THE LAGRANGIAN MULTIPLIER TEST

By 8. D. Swvey
University of Glasgow

1. Introduction. One of the problems which occurs most frequently in prac-
tical statisties is that of deciding, on the basis of a number of independent ob-
servations on a random variable, whether a finite dimensional parameter
involved in the distribution function of the random variable belongs to a proper
subset w of the set @ of possible parameters. Naturally this problem has re-
ceived considerable attention and the main method which is currently applied
in dealing with-it is the well-known Neyman-Pearson likelihood ratio test.
Direct application of this test involves finding the supremum of the likelihood
function in the set w and this in turn often involves.the solution of restricted
likelihood equations containing a Lagrangian multiplier. And the same set of
of equations has to be solved if, irrespective of the likelihood ratio test, it is
desired to obtain a maximum likelihood estimate in the set w of the unknown
parameter. Rather surprisingly, since the problem is of such frequent occur-
rence, little seems to have appeared in statistical literature on such restricted
maximum likelihood estimates, the main results in this field being cont..ined
in a recent paper by Aitchison and Silvey [1].

In this paper the authors introduced, on an intuitive basis, a method of
testing whether the true parameter does belong to w, this method being based
on the distribution of a random Lagrangian multiplier appearing in the re-
stricted likelihood equations. It is the object of this present paper to discuss
this Lagrangian multiplier test. In order to do so, it is necessary to consider
how the results of the previous paper must be modified when the true parameter
does not belong to the set w, because only in this way can we obtain any notion
of the power of the test. Discussion of this point forms the initial part of the
present paper. We will then show the connection between the Lagrangian mul-
tiplier test and the likelihood ratio test. Finally, since often in practice situations
arise where the information matrix is singular, we will consider how the Lagran-
gian multipler test must be adapted to meet this contingency.

The approach adopted by Aitchison and Silvey [1] in the discussion of re-
stricted estimates is essentially Cramér’s approach [4] to maximum likelihood
estimates, i.e., attention is concentrated on solutions of the likelihood equations
rather than on genuine maximum likelihood estimates. Such an approach is
really unsuitable in the present instance where we do not necessarily assume
that the true parameter does belong to the subset w. And we will use instead the
method used by Wald [7] in his discussion of the consistency of maximum like-
lihood estimators. As has been pointed out by Kraft and Le Cam [5], Wald’s
approach to unrestricted maximum likelihood estimation is much more illumi-
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nating than that of Cramér and, not surprisingly, this is still true of restricted
estimation. Unfortunately the change in viewpoint necessitates certain changes
in the notation used by Aitchison and Silvey, and these we will now introduce
in describing mathematically the situation to be discussed.

2. Notation. The basic situation in which we shall be interested is described
mathematically as follows.

Corresponding to each point § = (6, 6;, ---, 6,) in some subset Q@ of s-di-
mensional Euclidean space, denoted by R’, is a distribution function F(-, 6)
defined on R®; where « is some given integer. A random variable X, taking values
in R® has distribution function F(-, 8,) where 6, is known to belong to @ but is
otherwise unknown; though it is suspected that 6, belongs to a subset w = Q N
{60:h(0) = O} of @, where h = (s, b2, -+, h;) is a well-behaved function from
R’into R", r < s.

We will assume, as is usual, that for all 6 £ @, F(-, 8) is either discrete or ab-
solutely continuous, and admits an elementary probability law f(-, 8). Then
for a given sequence £ = (21, &2, ***, Ta, --+) of independent observations
on X, the log-likelihood function log L.(z,-) is defined on @ by log L,zx,0) =
>orilog f(z:, 0). By a maximum likelihood estimate of 8 in any subset w* of
Q, we mean an element §,(x, w*) of w* which is such that

log L.(z, 6.(z, w*)) = sup log L.(z, 6).
few*

If a single-valued function 8, ( -, w*) is thus defined for almost all z, then 6,( -, w*)
is a random variable called a maximum likelihood estimator of 6 in w*. When
we refer to ‘“almost all ”” we mean almost all with respect to the probability
measure defined on the sequence space of points « by the consideration that the
components of a sequence = are regarded as independent observations on a
random variable X with distribution function F(-, 6y). Similarly “almost all
t ¢ R*” means almost all with respect to the probability measure defined on
R by F(-, 6).

The matrix whose (7, j)th element is [z« dlog f(¢, 0)/36;-dlog f(¢, 0)/d6;
dF(t, 0), we will denote by Bs. Further, Hy will denote the s X r matrix
(0h;(0)/36;). For any real function ¢ defined on R*, D¢(6) will denote the col-
umn vector whose ith component is 9¢(6)/80;, while D’¢(8) will denote the
s X s matrix whose (7, j)th component is 8%¢(0)/36,00;. Generally column
vectors corresponding to points in Euclidean space will be printed in the corre-
sponding boldface type so that, for example, the column vector 8 corresponds
to the point 6.

We will be interested initially in the emergence of 8,(z, w) as a solution of the
equations

n~'D log L.(z, ) + He\ = 0
h(6) = 0,
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where X is a Lagrangian multiplier in R", and generally in the restricted maxi-
mum likelihood estimator 4,(-, ).

3. 8,(r, w) and the likelihood equations. Naturally the discussion on which
we have embarked will involve the introduction of various assumptions con-
cerning F and k. The assumptions that we will introduce are not designed to
achieve complete mathematical generality but are, we hope, of such a nature
that they will not obscure the over-all mathematical picture and will be satisfied
in many practical problems. The first of these assumptions is as follows.

Assumption 1. For every 6 € Q, 2(0) = [z« log f(t, ) dF(t, 6,) exists.

The whole problem of maximum likelihood estimation, restricted and un-
restricted, is closely bound up with the behaviour of the function 2, because the
Law of Large Numbers ensures that, for each 6, the sequence (n ™" log L.(z, 6))
converges, for almost all z, to z(8). If, further, this convergence is uniform with
respect to 6, then for large n and most z, n~" log L, (z,- ) will be uniformly near
z and under suitable conditions will attain its supremum in w near the point (if
such exists) where z attains its supremum in w. The assumptions which we will
now introduce are designed to achieve this desirable situation.

Assumption 2. Q is a convex compact subset of R°.

Assumption 3. For almost all t ¢ R*, log f(¢, ) is continuous on Q.

Assumption 4. For almost all ¢ ¢ R®, and for every 6 ¢ Q, 3 log f(t, 6)/96;
(1=1,2---,5) exists and |9 log f(t, 6)/30, < g(t)(i =1, 2, ---, s)
where [ g(t) dF(t, 6) is finite.

Assumption 5. The function 4 is continuous on 9.

Assumption 6. There exists a point 6* ¢ w such that z(6*) > 2(0) when 6 ¢ o
and 6 # 6*.

Assumptions 2-4 ensure that for almost all = the sequence (n™" log L.(z, 6))
converges to z(8) uniformly with respect to 6 in the set Q. Assumptions 2 and 5
ensure that « is a compact subset of R* and consequently that any continuous
function on w attains its supremum at some point of w. In particular the function
log L.(z, -), for almost all z, attains its supremum in w at some point 6,(z, w)
of w. Assumption 6 then ensures that for almost all z the sequence (6.(z, w))
converges to 6*. The proofs of these results are fairly straightforward and we
omit them.

It is of some interest to note that if 6 &€ w then usually 6, will satisfy the
condition demanded of 6* This has been proved by Wald [7]. In fact, when
interest is concentrated on the case where 6, ¢ w, Assumption 6 may be replaced
by the following

Assumption 6A. 6y ¢ w and if 6 5 6, then for at least one t ¢ R® F(t, 6) 5
F(t, 60). This is sufficient to ensure that z(8,) > z(8) if 6 = 6, .

As stated above, Assumptions 1-6 ensure the existence of a maximum likeli-
hood estimator in w of 6, which converges with probability one to 6*. If in addi-
tion we make the following Assumption 7 then for large n and most z, §,(z, w)
will be an interior point of w and consequently will emerge as a solution of the
restricted likelihood equations, when the function % is differentiable.



392 S. D. SILVEY

Assumption 7. 6* is an interior point of w. Now making assumptions 1-7, we
will use these likelihood equations in discussing the asymptotic distribution of
0u( -, w).

4. The asymptotic distribution of §,(-, »). The method by which the asymp-
totic distribution of maximum likelihood'estimators is usually derived, for ex-
ample by Cramér [4], involves expanding the likelihood function by Taylor’s
Theorem. In order that we may adopt this method in the present instance we
now introduce the following assumptions, similar to those of Cramér.

Assumption 8. The functions h; possess first and second order partial deriva-
tives which 'are continuous (and so bounded) on €.

Assumption 9. For almost all ¢ ¢ R* the function log f(¢, -) possesses con-
tinuous second order partial derivatives in a neighborhood of §*. Also, if 8 be-
longs to this neighborhood, then [8° log f(t, 0)/80.00,| < Gi(t) (i, j = 1, 2,

-, 8) where [za Gi(t) dF (¢, 6o) is finite. .

Assumption 10. For almost all ¢ ¢ R* the function log f(¢, -) possesses third
order partial derivatives in a neighborhood of #* and, if 6 is in this neighbor-
hood, then

|0° log £(t, 6)/38:06,06] < Ga(t) (G5, k=1,2-,5),
where [r« Go(t) dF(t, 6) is finite.

(4.1) Important implications for our purposes of Assumptions 4, 9 and 10
are as follows.

(4.1.1) The vector Dz(0) exists for every 8 £ @ and the sequence (Dn ™" log
L.(z, 0)) of vectors converges for almost all x to Dz(8) (Assumption 4).

(4.1.2) The matrix D’%2(6*) exists and the sequence (D*n™" log L.(z, 6*))
of matrices converges for almost all  to D*2(6*) (Assumption 9).

(4.1.3) For almost all x and 7, j, k = 1, 2, -- -, s the sequence (n 8" log
L,(x, 0)/86.80,06) is bounded uniformly with respect to 8 in a neighborhood
of 6* (Assumption 10).

Each of these three statements is almost a direct consequence of the Strong
Law of Large Numbers.

We are now in a position to obtain the asymptotic distribution of 8,(-, w).
For brevity we will now write 8 instead of §,(z, w). Since § — 6* for almost all
z, we find by applying Taylor’s Theorem and using (4.1.2) and (4.1.3) that

(4.1.4) Dn7'log L.(x, ) = Dn™" log L,(x, 6*) 4+ [D%(6*) + o(1)] [6 — 6*]

for almost all x.
Also because of the continuity of the first partial derivatives of the functions
h; , for almost all z,

(4.1.5) Hi = Hg + 0(1)
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and
(4.1.6) h(d) = [Hs + o(1)][6 — 0¥

For almost any z, if n is sufficiently large, § will, with a certain Lagrangian
multiplier A,(x), satisfy the restricted likelihood equations. So we have, writing
\ in place of A,(z) for brevity,

(4.1.7) Dn " log La(z, 6%) + [D%(8*) + o(1)][6 — 6% + Hii = 0,
(4.1.8) [Hs. + o(1)][6 — 6% = 0.

Since z(6*) is a maximum in the set w of the function 2, there exists a Lagran-
gian multiplier A* = (AF, N5, -+, A%) such that

(4.1.9) Dz(6*) + Hpd* = 0,
and on subtracting (4.1.9) from (4.1.7), and using (4.1.5) we obtain
[Dn" log La(z, 6*) — Dz(6*)] + [D’2(6*) + o(1)][6 — 6%
+ [Hpe + o(D][A — 2* + Hs — Heu]a* = 0.

Now on expanding the elements of the matrix H; by Taylor’s Theorem, we find
that, because of the continuity of the second order partial derivatives of the func-
tions h; , for almost all z,

(4.1.10)

(4.1.11) [Hi — Hpuo* = l:z:; A D*hi(6*) + 0(1)] (6 — o%].

We will denote by —By: the matrix D’%(6*) + > iz NfD’h,(6*). Then on
substituting in (4.1.10) the expression for [H — H+]a* contained in (4.1.11)

we have
B + 0(1)][6 — 6*] — [Her + o(1)][2 — 3¥
(4.1.12)
= Dn”" log L.(x, 6*) — Dz(6*),

and combining (4.1.12) and (4.1.8) we may write
Bo} +0(1) — Hp +0(1)][6 — 6*
—Hs. + 0o(1) o 5 — o

_ [Dn_1 log L,(x, 6%) —Dz(o*)]
— o .

(4.1.13)

We will now make the final assumptions which enable us to derive the asymp-
totic distribution of 8,(-, w) and A,(-).

Assumption 11. The matrix
Bgft _Hﬂ:t
—-H; O

is non-singular.
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Assumption 12. For 4, j = 1, 2, -+, s, B:;(6%) = [red log f(t, 6*)/86:
d log f(t, 6*)/86;dF(t, 6o) exists.

We now define
Pzt Q;o B;t _Hot -1
£ RL]  |-H. o |

and Vg = (8;;(6%)) — [Dz(6*)][D2(6*)]). By the multivariate form of a Cen-
tral Limit Theorem (Cramér [3]) it follows from the existence of the matrix
Vi« that the distribution of 4/’ n[Dn~" log L.(-, 6*) — Dz(6*)] is asymptotically
normal with mean 0 and variance matrix Ve.. Then from (4.1.13), by the multi-
variate extension of a theorem of Cramér [4] we have the results stated in the
following lemma.

Lemma 1. Under Assumptions 1-12 the random vector

—[8,( S, w) — 0%
n ivn( : ) — A*
is asymptotically normally distributed with mean 0 and variance matriz

P;o Voc PB. PL. VO‘ Q;n}
Qi+ V. Pi. Qb+ Viu Qls

We have now obtained a formal result regarding the behavior for large n
of the restricted maximum likelihood estimator, a result which might be used in
most practical situations to determine the large sample power function of the
test of the hypothesis that 6, ¢ w, proposed by Aitchison and Silvey. (This
might involve a considerable amount of computation). The extent to which the
method of solving the likelihood equations which is proposed in the same paper
can be used when 6, £ w remains obscure, as does any general picture of the
power of the test. However some light is shed on these questions by considering
how the results here obtained particularize in the case when 6 ¢ w.

(4.2) Accordingly we consider what happens when we replace Assumption
6 by Assumption 6A. Then 6, replaces 6* and z(6), the maximum of z in the set
w, is also the maximum of z in the set €. Hence Dz(6*) = 0 and 2* = 0. The
matrix Ve« becomes the matrix By, and, with the mild additional assumption

Assumption 13. fna df(t, 60)/06:00, dt = 0 (i, j =1, 2, ---, s), the matrix
B}. also becomes By,. Consequently we have exactly the result of the previous
paper [1] concerning the asymptotic distribution of the restricted estimator and
the corresponding Lagrangian multiplier. The assumptions made here in deriv-
ing this distribution are, so far as comparison is possible, stronger than the
assumptions of the previous paper, but we have now obtained a result concern-
ing the genuine maximum likelihood estimator rather than merely a solution of
the likelihood equations. (A greater degree of similarity between the two sets
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of assumptions is apparent if we note that in the case where 6y € @ we might
replace Assumption 11 by the following

Assumption 11A. The matrix By, is positive definite and the matrix H,, is of
rank r).

(4.3) It is now possible to obtain a picture of the typical practical situation
when 7 is large and 6, , while not belonging to the set w, is very near this set.
Usually then z(6,) will be sups.e 2(8) and 6* will be near 6, so that Dz(6*) will
be near Dz(6,) = 0. Then A\* also will be near 0, though, since n is large, v/n\*
may be.appreciably different from 0. Also the elements of D*(6*) will be near
those of D*2(6,) = —By,. If in addition 8;;(6*) is near the corresponding element
of By,, as will usually be the case, then we can say that approximately

va e ]

will have a multivariate normal distribution with mean 0 and variance matrix

5 %]
O —Ry]’
this matrix being as defined in [1]. (It would be possible to give a rigorous mathe-
matical derivation of this result by imagining the true parameter 6, to vary with
n in such a way that the distance of 6 from the set w tended to 0 as n — =,
and by imposing suitable restrictions on the functions f and h to ensure that

what is here said to happen usually would in fact happen. But this does not
seem particularly profitable).

(4.4) Finally in this connection, because of the remarks made in the pre-
vious paragraph and of the flexibility of Newton’s method of solving equations,
we might expect that, in the case where 6, is near the set «w and = is large, the
iterative method of solving the restricted likelihood equations suggested in [1]
will still apply.

5. Three tests of the hypothesis that 6, ¢ w. We will now compare three in-
tuitively reasonable tests of the hypothesis that 6, ¢ w. These are as follows.

(i) The likelihood ratio test. We accept the hypothesis if u(x) = supge. La(z,
0)/sups.e L.(x, 6) is “sufficiently near” 1.

(ii) The Wald test. Assuming the existence of ,(z, ), we accept the hypothe-
sis if h(6.(x, @)) is “sufficiently near” 0. (Wald [8]).

(iii) The Lagrangian multiplier test. Assuming the existence of ,(z, w) and
A-(z) we accept the hypothesis if A,(x) is “sufficiently near” 0. (Aitchison and
Silvey [1]).

For typographical brevity we will now write 6 for the unrestricted maximum
likelihood estimator 8, (-, @), 8 for the restricted maximum likelihood estimator
6.(-, w) and X for the random variable \,(-).

The measure of the distance from 0 of h(8) used by Wald is, in our notation,
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—n[h(6)]'R4[h(6)]; his test is based on this random variable and he has shown
that under general conditions the asymptotic distributions of —2 log x and
—n[h(8)'R4[h(8)] are the same. The measure of the distance from 0 of A in the
test proposed by Aitchison and Silvey is —ni/Ri'A. We will now show that
subject to the following assumptions A we have

plim 2 log x = plim n[h(8))’R4[h(6)] = plim nZ'RF"A.

Assumptions A. By assumptions A we mean the following set of assumptions:—
1-5, 6A,.7-10, 11A, 13 and

Assumption 12A. The matrix By exists in a neighborhood of 6, , and its elements
are continuous functions of 6 there. Of course when assumption 6A is made,
6* is replaced by 6, in subsequent assumptions.

We have already seen that these assumptions imply that § exists.and almost
certainly converges to 6, and that for large n and most z, \, (a:) exists. It is
not difficult to use the particular form to which (4.1:13) reduces when assump-
tion 6A replaces assumption 6 to obtain the results

(5.1) V/n (8 — 8) = n'Py,D log La(-, bo) + 0,(1),

(5.2) V/ni = n7Qq,D log La(-, 6) + 0p(1).

Here o, is used in the sense of Mann and Wald [6] and Ps,, Qs, are defined by
B ' Py, Qo

(53) [ . 90:| [ ) °]-
—H,, 0] Qs, Ry,

Also it is easy to show by the same kind of argument as has been applied above
that the assumptions A imply that 6 exists and almost certainly converges to 6,
and that

(5.4) for almost any x and sufficiently large n,
D log L.[z, 6(x)] = 0,
(5.5) V(b — &) = n'B5D log Lu(", &) + 0,(1).

We will now use these results to prove the following lemmas.
LemmA 2. Subject to assumptions A,
—2log u = n(6 — 8)’'Be,(6 — 8) + 0,(1).
Proo¥. Clearly from (5.1) and (5.5). |6 — 6]] = O,(n™*). Hence on expand-
ing log L,.(-, §) by Taylor’s Theorem, we have, in virtue of (4.1.3) and (5.4)
log La(+, 6) = log La(+, 8) + 3(6 — 8)'[D* log La(+, 6)1(8 — 8] + o,(1).

Again from Taylor’s Theorem we have n~'D® log L,(-, 8) = n~'D? log L.(-,
60) + 0,(1), and from (4.1.2) and assumptions 9 and 13 (which imply D (6,) =
_’Boo)

7 'D’ log Ln(-, 6)) = —Bg, + 0,(1).
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Hence
log M= log Ln( %y é) - IOg Ln( ) 0)
= —3n(d — 8)'[By, + 0,(1)1(6 — 8) + 0,(1),

and the result follows because [|§ — 6] = 0,(n7?).
Lemma 3. Subject to assumptions A, 2 log p = nd’RF'A + o0,(1).
Proor. We have

V(b — 8) = 0} (Py, — Bi,)D log La(-, 6o) + 0,(1).
Now
[Py, — By, |Bs,[Ps, — Bs,] = Bs, — Py, = —Q4,R3,Qs,,

these matrix relationships following easily from the definition of Ps,, Qs, and
Ry, in (5.3). Hence

n(8 — 8)'Bs,(6 — 8) = —n7'[D log La(-, 6))'Qe,Ri,Qs,[D log L.(-, 60)]
+ 0,(1)

= —nd'Ro;d + 0,(1), by (5.2).

Since, according to assumption 12A, the elements of the matrix By are continu-
ous functions in a neighborhood of 6, and by 11A By, is positive definite, By
will also be positive definite in a neighborhood of 6,. Similarly Hy is of rank 7
in a neighborhood of 6, and so the matrix Ry exists and its elements are con-
tinuous functions of 6 in a neighborhood of 6, . It follows from the strong conver-
gence of 8 to 6, that Ri* = Ry, + 0,(1), and this completes the proof.

LemMa 4. Subject to assumptions A, 2 log u = n[h(8)IRsh(8)] 4 o0,(1).

Proor. Since the second derivatives of the functions h; are bounded on Q
(assumption 9) and since [|§ — 6o|| is 0,(n™*), we have

h(6) = h(6) + Ho,(6 — 8) + Op(n”"
= Ho, (6 — &) + 0,(n"),

since by 6A, 6 ¢ w. Hence v/nh(8) = n—ﬁiéoBa,lD log L.(-, ) + 0,(1) and
nfh(6))'Re,[0(8)] = n™[D log Ln( -, 60))'Bi, Ho,Re,Ho,Bs, [D log Lu( -, )] + 0,(1).
It is easy to show that Bj Hy,ReHsBs. = Qs Rs,Qs,, and it follows that
n[h(8))'Re,[0(8)] = nd'Ri;A + 0,(1). The proof is then completed by the
remark that, as in Lemma 3, Ry, = R4+ 0,(1).

LemMma 5. Subject to assumptions A, each of the random variables —2 log u,
—n[h(8)'Ri[h(8)] and —nd'RFA is asymptotically distributed as x* with r degrees
of freedom.

This follows from lemmas 3 and 4 and from the fact that 4/nd is asymptoti-
cally normally distributed with mean 0 and variance matrix —R; .

In consequence of lemma 5, when 7 is large the natural choices of critical re-
gions of size « for testing the hypothesis that 6, ¢ w on the bases (i), (ii) and (iii)
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are (1, C,; and C respectively where
Cy is the set of  on which —2 log u > k., .
C, is the set of 2 on which —n[h()]'R4h(6)] > k., and
C; is the set of x on which —nd'R7'& > k..

Here k, is determined by Pr{x}, > k. = a.

Wald [8] has shown that usually the tests based on the critical regions C,
and C, have asymptotically the same power. His argument shows essentially
that if n is large and 6, is not near &, the power of each test is near 1, while if
6 is near w each of the random variables —2 log ¢ and —n[h(4)]'Rs[h(8)] has
approximately a non-central x’-distribution with the same parameters. We
now inquire, without going into rigorous mathematical detail, whether this
type of argument will usually hold when we compare the tests based on the
- critical regions C; and Cj; .

We consider first what, happens when n is large and 6, is near w. Then as we
have seen, 6* will usually be near 6, and we suppose that 6 is near enough w
to ensure that 8* — 6, is near 0, though +/n(6* — 6,) may be appreciably dif-
ferent from 0. In virtue of the remarks made in (4.3) we will then have, in most
practical situations,

(5.6) Vn(d — %) ~ n7*Py,D log L.(-, 6),
(5.7) Vn(3 — 2*) ~ QgD log Ly(-, 6)

where ~ denotes approximate equality with probability near 1, for large n.
Also since Dz(6*) + Hgpd* = 0. and since usually Dz(6,) = 0 and D’2(6) =
—By,, we will have

(5.8) — By, (6* — 6) + Hyo* = 0,

approximately. Since the distribution of § does not depend on whether 6, is in w
or not, it will remain true (see (5.5)) that

(5.9) V(8 — 6) ~ n*By,D log L.(-, 6).

Also examination of the details of the proof of lemma 2 shows that the result
there obtained, namely

(5.10) —2log u ~n(d — 8)By, (6 — )

still holds.
Now from (5.6) and (5.9) we have

V(8 — 8) ~ /n(8* — 6) + 17 (Ps, — Bs})D log La(-, 6y)
= Vn(0* — &) + n7'Qs,R5,'Qs,D log L( -, )
~ V1B Hyd* + +/nQeRit (3 — a*),
by (5.8) and (5.7). It is not difficult to show that Q¢,Rs, = Bs. Hy,, and so
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Vn(6 — 8) ~ v/nBs,Hs. Hence, in the usual practical situation, when n
is large and 6, is near enough w to ensure that * — 6, is near 0, we will have

—2log u ~ n(d — 8)'Bs, (6 — 8) ~ ni/He,Bs,Hy,h = nd'Ri, % ~ nd'RF'3,

and consequently the tests based on the critical regions C; and C; will have ap-
proximately the same power in these circumstances. Moreover it is easy to see
that each of the random variables —2 log » and —n3/R5'3 will then have ap-
proximately a non-central x’-distribution with r degrees of freedom and param-
eter —nA*R5'a*. (Again this argument could clearly be made rigorous by imagin-
ing 6 to vary with n in such a way that [|6* — 6 = O(n*) and by imposing
suitable conditions on the functions f and A&).

We now consider the power of the Lagrangian multiplier test when n is large
and 6, is not near ». Then the asymptotic distribution of 4, will usually be as
given in Lemma 1. Now, if \* is not near 0, then with a high probability VLN
will be far from 0 and since normally the matrix —Rs will be positive definite,
the power of the test based on C; will be near 1. However there is a possibility
that 6, might be such that the function z has a stationary value at 6*, in which
case A* = 0. Then —nd’Ri would not necessarily be large with a high prob-
ability and consequently the power of the test based on C; would not be near 1
for such a 6, . But this is a contingency which does not seem likely to arise often
(the author has been unable to find an example of it) and we may conclude that
in most practical situations the Lagrangian multiplier test is equivalent, for
large samples, to.the likelihood ratio test.

6. Singular information matrices. As we have said previously the whole
problem of maximum likelihood estimation is closely bound up with the be-
havior of the function z. In particular, for unrestricted estimation it is important
that z should have a maximum turning value in © at 6, , for this condition plays
an important part in ensuring consistency of 8,(-, 2). Now the demands that
2(6o) should be a maximum turning value of z in @ and that By, should be posi-
tive definite are not unrelated. For it is usually true that z has a stationary
value at 6, i.e., that Dz(6) = 0 and also that D*2(6,) = —By,: these results
depend only on f being such that we can “differentiate under the integral sign.”
So that if 6 is near 6, we will usually have

(6.1) 2(8) — 2(6) = —3(8 — 69)'By, (6 — 6) + O(||6 — 6 |).

Hence if By, is not positive definite it may very well happen that z(6) is not a
maximum turning value of z in @ and much of unrestricted estimation theory
would then break down.

However, even if By, is not positive definite and z(6,) is not a maximum turn-
ing value of z in ©, it may still be the case that if 6, belongs to the subset w of
Q, 2(6) is a maximum turning value of z in w so that restricted estimation
theory may not need drastic revision. And it is of some theoretical interest to
consider just what revision is necessary in this case. Moreover this problem is of
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practical interest because it often happens that it is natural, either for reasons
of symmetry or for some other reason, to describe the distribution of a random
variable in terms of a parameter 8 in such a way that neither is By, positive defi-
nite nor is 2(6) a maximum of z in Q. For instance if X has a multinomial dis-
tribution and describes an experiment in which an individual can fall into any
one of s classes, it is natural for reasons of symmetry to denote the probabilities
associated with the different classes by 6;/Y 71 6; (s = 1,2, --- , s). The set
Q@ of possible parameters is {# ¢ R°:10;, > 0 (¢ = 1,2, ---, s)}, and it is easy to
verify that neither is By positive definite for any 6 in Q nor is 2(6,) a maximum
turning value of 2z in Q. (In this case it is clear that this is so because we have
set in s-dimensional space a parameter that is really (s — 1)-dimensional).
However it is obvious that there is no difficulty about restricted estimation in
the subset of @ in which D i_; 6; = 1.

We will now consider what revision is necessary of that part of the foregoing
theory based on the assumptions A, if we drop the demand that By, be positive
definite (assumption 11A) and replace assumption 6A by the following assump-
tion 6B, while maintaining the remainder of the assumptions A.

Assumption 6B. 6 € w and for any other point 6 of w, F (i, 6) # F(t, 6,) for
at least one . Roughly speaking, we may explain the introduction of assumption
6B as follows. If assumption 6A is not satisfied, the parameter is not identifiable
in the set Q, i.e., there are different 6’s in Q@ which give the same distribution of
X. However we wish 6, to be identifiable in the subset w, in order that restricted
estimation may still be possible. Hence we make assumption 6B.

It is easy to verify that these assumptions imply the existence of a consistent
estimator 6,( -, w) of 6y, that for almost any z and sufficiently large n, 8,(z, )
with a Lagrangian multiplier X,(z) satisfies the restricted likelihood equations
and that

(6 2) [ Boo + 0(1) —Hoo + O(I)J [ﬁn(x, w) - 00] B IiDn‘_ll()g Ln(x,oo)J
L =H=p, + 0(1) 0 5u(2) B 0

for almost any x. Now however, since we have dropped the requirement that
By, be positive definite and since subsequent theory concerning the asymptotic
distributions of 8,( -, ), . and associated random variables makes considerable
use of the inverse of By,, this theory no longer applies. To enable us to replace
this theory we will now introduce assumption 11B which is associated with
assumption 6B in the same manner as 11A was shown at the beginning of this
section to be associated with 6A. This assumption will provide a natural connec-
tion between properties of the matrix By, , the subset w and the facts that 6,
is identifiable when it is known to belong to w (assumption 6B), but unidenti-
fiable in Q.

Assumption 11B. The matrix Hy, is of rank r. The matrix By, is of rank s — ¢
where ¢t < 7. There exists an s X ¢ sub-matrix H; of He, such that By, + HIH{
is positive definite. (Without any loss of generality we may assume that H; is
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the matrix composed of the first ¢ columns of Hy, and we may write

Hy, = [H, Hy]).

We will now define the set of assumptions B.

Assumptions B. By assumptions B we will mean the set of assumptions A

with 6B and 11B replacing 6A and 11A respectively.

Now subject to assumptions B, if y denotes an s-dimensional random vector
normally distributed with mean 0 and variance matrix By, and if we write § in
place of 6,(-, w) and A in place of A,(-), then from (6.2) we have, as before,

By,

(6.3) ]
—Hy,

o

and since v/n Hg, (8 — 8y) ~ 0 it follows that

[Be, + HiH, —H,[6— 6
(6.4) vn < ~
—Haa 0 by

—H, 1[0 - &] [v]
0 o 0]

[y
o

Since By, + HlH{ is positive definite and Hjp, is of rank », the matrix

By, + HiH, —H,,
[ —Hy, 0 ]
is non-singular and we define P, , Q7, and Rfo by
Pj,

[ Qfo]
Qi R;,

We will also define Sy, by

(6. =

5)

—Hy, 0

(6.6) s A
X 0y — 09 0 0 ’

where I, denotes the unit ¢ X ¢ matrix.

[Boo + H, H; "Hao}ul

We will now prove two lemmas concerning the distributions of statistics in

which we are interested.
LemMA 6. Subject to assumptions B, the vector

~ [é‘ - e.,J
Vn R
s

s asymptotically normally distributed with mean 0 and variance matrix

0]

Ps,
0 So 0.'
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Proor. From (6.4) we have, as previously, the result that

6 — o
A
by

is asymptotically normal with mean 0 and variance matrix
P:o By, P;, Pj, By, Q:o
[QZ‘; By, P}, Qi By, Q;"o:l '
Now Pj, By, P5, = Pi,(By, + H;H1)P;, — Py H,HiP;, and, as previously, the
first term on the right hand side of this equation is P:o . Also from (6.5)

P, Hy, = 0
and in particular Py, H; = 0. It follows that Py, By, Py, = P}, ; and in a similar
manner it may be shown that Pj,Bs, Q, = 0. We also have
Q5B Qi, = —Ri,— QI HHIQJ,

and from (6.5) Q:“,/Ha0 = —I,, so that, in particular, Q3. H; = —[I, 0]'. Tt
follows that

I, 0
Q:o/Boo Q;‘o = —.R:n - l:ot o:l = S,

and this completes the proof.

LemMma 7. Subject to assumptions B, —nd/RF™A is asymptotically distributed
as x° with r — t degrees of freedom.

Proo¥. ‘Since By, + H,H; is positive definite and By, is of rank s — ¢, there
exists a non-singular matrix W such that

W/ (Bs, + HHH)W =1,

A,y O
W’Bao W = s
o o0

and

where A,_; is a diagonal s — ¢ X s — ¢ matrix. Then
’ ! A,_.t 0
WHH W-=I —
0 o
and since H,H{ is of rank ¢, it follows that A,_, = I,_, and that

o 00
WH1H1W= .
0 I,
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We now define an s-dimensional random variable m = (m,, ma, =+ -, m,)
by m = W'y. Then m is normally distributed with mean 0 and variance matrix

L. 0
W'By, W = .
0 o

It follows that nmy, my, - -+, m,_, are independent N(0, 1) random variables,
while m;_141 = My_y3 = -+ = m, = 0.
Now from (6.4) we have

(WW")™  —H,, [0 — 6 W 'm
\/;i ’ " ~ 1}
—H,, 0 A 0
and so

(6.7) v / 5 ~
- Hoo 0 ) A 0

Hence

) [é - eoj|' [(Ww')*l + H,, Hy, —H,, J [é - eo]
mm~n " ’ ’ . N
3 —H,, H;, WW’H,, 3

i.c., since Hy (8 — 6,) ~ O,
(6.8) m’'m ~ n[d — 6,'Bs,[6 — 6] + ni’Hs, WW'H,, 3
Now from (6.4) v/n(8 — 6) ~ P5,(W)™"m and, as previously, P;, is of
rank s — r. Hence asymptotically, when n[@ — 6]'Bs,[6 — 6] is expressed as
a quadratic form in m; , my, - - -, m,_s, its rank is at most s — 7. We will now
2~ ’ A . . .
show that when nd’Hs,WW'H, X is expressed as a quadratic form in m, , ms,
., Ms_y, its rank is at most r — ¢ ,
From (6.7) we have, again since Hp,(8 — 6,) ~ 0,
—Hy,Wm ~ +/nHs WW'H, 3.
Now
, H, Wm
Hoo Wm = ,
H2 Wm
and, since
, 0 0
m'WH; H Wm = m’ m = 0,
0 L |

we have H{Wm = 0. Hence

, R 0
—/nHs, WW'Hy, 3 ~ I:H, Wm.

2
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Since the rank of H, is at most r — ¢, it follows that, asymptotically, when
i HaOWW H,,2 is expressed as a quadratic form in m, y Mo, oo ) Moy, itS
rank is at most r — ¢. Now from (6.8) by applying Cochran’s Theorem (Cramér
[4]) we have the result that asymptotically n[é — 6,)'Bs,[6 — 6,] and

n3/Ho, WW'H, 5.

are independently distributed as x* with s — 7 and r — ¢ degrees of freedom
respectively.
The proof of Lemma 7 is completed by the remarks that

Hs,WW'H,, = H; (B, + H;H) 'H,, = —R}™

and that R:o—l ~ R%7

The results proved in this section, and the methods of proof, make it clear
how the technique suggested by Aitchison and Silvey [1] for solving the re-
stricted likelihood equations can usually be adapted, and how the Lagrangian
multiplier test can usually be applied when the matrix By, is singular and the
function & is suitable. We will not amplify this point.

7. Different numbers of observations on several random variables. Experi-
mental material being what it is, and experimenters being as they are, it is not
often that the statistician is faced with an estimation problem in the ideal cir-
cumstances of being given a number of observations on a vector valued random
variable. The more usual situation confronting him is that he is given n; ob-
servations on a random variable X; whose probability density function depends
on s parameters 6;, 6, ---, 6, , ne observations on a random variable X,
whose probability density function depends on s, parameters 6,41, 05,42, < - ,
0c14s5 , + -+ and 7y observations on a random variable X, , whose probability
density function depends on s, parameters 0.ic,4...qsp_y41, -, 0s, Where

=& + s+ -+ + sx. And he is presented with the problem of deciding
whether the true parameter B = (63,05, ---,6° ) belongs to a set

w={0eQ:h(0) = 0,

Q2 and h being as before. If n; = n, = --- = n; then we may interpret the ob-
servations as observations on a vector valued random variable and the fore-
going theory applies. But if the n’s are not all equal we cannot do this, and in
order to enlarge the sphere of the Lagrangian multiplier test we have to con-
sider this situation separately. In discussing it we will avoid all mathematical
detail and will be content to indicate very briefly the modifications necessary
in the test.

We will denote by z* a given set of n; + ms + -+ -+ n: observations on the
random variables X;, X,, ---, X, and log L(z*, 6) will denote the value of
the log-likelihood function at the point 8. Now if 6 ¢ w then the same kind of
argument as we have used before may be used to show that it will usually be
the case that (a*, w) exists, is near 6, when n,, ns, -+, me_; and ny are all
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large, and with a Lagrangian multiplier A(z*) satisfies the likelihood cquations

Dlog L(x* 6) + He = 0

h(6) = 0.
We now introduce a matrix N defined by
ml, 0 --- 0
N - 0 nI, --- 0
0 0 n L,

The information matrix By is defined in this case by
B, = —N[ED*log L(-, 0)],

where Ey denotes expected value when 6 is take as the true parameter. Then
again by the type of argument used previously we may show that for most
x*, when ny , ng, - -+, ny are large,

NBy, —H,, |]6(z* 0) — 6 log L(x*, 6
- ‘_ . }[0(@ ) QJN[D og L(z G)jl.

| —Hy, 0 Alz*) 0

Also 1t will usually be true that D log L(a*, 6;) can be regarded as an observa-
tion on a random variable which is approximately normal with mean 0 and
variance matrix NBy, .

Now in the case where By, is positive definite we may use (7.1) in the same
way as before to show that when 6, ¢ w and ny, ns, - -+, n are large,

5/H;[NB; "Hi

will usually be distributed approximately as x* with » degrees of freedom, and
it is this statistic which we use in the modified form of the Lagrangian multi-
plier test. Alternatively when By, is of rank s — ¢, when each of the functions
hi, ha, -+, hyis a function of only the parameters involved in the distribution
of one of the X’s and Bg, + HH; is positive definite, the statistic on which
the test is based is ’H4[N(Bs + H.H;)] 'Hsl., which will usually be distributed
as x° with » — ¢t degrees of freedom when n,, ng, - - -, n, are large.

We conclude by applying the Lagrangian multiplier test in a familiar situa-
tion. '

Homogeneity in the 2 X 2 contingency table. One of the three situu-
tions (Cochran [2]) in which the 2 X 2 contingency table arises is as follows.
We are given n; observations on a random variable X; whose distribution is
defined by
61/ (67 + 02),

03/ (61 + 63),

Pr{X, = (1, 0)}
PriX, = (0, 1)}

I

It
It
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and n, observations on an independent random variable X, whose distribution
is defined similarly in terms of 63 and 63 . These observations can be summarised
in a 2 X 2 contingency table as follows.

Number of occurrences of different values of X; and X, .

(1, 0) 0, 1) Total
X nu Ny2 n
X, Na1 Nay N2
Total m Mo n

We suppose that the point 6, =
Q=1{0eR:e< 0, <1/t =1,
In this case we also have

log L(x*, 6) = constant + ny log 6; + nizlog 6; — ny log (6, + 6.)
+ No1 log 0; + Moy 1()g 04 — Ny ]()g (00 + 04)

(6, 65, 635, 6) is known to belong to the set
2, 3, 4)} where € is a small positive number.

The matrix
07" — (6 4+6,)""  — (61 + 6,)7" 0 0
—(6 4+ 6)7" 67— (67" 0 0
" 0 0 67— (0007 — (6 + 0)7
0 0 — (05 4 607" 67— (6 +6)7

has rank 2. Homogeneity of X; and X, means that 65/(63 + 63) = 65/(65 + 6%)
and we consider estimating 6, subject to the restrictions

6, + 6, — 17
h(6) = |6, 4+06,—1]=0,
6, — 63
so that ]
1 0 1
110 o
Ho=1, |
01 0

If H, is the leading 4 X 2 sub-matrix of H, , then for any 6 ¢ «,
60 0 0 0
0 6 0 0
0 6" 0
0o 0 o 6

By + HiH, =

which is positive definite.
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The likelihood equations are easily solved in this case and we find that
(2%, w) = b3(e*, @) = mi/n

while §(a*, w) = bs(x*, @) = my/n. 1t is not difficult to verify that the statistic
5/H§|IN(B; + H.Hi{)'Hé. is the usual statistic used in the x’-test of homo-
geneity in a 2 X 2 table, so that this test is a particular case of the Lagrangian
multiplier test. And it illustrates most aspects of the preceding theory. The
computational procedure for applying the Lagrangian multiplier test in less
familiar and more complicated situations will be set out in a subsequent paper.
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