AN EXTENSION OF THE CRAMER-RAO INEQUALITY!

By Joun J. Garr?
Virginia Polytechnic Institute

1. Review of the literature and summary. Cramér ([6], p. 474 ff.), Darmois
[8], Fréchet [10], and Rao [14] derived independently a lower bound for the
mean square error of an estimate ¢ of a parameter which appears in a frequency
function of a specified form. This epxression, alternately termed the Cramér-
Rao inequality or the information limit, is

[aE(t):r
da

d In ¢\?
5(*%7)
where ¢ is the likelihood of the sample. The expression E(d In ¢/da)’® is called
the information on o and is sometimes denoted by I(a). Under rather general

conditions it can be shown equal to E( — 8°In ¢/dc”).
The equality in (1.1) is reached if and only if,

(1.2) ¢ = ¢

where ¢ and ¢; are functions of the observations alone and V(a) and W(a) are
funetions of a alone. By the results of Pitman [13] and Koopman [12], the form
of (1.2) implies that ¢ must be a sufficient statistic. The fact that this form of the
likelihood yields a minimum variance estimate was first pointed out by Aitken
and Silverstone [1]. If we have n observations which are independently and identi-
cally distributed, the frequency function of the underlying population must be
of the so-called Pitman-Koopman form,

(1.3) f(z; a) = u(a)h(x)ep'(a)”("')

and ¢ must be a function of i g(z:) for the equality in (1.2) to hold.

Several extensions of the basic inequality have been derived. Bhattacharyya
[4] and Chapman and Robbins [5] have derived results which yield more stringent
inequalities in certain instances. Wolfowitz [21] has extended the result to
sequential sampling situations. Cramér [7], Darmois [8], and Barankin (2] have
considered joint bounds on sets of estimates of parameters and Hammersley
[11] has derived a lower bound of the mean square error of an estimate for the
situation in which the parameter to be estimated can only assume discrete
values. Barankin [3] has also considered lower bounds on the general absolute
central moments of the estimate.

All these results assume that the parameters involved are constants. Here we

(1.1) E(t — a) 2 [E(t) — of +

eW(a)+W(a)
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368 JOHN J. GART

shall consider the case where the parameters are random variables. Thus the
lower bound of the mean square error of an estimate will take into account the
variability due to both the observations and the parameters involved. Necessary
and sufficient conditions for equality of the extended inequality are derived.
Most unfavorable distributions, i.e., distributions which maximize the lower
bound, are defined, and several examples are given. Extensions analogous to
those of Bhattacharyya [4] and Wolfowitz [21] are also considered. Finally,
bounds on the variance of linear estimates of the mean of the parameter are
derived. .

2. Notation. Consider a frequency function f(z|®), where 8 = (8;, 6,),
, 85), the function being specified when 0 is specified. Further, 8 is a random
variable having the distribution G'(8) defined over a non-degenerate range 4, .
Let X = (21, 22, -+, 2») be a random sample from a randomly chosen popu-
lation having the specified frequency function. Let # .= #(X) be an estimate of
6r, 1 = k £ s, functionally independent of 6, . Denote E(# | 8) by ¥4(8) and
the conditional likelihood of the sample by ¢(X | 6), which in general will be
H:’:—-lf(xi | 8).

3. The continuous case.? If f(x | 0) is a density, assume d¢/36; exists for all
6 in A, and | 9¢/06, | < H(X) where H and #{H are integrable over R, , the
range of X, which is independent of 6, . We have

(3.1) 1= ¢ dX
and !
(3.2) ¥ (0) =fR i ¢ dX.

By the assumptions just made (see Cramgr [6], p. 66 and p. 475), we may differ-
entiate under the integral signs in (3.1) and (3.2) and obtain

. . ¢ 9ln ¢
(3.3) O—fknaokd Py ax
and

. i (8) f d¢ f alnqs

21 = —_
(34) 36, . ty 70, dX = tx ¢ dX.
Iinding expectations of (3.3) and (3.4) with respect to 8, we have
(3.5) o=/ g v a6 (o)

As YR, aok
and
(36) B (‘?L“’l) - [ a0 - [ [ 024 axac(o).
00k KN 601

* Results analogous to those of this and the two succeeding paragraphs have been ob-
tained by Schiitzenberger [15] for the a posterior: distribution of 6 .
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By the Schwarz inequality we may write

{ f Mt — 6 - El(0)] + E(6:)]°¢ dX dG(t»}

3.7) o L 3 fR (a In "’) ¢ dX dG(G)}

{fA f,, b — 6 — El(0)] + E(6:)] (a n ¢>¢dX dG(O)}z.

In view of (3.3), (3.5), and (3.6); (3.7) may be written,*
_ dIn g\’ ] (am(e))
Var (¢, — 6.)EE l:( T > 6= 0 )
and if EE[(d1n ¢/06:)* | 8] # 0, then

2 i (0)
E[I.(0)] ’

where 1,(8) = E[(3In¢/86:)" | 0]. Since Var (t — 6;) = EE[(tx — 6:)°| 0] —
E*[y(8) — 6], we may write

Var (tk ot

(6%(0))
(38) EE[(t — 6.)°] 8] = E’gs(0) — 0.] + —HF"’(%T
If ¢.(0) = 6;, (3.8) may be written
1
(39) EE(h = 0°|0) 2 g o

When [3°%/06;] < K(X), where K(X) is integrable over R, , it is well known

that
dln o\ ]_ l:__aﬁnqb ]
E[( 363 ) =P e |0

Then we can write 1,(8) = E[— 8°In¢/d6; | 8] in (3.8) and (3.9). Since 1,(0)
is called the amount of information, E[I,(0)] may logically be termed the mean
amount of information.

It should be noted that the derivation of these inequalities is equally applicable
to samples from multivariate populations.

4. The discrete case. Suppose that f(x | 8) is a discrete frequency function
whose range, R, , may be finite or denumerably infinite but independent of 6; .
Assume ¢ is a continuous function of 6 for all X in R, and 8 in A, , and that

S e Doey e 00/00c and Y., D oep v Doen te(3/30;) converge uni-

¢ EE symbolizes taking the expectation with respect to X for fixed 8 and. then with
respect to 6.
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formly in A, . By operations similar to those ecmployed in paragraph 3, we find

(4.1) PIDINE z"‘“¢ ~0

and C
(42) )IPIRUD WARL FPRLIL

since the assumptions just made allow differentiation under the summation
signs. By the Schwarz inequality we may write

IL, z‘: Zz: .. Z [t — 6 — El(0)] + E(6,)]% dG(O)}
{f S 2 (Zmey ¢dG<e)}

s T1 2 Zn

{ [ = + e = 0 — B (0)] + E(6))] 2 ‘“ % dG(e)}

As 21 2Z9

Following steps analogous to those in paragraph 3, we arrive at (3.8) and (3.9),
for the discrete case.

5. Conditions for Equality. The condition under which the equalities in (3.8)
and (3.9) hold are set forth in the following three theorems.
THEOREM 1. If

(i)  Pr.{El(ti — 6.)%]|60] = c1} = 1,
(ii) Pr. i (0) = ¢ = 1
(iii) Pr.[6r = ¢ = 1,

(iv) Pr. [6\01,(0) = c{l =1, and

a0,
(v)  Pr.[i(8) =c] =1,
where ¢;, 1 = 1, 2, --- | 5, are constants, then the equality in (3.8) holds if and

only if & ts a suffictent estimate of 6 .

Proor. Under the conditions of the theorem (3.8) reduces to (1.1), for which
it has been shown by Rao [14] that the equality holds if and only if # is a suffi-
cient estimate of 6 .

THEOREM 2. If 4 is an unbiased sufficient estimate of 0x , then the equality in
(3.9) holds if and only if Pr. [[(08) = cs] = 1, where cs is a constant.

Proor. Since # is an unbiased sufficient estimate of 6, we have from Rao
[14], E[(&. — 6:)°| 6] = I.(8)". Taking expectations with respect to 0, we
have

(5.1) EE[(t — 6.)"| 6] = E[I(6)7].
Now equality of (3.9) requires that,
(52) EE[(t — 6,)°|0] = - )

EI(8)]
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Combining (5.1) and (5.2), we have E[I;(0)™"] = 1/E[I+(0)], or

(5.3) E[I.(8)E[I.(8)] = 1.
This can be written,
(5.4) { 1.(6)7" dG(o)} {f I.(8) dG(o)} = 1.

Now by the Schwarz inequality we have

(5.5) { f L(8)™ dG(e)} { f L) dG(o)} > { f . dG(e)}2 -1

Obviously when the equality holds in (5.5) it is equivalent to (5.4). But the
equality in (5.5) is lachieved if and only if for a constant c; independent of 6,
¢s{1:(8)]™F = [I,(0)]* with probability one; that is, if and only if

Prl,(0) = c] = 1,

which proves the theorem.

Before proceeding to theorem 3, we cite the following definition.

DEerintTION. Any pair of ¢(X | 6) and G(6) wherein any one of the assump-
tions (1)—(iv) inclusive of Theorem 1 does not hold for the 6; under consideration
is termed the non-trivial estimation case.

THEOREM 3. For the non-trivial estimation case the equality in (3.8) is
achieved if and only if # is an unbiased sufficient estimate of 6; which is nor-
mally distributed with constant variance equal to I;(8)”". Consequently the
equality in (3.9) is achieved under the same conditions.

Proor. For the non-trivial estimation case the equality in (3.7) and conse-
quently in (3.8) and (3.9) is achieved if and only if there exists a A independent
of X and 0 such that,

dln¢ _

Y 9, b — 0, — El(0)] + E(6:),

for almost all X in R, and 0 in' A, . Integrating, we have
An¢ = 0t — 0:/2 — 6. Eln(0)] + 6, E(8:) + Ci(X, 6%),
where 8* = (6,, 60, -+, 01, Okga, -+, 0,). We thus have
¢ = Co(X, 0%) exp (L/N){0:ti — 4(02/2) — 0:E[Yi(0)] + 6.E(6:)}.

This is a special case of the form, found by Pitman [13] and Koopman [12],
wherein ¢, is a sufficient statistic for 6, . Integrating both sides of the above
equation over R, , we have

exp {(0:/NIE(6:) — E(¢x(0))]} _/; Cy(X, 0*)VGXP (6ute/N) dX = exp (8/2)).

Make the change of variables in the integral, z; = 2,(X),72 = 1,2, --- ,n — 1,
& = t.(X), where 4(X) and the z;(X) are unique, continuous, and possess con-
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tinuous partial derivatives. Further the transformation is one-to-one. Then we
have,

exp {(6c/NIE6:) — Elye(0)]]} fB Cs(Z, b, 8*%) exp (0x t/N) dZ dti = exp (6i/2)),

where B, is the range of (Z, &) = (21, 22, * -+, Za1, &). If we integrate out
Z, we have
(56) i . C4(tk, 0)60“]‘/)\ dtk = 60;‘/2)\,

k

where b, , the range of ¢, , may be taken from — = to %. Then the left hand side
of (5.6) is a bilateral Laplace transform of Cy(¢:, 8) with argument 6;/\. Recall
that 6, has a non-degenerate range say v1 < 6 < v2. Obviously ¢+ exists at
0. = v1 + e and 6, = v2 — e, where ¢, e > 0, such that & + ¢ < v — 7.
Thus we can apply the theorem of Widder ([19], p. 238), and conclude that the
integral in (5.6) converges for 6 in the vertical strip of the complex plane,
71+ & < 6 < y2 — & . Thus we can apply the uniqueness theorem of the bi-
lateral Laplace transform (see Widder [19], p. 243) and conclude that
Ci(te, 8) = (1/4/27N) exp (—1;/2\). Therefore, for equality, the frequency
function of ¢, must be

h(tk[@k) _ 1 e—uk—ek)z/zx, e <l < ®,

v 2w\

where obviously A = I:(8)™". Further the equality holds regardless of the form
of the marginal distribution of 6, .

It should be noted that though theorems 2 and 3 require that 1(8) be a con-
stant, it is not necessary that all the components of 8 occurring in 1;(8) be con-
stants. It is possible, for instance, that the components of 6 occurring in 1,(8)
have a singular multivariate distribution such that all the probability is located
on the hyperplane 1;(8) = constant.

Obviously the sample mean from a normal population with constant variance
satisfies theorem 3. However, it is by no means the only such estimate. Let

f(z]0) = 1»7 e—(lnz—e)zﬂc’ 0<2Z< o,
x+/2mc
where ¢ is a constant, which is the so-called logarithmico-normal distribution
(see Cramér [6], p. 220). Then, ¢ = > . Inai/n is normally distributed with
mean 6 and variance ¢/n, which is the minimum variance attainable under the
extended inequality.

A situation in which a parameter is assumed to be a random variable is the
analysis of variance model II of Eisenhart [9]. The simplest case is the one way
classifieation. Here the model is z;; = a; + €;;, where z;; is the jth observation
in the 7th class. We assume there are % classes where the ¢th class has n; ob-
servations. Suppose a; and ¢,; are random samples of size m and N, N =




CRAMER-RAO INEQUALITY 373

Dk im:, from two normally distributed populations having means x and zero
respectively, and variances o2 and o> respectively. Then,

exp{ Zz(xw—az)}’

X3

— 2 ) = _1<__
¢ zI=Il 7=1 USHES (\/2#0})N

and

- , o' ln ¢ ; .
(5.7) EE<_T¢3 ai):_2> t=12---,m
The ML estimate for o; is & = (Q_f4i)/ni, @ = 1, 2, ---, m. Here
E(&:| a;) = a,and EE [(&; — )| ] = o /n; ,which by (5.7) is the minimum
mean square error. Notice the assumption of normality of a; was not required
for equality.

6. Most unfavorable distributions.” In most cases the G/(8) is not known, so
the lower bound on the mean square error cannot be found. If ¥,(8) = 6, it is
of interest to know the greatest value the lower bound can attain, as well as
the set of G(0) which produces it. To this end define Gk (0) to be a most un-
favorable distribution with respect to 6 if [, 1(8) dGr(8) < [4, I.(0) dG(8),
for all G(0) defined over A, .

If I,(0) has a unique minimum w1th respect to that subset of the parameters
appearing therein, then a most unfavorable distribution is one for which the
marginal distribution of these parameters is trivial. It may be that 7;(8) is inde-
pendent of all parameters so that all G(6) are most unfavorable distributions.
A case in point is the Cauchy distribution,

1
=10 = g e sre®
where \
_dn gt (=0 . _n
I(0)— .0+ &= 0T L dx 5

Here EE[(t — 0)°| 8] = 2/n regardless of the form of G(8). There are also cases
in which nio most unfavorable distribution exists except possibly when from some
prior information A, is restricted.

7. Most unfavorable distributions for some Laplacian distributions. M. C. K.
Tweedie [16], [17] has called a distribution Laplacian if it belongs to the general
class of distributions for which the sample mean is a sufficient statistic for one
of its parameters. The general form of such a distribution’s frequency function
is

J(2] 6, 6) = OO, gy).
This is, of course, a special case of the Pitman-Koopman form (1.3). Here we
have,

EU(01, 02)] = /A [m(ol, 02)(1”(01) + 02F”(01)].(/(91, 92) dé, de:,

5 For an analogous concept, least favorable distributions; sec Wald ([18], p. 18).
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where E(a, | 61, 6,) = m(01 R 02) If 1(6,, 6:) has an absolube minimum for some
subset As of Az, and (01, 6?) is an element of Az, then E[I(6,, 6;)] =
m(63, 62)q” (63) + 63F”(6%), for all (61, 62) in A, . Further, this is the absolute
minimum attainable by E[I gol y 02)]. It is reached when dG(6,, 6;) = 0, for
(61, 62) not an element of A, . Thus, we have found a set of most unfavorable
distributions. This result will now be applied to several specific Laplacian
distributions.

Type a. 6, = 1. This includes the binomial, Pascal and Poisson distributions.

(1) Binomial distribution.

f(x I 01) — ezln(d/l—h)—ln(l—ol), T = O, 1, 0 < 01 < ].’
0
q(6)) = —In (1 - 0) ) F(6,) = In (1 — 6), m(6) = 61,
- u1
and
16) = 1 .
6(1 — 6,)

I(6,) has a unique absolute minimum at 6, = %, so that® G*(6,) = (6, — %
is the only most unfavorable distribution. Further E[I(6,)] < 4N.
(2) Pascal distribution.

f(z]8y) = gFniTtVTInU—0I0D (f _ i), z=nrnr+1,---; 06 =1,

a0 = - =o), P =n(152),  me =,
where r is a known fixed positive integer. 1(8;) = r/63(1 — 6,), which has a
unique absolute minimum at 6, = 3. Therefore G*(6;) = e(6, — %) is the only
most unfavorable distribution and E[I(6,)] « 17N /4. It should be noted z/r
is not an unbiased estimate of 6, . If we consider « = 1/6; as the parameter to
be estimated, then

f(z|a) = ¢~¥In(@/a—D—In(a-1) (x - 1)’ t=rr+1--;1<a< o,

r—=+1
(¢4
g(a) —ln(a_

1), ﬁ'(a) In (« — 1), m(a) = ra,

and
r

alea —1)°

Here 2/r is an unbiased estimate of «. However the expression I(a) does not
have an absolute minimum in 4,, i.e., 1 £ a < w, but rather it has a limit

I(a) =

Oforz <a

¢ Following Cramér ([6], p. 192), the distribution function ¢(x — a) = {1 forz > a
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of zero as o — . Thus letting « — «© produces a most unfavorable situation,

which is equivalent to letting 6, = 0. It is interesting to note that though 6, = 2

was the most unfavorable situation when estimating 6,, when estimating

a = 1/6, we have, in effect, that 8, = 0 is the most unfavorable situation. Thus

we have established that “most unfavorableness” is not an invariant property.
(3) Poisson distribution.

e, 1
6 — zlnf61—0, L
f(x]6,) = ¢ "

1 z=012---; 0<t <

q(6;) = — by, F(6) = 6y, m(6,) = 6y,
1(01) = 1/01 .

1(6;) has no absolute minimum in A4, , but rather has a limit of zero as §, — «.
However, if from some prior consideration we can restrict 6; < a, then a most
unfavorable distribution is G*(6;) = €(6, — a).

Typeb. 6. # 1, q(6;) = 6; . Inmediately we have ¢”(6;) = 0, and I(6,, 6:) =
6.F” (6,).

(1) Gamma distribution.

f(x]6y,0,) = e =100 9171 p(g,)] >0, 6>0  6>0.
F(6) = —In6, I(6,,80) = 6,/6%.

Here 1(6;, 6:) — 0, as 6; — © and/or 6, — 0, but no most unfavorable dis-
tribution can be cited unless we assume 6;/67 < a.
(2) Normal distribution (parameters adjusted).
—(22/204)
f(z |8y, 0,) = ¢ 120 e ,
‘\/21!'02
— w0 <r< o, 6. > 0, — 0 <60 < oo,
where 6, = ¢°, 6, = —u/o’, in the usual notation.
F(8,) = 6}/2 and 1(6;,6,) = 6.

Here 6, — 0 establishes a minimum, so that if we can restrict 6, = a, then
€(6; — a) is a most unfavorable distribution.

8. More stringent inequalities. Bhattacharyya [4] has found greater lower
bounds for the mean square errors of estimates in the case of constant param-
eters. This admits of direct extension to the present case. We can write (3.3)

and (3.4) respectively as
)=
and

8.1) B (
() _ ., 1dg
(8.2) aok = COV (tk 0 , E) 56; 0) .

19
¢ 96,
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By the result of the appendix,

. 18¢ 1 3¢
Cov (tk O, 4 60,‘) [Cov ( — O, p 60k> ] 0:|
+ Cov [E ( —6c]10),E (; gg’ 0)]

From which by using (8.1) and (8.2), we obtain

(83) E( (90k )—COV(tk 0k,$56—k>.

With suitable regularity conditions on ¢ and its derivatives similar to those
cited in paragraph 3, we can differentiate (3.2) p times and obtain as in (8.3)
that

; 8%y (0) _ 1% _
(8-4) E( 60% - COV 0k 7¢ 8013 ,B - 1! 2! e !p'
Define,
19% 193¢ -
J“ﬁ-—cov<$60}:’¢60£>’ a,B=12.--,p.

Let J = [Jagl and J 7' = [J**]. Denote By Ro.2..., the multiple correlation co-
efficient between # — 6. and (1/¢)(9¢/96:), (1/¢)(8%/d6%), -, (1/)
(8°¢/06F). Then by a result cited by Wilks ([20], p. 42 ff.),

P D a 8.
DI (a m(ﬂe)) P (a m(o)) 7o
R%.m“ _ a=1p=1 a0, 008

o Var (¢, — 6%)

. 2 .
Since Rg.123.-.p = 1, we may write

Var (h—8) = 3 S F (a ¢k(0)) B (aﬂh(o)) o

a=1 =1 80k 60}‘2

from which we have

EE[(t — 6:)° | )] = E*(¥:(8) — 6;)
(8.5) 8 _
_|_‘ Z Z F<3 11/1:(9)) E<3 %(0)) g

== 06 968

This is a greater lower bound than that of (3.8) since the multiple correlation
between &, — 6, and the above series of variates will be larger than the simple
correlation between &, — 6; and (1/¢)(9¢/36:). This latter correlation is essen-
tially what was used in deriving (3.8). It should be noted that this method of
obtaining a higher lower bound applies only if ¥x(0) is non-linear function of
6, and consequently is not applicable in the unbiased case. As noted in Wilks
(20], p. 46), the equality holds if and only if all the probability in the p + 1
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dimensional space of the random variables lies on the surface,

o 221 9% Y (0)Y ;s
te — 6 — Bl (0)] + E(6:) = ;,;(paok (aef ‘)J

9. The Sequential Case. Wolfowitz [21] has extended the Cramér-Rao In-
equality to situations where the sample size is a random variable depending on
the sequence of observations. In our notation this result is

(2w
E(t — 6)" > [We(0) — 6] +E(n e [(a lnégf | 0)>2

d
We shall proceed to extend this result to the case where 60 is a random variable.
Under suitable regularity conditions Wolfowitz has shown,

E(ah“t’ o> —o0,
and

30,
(9.1) E [(a;2k¢>2 ‘ e] = E(n|0)E [(?ﬂﬁ%&l}ﬁy

By definition,

il

ST oz, m) T 0) doo= (o).

j=19YR

Under the regularity conditions cited by Wolfowitz we may differentiate under
the integral sign and obtain

dln ¢ _ _ dln¢
E (tk aok 0) = COV (tk 01; , aok

_ 0y, (8)
e)_ 80,

The result of the appendix yields,

3%(0)]_ ( _ ., dlng¢
El: 30;, —COV tk ok, aok .

Since the square of the correlation coefficient of any two variates cannot exceed

unity, we have,
2 (0¥:(0) v aln¢). 7 —
E (—Gbkﬁ> ar( 30, Var (t )

7 (%)
p{ E(n|0)E [(Mﬂ@)z

30:

and

Var (4 — 6:) =

o)}
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This may be written
EE[(t — 6.) | 0] = E’[¥i(0) — 6]

2 [ Ok
(9.2) B (*‘ﬁoio))
+ 3
E {E(n |0)-E [(a_“lngot | 0)) 0] }
When ¢(0) = 6, (9.2) becomes,
, 1
EE[(t — 6:)*| 6] = 2
(9:3) E{ E(n|0)E [(‘3—_1“{9 (0’” l ")) e]}

These results are valid for discrete as well as continuous distributions.

A simple example of sequential estimation involves sampling from a binomial
population until a specified number of successes, say r, occur. Here f(z | §) =
(1 — 0)"*, 2 =0,1,and E(n | 6) = /6. Therefore, for y(0) = 9,

1
EE[(t—0)* |6l = ——1
a (02(1 = 0>)

This result corresponds exactly to that obtained in paragraph 7 for the Pascal
distribution.

10. Linear Estimation of E(6;). Consider m samples X; = (zi1, iz, =+ , Tin,),
¢ = 1,2, --- m, chosen from a population f(z | ‘8), which are randomly and
independently chosen from a super-population of populations with frequency
functions of the form f(z | 8). Thus for each sample X;, there is associated an
unobserved random variable ‘0, ¢ = 1, 2, - - , m, with distribution G(’8). We
seek to find an estimate of E(6:), say Ti, where 1 < k < s. It is supposed that
for each sample there exists an unbiased estimate of ‘6, , namely ‘%, and we re-
strict our discussion to the set of T which are linear functions of the *%, that is,

Tk = Z; C; itk

where (¢, ¢2, -+, ¢m) is a vector of real numbers. If we further restrict our-
selves to unbiased estimates of E(6y), it follows that Z?_l ¢ = 1.
The minimum variance unbiased estimate of E(6;), T ,is found by minimizing

the expression, Var (T%) = T ¢k Var (*ty), with respect to the ¢’s, subject
to the restriction D 7 ¢; = 1. This yields the normal equations:
(10.1) &Var (‘) +A =0, =12 ,m D é& =1,

=1
where X is a Lagrangian multiplier.
Consider now the variance of the minimum estimate 7', found by solving
(10.1). We have

(10.2) Var (T:) = D & Var ('t).
1=1
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By the result of the appendix,

Var (‘) = E[Var (‘| )] + Var [E('t, | 0)],
from which it follows that,
(10.3) Var (‘) = EE[(‘tc — *6:)* | 8] + Var (‘6,).
So that (10.2) may be written

(10.4)  Var (T.) = Y GEE[(Ct — ‘6)°]| 6] + Var (6:) D & .
1=1 1=1

Applying (3.9) to (10.4), we have
m é%

(10.5) Var (1) 2 3 [<8ln¢(X,-|0))2

i=1
E
E a0,

+ Var (6,) > &,
0] &

the equality being achieved under the conditions cited in paragraph 5.

We may apply these results to the analysis of variance model II cited in
paragraph 5. To simplify the normal equations above, let n;, = n,7 = 1,2, - -+ , m.
In the notation of this paragraph, ‘6, = s, % = & = (D s 2i5)/n, 1 = 1, 2,

-, m, and (10.1) becomes &;((o3/n) + o%) + A = 0, 2 "1 & = 1. Solving,
we have é; = 1/m, 7 = 1,2, --- , m. Thus

2
Var (T%) = L (f: + 02.:),
m\n

and

which equals the lower bound given by (10.5).

11. Acknowledgements. The author wishes to express his appreciation to
Professors C. W. Clunies-Ross and J. E. Freund for their suggestions.

APPENDIX
The Covariance in Terms of Conditional Expectations.
Let U = (ur, ue, -+, u;) and V = (v, v2, +--, v;) be random variables.

Assume p = p(U, V) and ¢ = ¢(U, V)' have finite means and variances. Then
we have

(i) Cov (p, q) = EE(p-q|V) — EE(p|V)EE(q|V).
But,
Cov (p, ¢| V) = E(p-q|V) — E(p|V)E(¢| V),
from which, taking expectations with respect to V, we have,

E [Cov (p, ¢| V)] = EE(p-q|V) — E[E(p|V)-E(q| V)]
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Substituting this result in (i) gives
(ii) Cov (p, )
= E[Cov (p, ¢| V)] + E[E(p|V)-E(qg|V)] — EE(p | V)EE(q|V),
(iii) Cov (p, q)
= E[Cov (p, ¢| V)] + Cov [E(p|V), E(¢|V)]. QE.D.
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