbitrary set of
monomials, with exponents possibly negative, and let <, < be two completely
arbitrary order relations on T, . Of these relations individually taken we as-
sume nothing, not even transitivity; in other words, we have given, for < say,
a set R of pairs: R = {(a, 8)| @, 8 € T4}, and we write « < 8 if (a, 8) € B; sim-
ilarly for < there is a set of pairs S. Although 8§ € R need not be assumed
for what follows, for slight notational conveniences which will involve prac-
tically no loss of generality, we assume that o < 8 implies « < 8. We refer to
the completely arbitrary ordering (<, <), and say it arises from the valuation
vif @« < B implies v(a) < v(B) and « < B implies v(a) < v(B).

Let us write (for arbitrary monomials «, 8) @ < 8 if a = Ha,-, B = Hﬁi,
ai,BieTy, a; < B;,1=1,---,8;and @ < B if in addition a; <-8; for at
least one 7. If the given ordering arises from a valuation, then clearly ¢ < e
for no e.

3 Below we shall have gs < p, pg < rs, ps < g, but not spg = (¢8)(pg)(ps)/spqg <
(p)(rs)(tq)/spq = rt.
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DEFINITION. A completely arbitrary ordering of Ty will be said to be compatible
with a valuation if € < e holds for no e. (In terms of the originally given relations,
the condition € < € holds for some e can be expressed as follows: there exists a rela-
ton [1(8i/as) = 1, with a;, B: in T, a; < B; each i, and a; < B; for at least
one 1.)

THEOREM 2. A completely arbitrary ordering of T, an arbitrary finite set of
monomials, arises from a valuation if (and, trivially, only if) it is compatible with
a valuation.

For the proof it will be convenient to separate out the following lemma.

LemwMa 0. (a). Given an arbitrary finite system of linear equalities and inequali-
ties {1; > 0, l:. = 0,1, = 0}, where the l; l; , i are linear forms in indeterminates
X1, -+, T, with rational coeffictents, one has an algorithm for deciding whether
the system has a solution, and if it does, for finding one.

(b). The system {I; > 0, l; = 0, I = 0} of (a) has a solution if
(and, trivially, only if) the following hypothesis obtains:

(H): for no rational \; = 0, u;, vvx = 0, A; > 0 for at least one 1,
does the linear form L = D> A d; + Z\#:‘l; + D wl; equal zero (that is, have all
its coefficients equal zero).*

Proor or THE LEMMA. The idea of the proof of (b) is as follows: each step
of the algorithm of (a) leads to a finite number of other systems of similar form,
the disjunction of which is equivalent with the given system; moreover, the
hypothesis (H) carries over, at each step, to at least one of the resulting sys-
tems. Ultimately the indeterminates x;, ---, x, are eliminated, and (b) fol-
lows by verifying it, as one does trivially, in the case that there are no ;.

As for the proof itself: if an inequality 7 = 0 occurs, we can write the system
as the disjunction of the following two systems:

(1): {LL>0,1 >’0;l; =0;lb20,--}
and (2): {L.>0;1,=0,1] =0;l5 20, ---}.

One sees without difficulty that the hypothesis (H) carries over to at least one

of these two systems.” Therefore we may suppose all the inequalities (and
oy . ’

equalities) to be of the form I; > 0 or I; = 0. If now an equality I; = 0 occurs

4If in (H) we had the word real instead of rational, this would follow directly from
([2], p. 26, Criterion III); moreover, by Corollary 2 below, a system of linear inequalities
with rational coefficients which has a real solution must also have a rational solution;
and the theorem follows. Since theorems on linear inequalities are linked in an intimate way
with facts about convex sets (see [2]), a knowledge of these facts renders the theorems trans-
parent; but the fact is that in taking care of the additional point just mentioned, one can
by-pass entirely the consideration of convex sets. With slight modifications, our proof of
Theorem 2 yields quite simple proofs of all the theorems on inequalities given in ([2], pp.
23-28); in this connection, see Theorem 3, below.

5 If it didn’t, we would have an identity of the form X Nl + X uil;' + 3wl = 0,
AN = 0,m = 0,and », > 0,say » = 1;and another such identity with\; = 0, some \; > 0,
v = 0 for k = 2, and »; < 0, say » = —1. Adding the two identities gives an identity
contradicting the hypothesis (H).
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and actually involves some letter a;, we can use this relation to eliminate z; .
It is immediate that the hypothesis (H) carries over to the resulting system.
Hence we may suppose only inequalities of the form I; > 0 to occur. The sys-
tem being of the form {I; > 0}, we write it, relative to some x, that actually
oceurs, in the form {m, — z; > 0, 21 — my > 0, mw > 0}, where the m., , m,’,,
my are forms in a5, - -+, ,. Necessary and sufficient for this system to have
a solution is that the system {m. — my > 0, miy > 0} have a solution: in fact,
if Z,, -+, &, is a solution of this system, then min m,(Z) > max my(%); and
taking &, arbitrarily between these numbers we get a solution &, -+, &. of
the original system. Moreover the hypothesis (H) carries over to the system
in a3, -++, x, as one casily sees. Hence the proof is complete by induction,
subject to the verification for n = 0.

Proor oF TuroREM 2. The theorem is seen to be a corollary of the lemma
upon rewriting the theorem in additive form. If, namely, in any valuation,
x; gets the value &,, then J]z}’ gets the value D r;&;. Let a = []z7/, 8 =
]Iz Then a < Byields) (s; — ;)% = 0;a < B yields Y (s; — r;)&; > 0.
Corresponding to the power product B/a, consider the linear form ! =
> (s; — r;)x; (in indeterminates x;). Let {l} be the set of linear forms arising
from B/a with & < B; {lx}, the set of linear forms arising from 8/a with a < 8.
The assertion that the ordering arises from a valuation thus comes to saying
that the system {l; > 0, [ = 0} has a solution. A condition 118,/a) = 1
rewritten in additive form becomes: Y_ I, = 0, that is, the linear form L =
> 1, has all its coefficients equal to zero. The compatibility condition can then
be stated as follows: for no integral A; = 0, ». = 0, A\, > 0 for at least on 7,
does the linear form L = ST Aidi + 2 wlx equal zero (here, if L corresponds to
T11(8./a,), Ni counts the number of times a Bi/a; with a; < B occurs; and
the number of times a B:/ax with ak’ < Bi occurs). Moreover, since the coeffi-
cients of L are homogeneous in the X\;, ». , the compatibility hypothesis can
also be stated as follows: for no rational A; = 0, », = 0, A\; > 0 for at least one
7, does L = 0. This is just hypothesis (H) of the lemma, so the system has a
solution, and the desired valuation exists.

As corollaries of the lemma, we have the following.

CoroLLARY 1. Given an arbitrary ordering of Ty, an arbitrary finite set of
monomials in 1, - -, T, one has an algorithm for deciding whether the ordering
arises from a valuation, and if 1t does, for finding one. The number N of steps
needed 1s a stmple (in fact, primitive recursive) function of n and b, where b is a
bound on ihe exponents of the x; . ,

The algorithm applies to a system over an arbitrary ordered field. Moreover
one gets the following useful corollary.

COROLLARY 2. If a finite system of linear equalities and inequalities with co-
c¢fficients in an ordered field F has a solution in an ordered ertcnsion field G of F,
then it also has @ solution in I7.

Proor. The algorithm for deciding relative to G is identical with that rela-
tive to I.
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Given a linear system of equalities and inequalities with rational coefficients,
let B be a bound on the (absolute values of the) numerators and denominators
of the coeflicients when written as some quotients of integers. Following the
above algorithm, one sees that 2B* is a similar bound for the system obtained
upon eliminating x; . Hence one sees how to write down a simple function of
B and n which will be a bound for possible numerators and denominators of
some solution (if there are solutions). If the equalities and inequalities are
homogeneous, then there is an integral solution, and one has a bound for one
such. Now write ¢ < e for some e in the form [[(8:/a:)” = 1 with a, , B: ¢ T},
Bi/as # Bj/ajfor j # 7, a; < B;every i, a; < B; some 7, r; = 0, r; > 0 for at
least one ¢ with a; < B;. Writing out the «;, 3; as monomials in the z; and
comparing coefficients, one obtains a system of homogeneous linear conditions
on the ;. If the system has a solution, then it has one with the r; integral and
bounded as just explained. Hence we have the following corollary.

CoroLLARY 3. Let Ty be an arbitrary set of monomials tn n variables with
exponents bounded by b. For every n and b one can find an N such that an arbi-
trary ordering of T: arises from a valuation if and only if there is mo relation of
the form [ (8:/a:)™ = 1,0 < r; £ N, and some r; # 0 for an ¢ such that a; < B; .
Here N 1s a simple (in fact, primitive recursive) function of n and b. (For Ty = T
the bound will depend only on n.)°

In a general axiomatic theory of probability it would undoubtedly be of
significance to let the values or measures be elements of an arbitrary simply
ordered group, because such groups are capable of accommodating events p, ¢
with p more probable than ¢ but only by an infinitely small amount. For finite
sets, however, one has the following corollary.

CoROLLARY 4. If an ordering of T, arises by assigning values to the x; from a
stmply ordered group, then the ordering can also be obtained by assigning real
numbers to the x; .

Proor. If the ordering arises as assumed, then the condition of the theorem
obviously obtains.

DeriniTION. By an almost agreeing valuation one means a valuation, other
than the one for which v(x;) = 0 for every 4, such that « < 8 implies v(a) =
v(8). In the case‘"v(:ci) = 0 every ¢, we speak of an almost agreeing measure.

TareorEM 3. Let Ty be an arbitrary finite set of monomials containing 1, a1,

-, Xn and ordered arbitrarily subject to the conditions 1 < z, -+, 1 < x,.
Then the ordering admits an almost agreeing measure if and only if mo monomzal
118/, a., Bie Ty, a, < B:, has all its exponents negative.’

Proor. This time (see Theorem 2, proof) we have a system {l; = 0} for
which there is to be a solution; the hypothesis is that for no rational \,, \; =
0, some A\, > 0, does the linear form Y AJd; have all its coefficients negative.
Taking into account Corollary 2 above, this follows directly from ([2] p. 27,

¢ For 71 = T, a more special analysis shows that N = n!is a suitable bound. The 8;/q,
can be taken to be £ n + 1 in number.

7 Finiteness conditions hold bere as in Theorem 2 and corollaries.
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Criterion VI). A short self-contained proof can be given as follows. Write the
given system {l; = 0} relative to some variable z; which occurs in the form
{m, — 21 20,2, — my = 0, my = 0}. Then the hypothesis does not carry over
to the system {m, — me = 0, m, = 0}. However, if the elimination is likewise
carried out relative to a second variable z, which occurs, then one sees that
the hypothesis carries over to at least one of the resulting systems. Hence the
induction holds, and the theorem follows upon verification for n = 1 (and
n = 0).

4. The counter-examples. To facilitate the exposition, we state the following
proposition and theorem, but postpone the proofs for a moment.

ProrosrtioN 1. In a stmple ordering of the subsets of S = {x1, ~- -, x.} which
satisfies additivity, the last 2" subsets are the complements of the first 2" in
reverse order.

THEOREM 4. Let the 2" subsets of S = {x1, -+, 2.} be simply ordered and
assume that the last 2" subsets are the complements of the first 2" in reverse
order. Let U be the first 2" + 1 subsets and assume that 1, the empty set, is the
first element of U and that af € U implies o, B ¢ U. Then if adduitivity holds for U
(z.e., if ay < By implies a < B for all ay, By in U), it also holds for the whole
ordering of the 2" subsets T.

The first counter-example stems from trying to see whether Theorem 1 can
be extended to three inequalities (in five letters, the fewest for which the ex-
tension can fajl). One has to put down three inequalities such that all three,
but no two, lead (as in Theorem 1) to a new relation; say

qs < p, pq <'rs, ps < lg.
In any agreeing measure one would have to have pgs < rt, so we put down
1t < pgs

and try to fit these four inequalities into a simple ordering of the 32 subsets
of {p, q, r, s, t} which satisfies additivity. Starting with 1 < ¢ < p <r <s <
gr < gs < rs < grs, which obviously satisfies additivity, we adjoin the relations
gs < p, pq < rs to get

1 <g<r<s<eg<geg<p<pg<rs
(the complements of which, in {p, ¢, r, s}, in reverse order are
pg < rs < grs < pr < ps < pgr < pgs < prs < pqrs).

Additivity clearly holds for these first 9 subsets, hence also for all 16 by The-
orem 4.

Since r¢ and pgs are complements, 7t will have to be among the first 16 of the
sought example; hence also gt and ¢. On the other hand pgs is 14th in the above
ordering of the subsets of {p, ¢, r, s}. Hence we try to adjoin ¢ < ¢t < rt to the
13 sets preceding pgs. It is convenient to try to take ¢ as the 16th element,
as then pgs will be the 17th and no new elements enter into consideration.



INTUITIVE PROBABILITY ON FINITE SETS 415

Placing rt 16th, from pgr < rt one gets the requirement pq < ¢; and from fg <
pgs one gets t < ps. Since ps < tg, we must place tq either directly before pgr
or directly after it. Placing {g < pgr, from grs < tg < pgr one gets the require-
ments rs < ¢t < pr. Now all requirements for additivity have been found. In
fact, consider the ordering

1<g¢g<r<s<g<g<p<p
<rs<t<grs<rp<ps<ig<qgyp <rt<spqg
(and then by complements)
spg < st < rsp < qrt < gst < pt < grsp < gpt < rst
{ grst < rpt < spt < grpt < gspt < rspt < pgrst.

In checking additivity one has to see that cancelation with an element involving
t preserves order. As far as canceling ¢ is concerned, this checks upon observing
that ¢, tq, tr are in correct order. As for canceling ¢, one has only to consider
the elements adjacent to {¢ which involve ¢, namely ¢rs and grp; this gives
rs < t < rp, which checks, and moreover was checked in the course of the con-
struction. Similarly ¢rp < rt yields ¢p < t, which checks. Of course one can
check directly that the above ordering gives the desired counter-example, with-
out recourse to Proposition 1 or Theorem 4, or Theorems 1, 2, and 3 for that
madtter.

One can also obtain a counter-example as follows. While the given inequali-
ties_have no strictly agreeing measure, they do have almost agreeing ones, and
from one such one can easily obtain an additive ordering. In fact, let P, Q, R,
S, T be the values in an almost agreeing measure. Then from

Q+S=sP
P+Q=R+S
P+8S=Q+T
R+T=P+Q+S

and the fact that (@ + S) + -+ (R+T) =P+ ---+ (P+Q+ 8)
onefindsQ+ S=P,P+Q=R+S,P+S=Q+T,R+T=P+
Q + S; from which R = 2Q, P = Q + S, T = 28; and these conditions are
sufficient. Taking @ and S so that p, g, r, s, ¢ get distinct values (say @ = 1,
S=3;R=2P=4,T = 6), one sees that no element other than r¢ and pgs
gets the value v(rt) = v(pgs). Keeping R and T fixed but decreasing @, P, S
slightly (say by .1to @ = .9, S = 2.9, P = 3.9), we get a measure in which
gs < p, pg < 18, ps < gt, gps < rt and in which 15 elements have value less
than v(pgs) and 15 have value greater than v(r¢). Now we change P, Q, R, S,
T slightly so that the 32 elements get distinct values, the inequalities ¢s < p,
pq < 78, ps < qt, qps < rt are maintained, and also so that ¢ps and rt remain
in the middle (say by taking S = 2.89, T = 5.9, R = 2.2, keeping Q = .9,

A IIA

IA
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P = 3.9). The resulting order is additive, since it has a strictly agreeing meas-
ure: but then so is the order one gets by interchanging the middle elements.
In this way one gets an example of the desired kind (and, in fact, with the
stated values, the above example).?

We now give a counter-example showing that the order on the subsets of
{q, r, s, p, §} given above can be extended to the subsets of {g, 7, s, p, ¢, w} in
such a way that the resulting order, though it satisfies (C), (T), (A), does
not almost agree with any measure.

As already noted, the given order has an almost agreeing measure (e.g.,
Q=1,R=28=3 P =4,T = 6). Hence in the desired counter-example,
w would have to be amongst the first 32, otherwise it would be 33rd and any
value W of w equal to or greater than v(pgrst) = 16 would yield an almost
agreeing measure. A similar argument shows that at least one other element
involving w, hence qw, must be amongst the first 32. The 30th element in the
above order is gspt. Placing this 32nd, so that rw is_33rd, whence grpt < rw,
we get gpt < w. Now inserting w < qw between two elements which must have
equal value in any almost agreeing measure, say between grst and rpt, the re-
sulting order can have no almost agreeing measure. In fact, if P, ---, W are
the proposed values, then from W = @ 4+ W, we get @ = 0, hence B = 0 (from
R =2Q),S =0 ({roms <gqr), T =0 (from T = 28), P = 0 (from P =
Q + 8S),and W = 0 (from w < pgrst). Hence there can be no almost agreeing
measure. The order of the first 33 subsets now is:

1 <g< - <grst <w < qw < rpt < spt < grpt < gspt < rw < -+,

To check additivity it remains to see that order is preserved upon canceling ¢
in ¢grst < qw < g¢rpt; since rst < w < rpt, this checks.
In accordance with Theorem 3 one finds that

(rs/qp)"* (at/sp)* (gsp/rt)* (w/qrst) ™ (rpt/qw)™ (rw/gspt)*

has all its exponents negative.

Proor oF ProprosiTioN 1. Let a« < B8 and write &« = ary, 8 = Bry, where
v = gec.d. (a, B8). Let § = complement of a;8ry. Then comp. ary = (18 and
comp. By = aib. Since oy < B, we have comp. 8ry < comp. ary. Thus comple-
mentation reverses order. The proposition would now follow unless some two
elements among the first 2", say «, 8, were complements; and likewise unless
some two elements among the last 2", say v, 8, were complements. Suppose
then these conditions obtain with o < 8 <y < 8. From o < v, 8 < & we get
by Theorem 1 that a8 < ¥4, contradiction, since a8 = vé.

Proor or THEOREM 4. First note that a« < ay for any ay in T, v # 1. In
fact if ay is in the first half of T, then « is also, and « < ay follows from addi-
tivity. If ay is in the second half and « is also, the assertion follows upon taking

8 The advantage of the second method is that it leaves unanswered the question whether

a simple, additive ordering of 7' necessarily has an almost agreeing measure. Especially it
leaves it unanswered for n = 5.
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complements; it follows trivially if ay is in the second half and « is in the first
half. Let then a, 8, ay, By ¢ T, @« < B; and assume By < ay, soy % 1 and a <
B < By < ay. We may assume that 8 is in the first half of T, as otherwise we
can reduce to this case by taking complements. If now By is in the second half,
then a/8 = ay/By = complement By/complement oy = u/\, where u, A are in
the first half and A < p. This contradicts (A) of U. Hence we may assume that
Bv is in the first half.

We also suppose ay is in the second half and in fact not the (2" + 1)th
element v, otherwise we already have a contradiction. Also, by displacing g.c.d.
(e, B) to ¥ we may assume g.c.d. (a; 8) = 1. Assuming this done, let & be the
complement of afy. Let a1, B1, v1, 6 be the g.c.d.’s of a, 8, v, 6 respectively
with v; and ay, 82, 72, 82 their complements. Then we have:

aree < Bife < Bifayry: £ aafayady < aifryid = v < aieeyrye
and, by complements, 8:8:018; < asBryede < afryidy = v. Writing
a/B = ay/By = (ay/v)-(v/By)

and preparing to get a contradiction by following the proof of Theorem 1, we
note from the first line, by an allowable cancellation, that Bxys < ai8; ; and
from the second 81861 < azys. Also Bifry: < Picsd: from the first line; and we
want a6 < aiozys . If cwarys £ by (= v), then ayy, < 616, contradiction.
So we have Bi8zy: < ajary:. Notationally, this means we can assume v, = 1;
and from the symmetry of the situation (i.e., the fact that hypothesis and con-
clusion are unaltered by interchange of v and its complement), that v, = 1,
contradiction. Or explicitly, we have

aray < 1B < Bifay: S @efev20 < auPfividy = v

(and v < @10272, as otherwise we already have a contradiction), and, by comple-
ments

B1B2v1010: = azBay20: < ar1Pr1v161 = v.

Now we get 81 < asds, 8262 < a1, whence 81 < Baaedy < ayaz, contradiction.

6. Axiomatic considerations. We are concerned now with putting down
axiomatic conditions on an ordering of the subsets S which will make the or-
dering compatible with a valuation. The axioms will refer to a set 7’ which is
axiomatically left undefined but which intuitively arises by a simple construc-
tion from S. For convenience the set 7” will be infinite, though actually only a
finite portion of 7” is involved.’ In fact, for a moment it may be helpful to
think of T” as the set of all events. Because of this, or because of the construec-
tion, one will compare some pairs of elements from 7”7, but not all pairs. That
is, for 7" we will not assume Comparability, though we will assume Transitivity

® A bound on the number of elements of a suitable 7’ can be computed using Theorem 2,
Corollary 3.
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and Additivity; we would allow Generalized Additivity, but can (and will) man-
age without it. In addition we take the following axiom:" '

Polarizability (P). For any o in T’ there exist elements o', «” in T’ with
a =dd, ot < o o < d.

Though we do not assume comparability, we will assume the following:

P-Comparability (PC). If a« = o/a”, &’ < a”,a” < o/, 8 = 6'8",8 < 8,
B” < B, and a < B, then o/ < §'.

The intuitive content of (P) is that any event a is equivalent to the dis-
junction of two incompatible and equally likely events o/, ”. By “equivalent”
we mean that « occurs if and only if o’ or a” occurs. The content of this axiom
is intuitively quite compelling. If « is any event (outcome), we can compose
it with an irrelevant event having just two incompatible and equally likely
outcomes, say, for example, the tossing of a coin. Let a* be this composite event.
Then « and o* have essentially the same significance. Now let o’ be composed
of a and the outcome heads and let o” be composed of « and the outcome tails.
Then o* = ¢/a”, d’ < a”,a” < .

Starting with the set S = {z;, ---, x.}, we polarize its elements, i.e., we
apply (P) to them, then polarize the results, etc. Call the resulting set S’. The
set T” is obtained by composing elements of S” which do not overlap in content.
It is clear that we shall want transitivity, additivity, and even generalized
additivity in 7”; moreover it is also clear that we shall not want to assume
comparability. For we might be quite willing to compare x; and z in likelihood,
and yet be quite unwilling to compare z; and z5, where z; is composed of
and the tossing of coins and z, is composed from z,; and the tossing of coins.
In fact, such comparisons would amount to attaching precise numerical values
to the probabilities.

Now for the axioms:

The elements of the set T' are undefined. In T’ we have a binary operation, multi-
plication, which is commutative and associative and has an identity 1. Elements
a, Bin T’ are said to be disjoint if « = v8, B8 = ve, v, 8, e in T', impliesy = 1.
Foray, - ,armm T, o1 aisan T iof and only if ar, - - - , ax are mutually
disjoint. There is a transitive relation < in T’. Concerning this, we assume (A),"
(P), and (PC).

This system could be considerably weakened, but the main point for the
present is to get polarizability in while avoiding comparability.

Given a relation of the form f < g or f < g, say for concreteness’ sake, af <
8¢, one can obtain other relations by substituting for each of «, 8, -- -, € one
of the two corresponding polarized components, e.g., o/8” < v'8”€¢. The rela-
tions so obtained will be said to be derived by polarizing the given relation.
For the next theorem, we note the following lemmas.

LemMmA 1. A product onas - -+ am can be polarized by polarizing its factors.

Proor. This follows by induction on m if it holds for m = 2. For m = 2,

10 Tn the present setting, we write (A) in the following form: Let v be disjoint from a,
B; then &« < Bif and only if ay < By. Also1 < v for every v.
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let ax , a1, as, as be polar components of a;, az, so that a1 < a1, as < oy .
Since a; , a, are disjoint, so are a; , as . Hence atas < aias < ajas .

Lemma 2. Let f, g be products of mutually disjoint elements 1, -+, & . If a
relation of the form f < g or f < g obtains, then also the relations deried by po-
larizing the given relation obtain.

Proor. For f < g, in view of Lemma 1, this follows from (PC). For f < g,
in view of Lemma 1, we have to see that if f is polarized into f’f”, ¢ into ¢'¢”,
then f’ < ¢'. If not, then ¢’ < f’; and since ¢” < ¢’ < f' < f”, also g" < f”".
In the case that f and g are disjoint, we get ¢’g” < f'g” < f'f”, hence g < f,
a contradiction. The general case can be reduced to this case by canceling the
x; common to f and g.

THEOREM 5. Let x,, - -+ , T, be mutually disjoint elements of T’ and let T be
the 2" products of the x;in T'. Let T = {ay, --- , am}, m = 2", and assume that
1=oa < a < -+ < an. Then the order imposed upon T arises from a valua-
tion. )

Proor. We show that the order imposed upon 7 is compatible with a valua-
tion. Let B, v: be monomials in 7 with 8; < y;fors = 1, ---, s, and B; < v
for some 7; and assume that each z; occurs as often among the 8; as among the
v: (in other words, in terms of the definitions preceding Theorem 2, that ¢ < ¢
for e = [I8: = IIv:). We polarize 8; < v (by polarizing the z;), then polarize
the results, etc., until each z; is split into 2* > s parts. By an appropriate choice
Ba < va of the polarized relations, we can arrange matters so that no polarized
component of an z; occurs in more than one B; ; and similarly with the i ;
and so that the same components of the x; occur among the B, and va . By
Theorem 1, Corollary applied to the set of n-2* polar components of the z;,
IIs. < IIva, and this is a contradiction since 1185 = Ilva. Hence the
ordering of T is compatible with a valuation, and by Theorem 2, arises from a
valuation.

The object of the present section, and what Theorem 5 shows, is that the
condition “e < e for no ¢’ is imposed on us by our intuition when we confront
probabilities. For example, we reject the order given in the first counter-example
above because if we judge ¢gs < p, pg < rs, ps < ig, rt < spg, then we will also
judge qlsl <wp/’ p/q// < 7"8’, p"s" < t’q', "t < 8"p”q", where pr’ p//’ q/’ qn, 7,/’
(r"), &, 8", t', () are polar components of p, g, 7, s, t respectively, and u =
(¢s")(P'")(@"s") (') < (p')(r's)(t'¢)(s"p"q") = v; which is a contradic-
tion since u = v.
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