ABSTRACTS OF PAPERS

(Abstracts of papers not pr ted at any ting of the Institute)

6. On a x*-Test with Cells Determined by Order Statistics. HErMaNN WITTING,
University of Freiburg. (By title)

Let X1, -, X» be a sample of a continuous one-dimensional probability distribution
Q(A);let X,,1, -+ , Xn.x-1 be order statistics for given ranks 7,,; with pn,; = (rn,; — Tn.j-1)/
(n+41) = p; + 0Q1/A/n). Let 8n,; = {#: Xn,jo1 < & S Xn.;}. For testing the hypothesis
that @Q(A) belongs to an s-parametric class of probability distributions P (4, 6) the test
statistic Tn = D51 n(P(Sa, i s 0n) — Dn.j)?/Dn.; is used, where 6, is the minimum-x2-esti-
mate. Thenif Q(4) = P(4,0,) orQ(4) = P(4, 6,) — q(4)/~/=, respectively, under certain
regularity conditions 7', is asymptotically distributed as x? with (¢ — s — 1) degrees of
freedom (and noncentrality parameter EL; &@/p;, ¢; = plim ¢(Sn.;). Using (k — 1)
continuous functions ¢;(x), -+« , ¢r-1(x), defining ¢;(X,,;) successively by ordering the
values ¢;(X;) and defining S,,; = {z: 01(x) > 01 (Xn1),l =1, --+ ,7 — L;0;(x) £ 0; ( Xn. )},
the same limiting behaviour of T, holds for probability distributions in a metric space.
The proof is based on the fact that the @ (S,;) are jointly B-distributed (cf. J. W. Tukey,
Ann. Math. Stat. 18(1947)529). Thereforen/n (Q(Sx.;) — pn.;) are asymptotically N (0, C)
where C is of rank (k¥ — 1) and coincides with the covariance matrix of the multinomial
distribution, underlying the corresponding classical x2-test with the cells S; =p-lim S,,; .
While having the same power, this modified x2-procedure has certain advantages over the
classical x2-test.

7. A Generalized Pitman Efficiency for Nonparametric Tests. HeErMaNN WirT-
TING, University of Freiburg. (By title)

Asymptotic expressions up to terms of order n~2 are given for the efficiency of the Wil-
coxon two-sample test relative to the Z- and ¢-tests for nearby alternatives. The first term
is the well-known Pitman efficiency; the remaining terms are corrections for finite sample
sizes. Efficiency values are given for finite sample sizes in the case of normal and rectangular
distributions and comparisons with the exact values are made. In general the Wilcoxon
test is shown to be nearly as good locally for moderate sample sizes as it is known to be
agymptotically. A similar analysis is performed for the single-sample sign test.

(Abstracts of papers to be presented at the Washington, D. C., Annual Meeting of the Institute,
December 27-30, 1959. Additional abstracts will appear in the March, 1960 issue.)

1. Some Nonparametric Problems: I. V. P. BauaprkaRr, University of North
Carolina and University of Poona. (By title)

Mood and Brown have considered a nonparametric test for the equality of row effects
in the two-way classification with one observation per cell or the same number of observa-
tions per cell. In this paper, first their test has been extended to cover incomplete block
situations. For the BIBD in the usual terminology, if m; denotes the number of observa-
tions, for the 7th ‘treatment’, that exceed the respective ‘block’-medians, then to test the
equality of ‘treatment’-effects we have (k2(k — 1))/(a(k — a)\w) =i (mq — (ra/k))?
asymptotically distributed as a x? withv — 1 d.f.for larger, whereaisk/2if kis even and
(k — 1)/2 otherwise. The x2 statistic appropriate for PBIBD is also given.

Next, Hoeffding’s theorem on U-statistics extended by Lehmann to the case of two
samples, has been extended to the case of ¢ samples. This is then applied to derive a new
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test for the problem of ¢ samples. The test criterion is in terms of the number of c-plets
that can be formed by choosing one observation from each sample such that the observation
from the kth sample is the least (¢ = 1,2, --- , ¢).

2. Some Nonparametric Problems: II. V. P. Bauaprkar, University of North
Carolina and University of Poona. (By title)

Mood and Brown have considered some simple nonparametric regression problems.
In this paper, their methods are extended to discuss some additional regression problems.
Next some bivariate analysis of variance problems are considered. The step-down procedure
is used to reduce the problem to one involving conditional univariate distributions, the
other variate being regarded as a concomitant random variate. The regression methods
developed earlier are used here in these bivariate problems. The method seems to be per-
fectly general and could be extended to the general multivariate situation.

3. On the Foundations of the Theory of Testing Hypotheses (Preliminary re-
port). ALLAN BirnBauM, New York University.

For testing between simple hypotheses H;, 2 = 1, 2, an experiment is called simple if
it is equivalent, in the sense of the theory of comparison of experiments, to one observation
on X, where Prob[X =1| H;] = p; ,Prob[X =0 | H;] = ¢: =1 — pi, s = 1, 2, with p;’s
known, 0 £ p1 < p2 = 1. If various experiments are possible for a given testing problem,
and if one of these is selected by use of a definite random device unrelated to the hypoth-
eses, the over-all procedure is called a mixture of experiments. It is proved that under
minor restrictions every experiment is equivalent to a mixture of simple experiments called
its components. The possible decompositions into components are characterized and shown
to be not essentially unique, except for simple experiments, whose components are equiva-
lent to the given experiment. It follows that customary interpretations of error-probabilities
of a test, as indicators of strength of evidence provided by a test outcome, require critical
and constructive revision which leads to a modified Neyman-Pearson theory in which the
likelihood function holds a central position as a consistently interpretable primitive indi-
cator of evidence relevant to hypotheses. Wald’s sequential test is given an elementary
justification on these terms as a technique for informative inference.

4. Unbiased Sequential Estimation for Certain Two Parameter Problems (Pre-
liminary report). B. BRaAINERD, University of Western Ontario, I. CHOR-
NEYKO, University of Alberta, AND T. V. NaArRavana, University of Al-

berta.

The probability of a coin falling head is 1 (0 < p1 < 1), if in the previous trial the out-
come was tail and p: (0 < p: < 1), if in the previous trial the outcome was head. At the
first trial the probability of a head is p: . Using a technique devised by one of the authors,
sufficient partitions are obtained for a wide class of simple closed regions. The results of
M. H. DeGroot (Ann. Math. Stat., Vol. 30 pp. 80-102) are shown to generalize, with the
proper modifications, to the two parameter case. Estimable functions are explicitly given,
and completeness of sampling plans proved for various regions. An analogue of the necessary
and sufficient conditions of Lehmann and Stein for simple closed regions is being studied.

5. Mathematical Models for Ranking from Paired Comparisons. H. D. BRUNK,
University of Missouri. (By title)
Several models are discussed in each of two categories: (I) Each possible ranking of items

is assumed to have a ‘‘utility’’ (for some segment of the community) which depends on
the expected scores of the items in paired comparisons. Special instances are models in which
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‘“worth’’ of an item is defined in terms of its expected scores in comparisons with other
items. (II) Each item is assumed to have an intrinsic worth; these intrinsic worths determine
the expected scores.

The concept of “‘regularity’’ is introduced. Let the expected scores of Item A be at least
as large as those of Item B. A utility is regular if under these conditions every ranking in
which Item A precedes Item B has at least as great utility as one in which they are inter-
changed. This concept specializes to rankings based on worths. A necessary and sufficient
condition is given in order that a linear utility may be regular.

In the second category a ‘“minimum assumption’’ model is introduced and discussed.
Let e(u, v) denote the expected score of an item of worth u when compared with one of
worth v. The assumption is: e(u, v) is non-decreasing in u, non-increasing in v.

6. Asymptotically Optimal Stopping Rules in Sequential Analysis (Preliminary
Report). HErman CHERNOFF, Stanford University.

It is desired to decide sequentially whether the mean x of a normal distribution with
known variance is positive or negative. Suppose that an a priori distribution is given for
which has positive density at 4 = 0. Suppose also that the loss due to coming to the wrong
conclusion is given by 7(¢) = k | u | + 0(1), as u — 0. Finally suppose that the cost of sam-
pling ¢ — 0. For the optimal sequential procedure the main contribution to the Bayes risk
is given by those values of u which are of the order of magnitude of ¢!/3.

The optimal stopping rule is approximated by the solution of the analogous continuous
problem involving a Wiener process. This problem in turn is reduced to the solution of a
free boundary problem involving the heat equation. A method of constructing this boundary
is proposed.

7. Cross-Compounded Distributions. RicHarD A. EpsTEIN AND Lioyp R.
WELcH, Jet Propulsion Laboratory, California Institute of Technology.
(Introduced by L. A. Zadeh)

It is known that the generating function of the compound Poisson distribution has the
property that the Poisson variable can be expressed as the sum of two or more independent
variables. A particular method of ‘“‘cross-compounding” two distributions is suggested; the
same property obtains. In theory, any two distributions can be cross-compounded to pro-
duce a third, unique distribution. However, frequently the mathematics become overly
involved so that it is necessary to select the distributions with discretion. Examples are
given wherein the negative binomial distribution is cross-compounded with the Exponential
distribution and with the Poisson distribution. Other combinations are also suggested
which might lend themselves to cross-compounding.

8. Examples of Two Independent Separable Processes Whose Sum Is Not
Separable. T. FErcuson, Princeton University.

Two examples are given of two independent stochastic processes, X; and Y., both of
which are separable in the sense defined in Doob’s book, and yet whose sum Z, = X, + Y
is not a separable process. All processes considered are measurable. In the first example,
X, is a constant (i.e. non-random) function, while in the second example, X; and Y, are
identically distributed.

9. On the Exactness of the Missing Plot Procedure in a Randomized Block
Design. J. L. Forks anp D. L. WesT, Texas Instruments Incorporated.

The randomized block design is said to be an unbiased design in that it allows unbiased
estimates of treatment differences, an unbiased estimate of the error variance and an un-
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biased test of treatment differences. This claim can be justified by assuming that the ob-
servations are generated by the model y;; = x + b; + ¢; + e;; where e;; ~ N (0, ¢2). It can
also be justified by considering the population of conceptual yields arising from all possible
randomizations. In the case of a missing plot, the exact procedure described by Yates gives
unbiased estimates of treatment differences, an unbiased estimate of the error variance,
and an unbiased test of treatment differences. However, it is based only on the normal
model, not upon randomization theory. The authors examine the missing plot procedure
from the standpoint of randomization theory. The finite population of conceptual yields is
examined where (1) the same block-treatment combination is always missing, and where
(2) the same block-plot combination is always missing. In both cases, unbiased estimates
of treatment differences are given by the usual estimates. The estimate of error variance
and the test for treatment differences are unbiased in (1) under a restriction slightly weaker
than homogeneity but appear not to be in (2) for any reasonable restriction.

10. First Emptiness of Two Dams in Parallel. Josepa M. Gani, Columbia Uni-
versity.

The paper considers the probabilities of first emptiness of two dams in parallel, both
subject to steady releases at a constant unit rate, and fed by discrete Poisson inputs of
unit size which are directed to the dam with lesser content. The problem is shown to be
equivalent to that of the single dam fed alternately by the two ordered inputs
0 =< «a,B = 1(a + B= 1); starting with an initial content z, the probabilities of first empti-
ness of the process beginning with an input «, at the times

T=2z++ [('ﬂ + 1)/2]0‘ + [n/2]B (n = 0’ 1’ 2’ ”')

are givenby ga(z, T) = e™*if n = 0,and ga (2, T) = e={ S gs(ja+j8 — B, [(n + 1) /2]ex
+ [n/218) () =1/ (2 — 1)1 + S go G + 38, [(n + 1) /2l + [n/218) (N2)%/(2 )1} if m =
1,2, ---, where gs(z, 2 + [(k + 1)/2]8 + [k/2]le)(k = 0, 1,2, ---), the analogous proba-
bility beginning with an input B, is given by an interchange of 8 for « in the previous
equation. These probabilities may be evaluated recursively. A more convenient method
is found by reducing the process to an associated occupancy problem, when the proba-
bilities can be obtained by a rapid computational procedure. Generating functions of the
probabilities are derived, and the paper concludes with a general formulation of the dam
problem when the times of arrival for two ordered non-negative inputs of random size
form a Poisson process.

11. Stochastic Approximation and “Minimax” Problems. L. A. GARDNER, JR.,
MIT Lincoln Laboratory. (By title)

With the exception of the Robbins-Monro and Kiefer-Wolfowitz processes, the tech-
nique of stochastic approximation does not appear to have found a range of application
consistent with the generality of its formulation (for exposition see C. Derman, ‘“‘Stochastic
approximation”’, Ann. Math. Stat., Vol. 27 (1956), pp. 879-886). In this paper we consider
such an iterative scheme designed to estimate the minimum of a curve which is not a re-
gression function but the a.s. supremum of an observable random variable depending upon
a parameter. The range of the parameter is a known finite interval, and the possibility of
the solution being a boundary point is admitted. “Deterministic’’ conditions of the usual
kind are imposed. The procedure is formally a truncated Kiefer-Wolfowitz process with
the estimate of slope calculated from observed largest values in samples whose size tend to
infinity as the iteration proceeds. Convergence with probability one is insured if this num-
ber increases sufficiently fast, or equivalently the differencing interval decreases suffi-
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ciently slow, relative to a measure of the amount of prohability in left neighborhoods of
the function to be minimized. Although it is easy to argue the existence of such a measure,
it cannot be assumed that anything is known concerning its (finite) value. This difficulty
is resolved by having the differencing interval to be used for obtaining the nexi iterant
depend in an appropriate way on a sample of largest values at the present. Estimates of
convergence rates are made and optimum values obtained for certain constants of the
process. Examples show the applicability of the theory to diverse problems.

12. Some Asymptotic Results for a Coverage Problem. Max HavrpErIN, Knolls
Atomic Power Laboratory. (By title)

Let A1, Az, -++, An be a random sample from a population with probability density
p(A), 0 £ A £ Ay, Ay finite. The set of line segments corresponding to the A; are cast
on the interval (0, L), L = nAy , in such a way that every admissible configuration of the
segments is equally likely. A configuration is admissible if (a) there is no overlapping of
segments with each other. (b) there is no overlapping of segments with 0 or L. Now suppose
a line of length A is cast at random in the interval (0, L),N < L; i.e. y, the coordinate of
the midpoint of the line of length A is distributed uniformly on (\/2; L — (A/2). We define
fractional converage, F, as the fraction of the line of length A which is covered by the seg-
ments of length A; , Az, --- , A, and consider the probability distribution of F agn, L — «
and nu/L— V wherep = EAand 0 < V < 1. It is shown that Pr{F = 0} = (1 — V) exp —
(VN@Q — V)u),Pr{fF =1} = V/u f)éM (y — Mp(y) dy, if A > Ay and in zeroif X = Ay
for 0 < F < 1, there are further (continuous) contributions to the cumulative probability
which unfortunately are critically dependent upon the nature of p(A). One can show that
EF = V independently of the specific nature of p(A) for A > Ax but the variance is a com-
plex function of p (A) which is not simply expressible even for specific p (A). It can be shown
that for large \, F is normally distributed with mean V and variance u V(1 — V)2[1 + o2/u%]/A
where o2 = EA? — u2,

The above work was motivated by the need for a plausible graduation function to fit
the distribution of Boron Carbide intercepted by neutron paths (Boron Carbide is used
to control reactor power output). Although the above assumptions are quite naive relative
to the actual complexity of the problem, preliminary experimental data suggests that
use of the results to match a graduation function to two moments may adequately describe
observed frequency distributions.

13. Polya Type Distributions of Convolutions. SAMUEL KArLIN, Stanford Uni-
versity, AND FRANK ProscHAN, Sylvania Electric Products, Inc., Mt.
View, California.

This paper obtains several useful new theorems concerning successive convolutions of
Polya frequency densities, such as: If fi , f2 , - -+ are density of non-negative random vari-
ables with each f; a Polya frequency density of order k, then g(n, ) = fifs - *f»(x) (the
n-fold convolution) is Polya type of order k in the variables n and z, where n ranges over
the positive integers and z traverses the positive real line. More generally, the following
theorem is derived: Let f1, f2, - -+ be a sequence of Polya frequency densities of order &
for corresponding general real valued (not necessarily positive) random variables X,
X,,--.Then h(n, z) = P24 X; = z; 2iaXi<z,j=1,2,---,n — 1] is totally
positive of order k in » and z, n ranging over the positive integers and = over the positive
axis. Applications of these theorems are given in inventory theory, probability, and mathe-
matics.
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14. A New Proof of the Continuity Theorem of Probability Theory. EMANUEL
ParzeN, Stanford University. (By title)

The continuity theorem states that if a sequence of characteristic functions ¢, (¢) con-
verge to a characteristic function ¢ (¢) at each real ¢, then the corresponding distribution
functions converge, F,. (z) — F (z) at all continuity points z of F. The presently known proofs
of this theorem are not constructive, but rather involve compactness arguments. This
paper gives a new constructive proof of the continuity theorem, based on the observation
that f o g(x) dF,(x) — f Z g(z) dF (z) for any bounded continuous function g with in-
tegrable Fourier transform. Details of the proof are given in Chapter 10 of my book Modern
Probability Theory and its Applications, John Wiley, New York, 1960.

15. A New Inversion Formula. EMaNUEL ParzEN, Stanford University. (By
title)

Let g be a bounded integrable Borel function of a real variable which possesses right and
left hand limits at every real z. Let g*(z) = {g(z + 0) + g(z — 0)}/2. Let

y@) = (1/2r) [Ze e~ (z) da.

Then for any distribution function F (with corresponding characteristic function ¢)
i 9*(z) dF (z) = limy fzu(l — (| % |/U))yu)e(u) du. The proof is given in Chapter
9 of my book Modern Probability Theory and its Applications, John Wiley, New York, 1960.

16. A Law of Large Numbers for Dependent Random Variables. EMANUEL PAR-
zeN, Stanford University. (By title)

Let X,, X, , +-- be random variables with zero means and uniformly bounded variances.
Let Z, = (X1 + -+ + X,)/n. Let C,. = E[X.Z,). Quadratic Mean Law of Large Numbers.
Z,— 0inmeansquare as n — « if and onlyif C, — 0as n — «. Strong Law of Large Num-
bers. Z, — 0 with probability one if '\, = 0(n2) for some positive ¢. These results generalize
some of the known laws of large numbers for orthogonal and stationary sequences of random
variables. The proof is based on the identity n2E[Z%] + Zi E[X3] = 2 Zi_y kCy . Details
are given in Chapter 10 of my book Modern Probability Theory and its Applications, John
Wiley, New York, 1960.

17. Inference in Stochastic Processes I: Testing Composite Hypotheses (Prelim-
inary report). M. M. Rao, Carnegie Institute of Technology.

Let {x(¢), t € T} be a (real) stochastic process where T is a linear Borel set. For any =,
let ti < & < -+« < i, be in D, a dense subset of T, and f4,...,tn (Tey, ---, ¢, ; 8), OF fu(x, 6)
say, be the finite dimensional density function (w.r.t. Lebesgue meas.), of the process,
which dependson 8 = (6., --- , 6&), k being independent of n. Suppose the testing problem
consists of the hypotheses Hy : 0 € w, vs. H; : 0 ¢ w. (based on one realization), where wq
and w. are closed disjoint subsets of the (real) Euclichian k-space. Assume the following
conditions on the densities: (a) for all n, the carriers of f,(z, #) remain invariant for all ¢
in @ = w, + w-, and f, are Baire densities, (b) if 6, , and 6, in @ are distinct, then f.(z,
6:) % fu(z, 62) a.e., and (c) if £(8) is any distribution function (d.f.) on @ which assigns
positive probability to both we and w, , then (fny1(z, 6) f,.,fn (x, 0) d&(8) — fo(z, 0) fw )
(z, 8) d£(8)), for any 0 in w(= w, Or w,), is either non-negative or non-positive for all n.
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Theorem: If {x(t), t € T} is a real separable stochastic process without fixed points of discon-
tinuity and with the finite dimensional density functions f.(x, 0) satisfying the conditions
(a)-(c), then, for a sufficiently large number of observations on the process at t; of D, there
exists an essentially unique Bayes solution, relative to an a priori distribution £(8) on'Q,
satisfying (c), for testing the composite hypotheses H, against H, . Instead, 6, being a vec-
tor of £ components, may depend on ¢ (or k£ or n). Then, if the condition (c) is suitably
modified, an analogous result obtains. Some applications are considered.

18. Testing of Hypotheses on Categorical Data. S. N. Roy, University of North
Carolina, aNp V. P. BHAPKAR, University of Poona.

In an earlier paper, we have posed hypotheses, which might be considered to be generali-
zations, appropriate to the categorical data (structured or unstructured), of the usual
hypotheses in classical ‘normal’ univariate and multivariate analysis of variance and in
analysis of various kinds of ‘normal’ association. The large sample tests for some such
hypotheses have been offered earlier and for most of the rest are offered here. The theorem
on minimum x} is proved along Cramér’s lines and an independent justification for Ney-
man’s ‘linearization’ technique is given. It is also shown that for linear hypotheses the
minimum x} is exactly the same expression as the minimum sum of squares obtained by the
‘“‘general least squares’’ approach to a model involving some asymptotically normal vari-

ables.

19. On Tests of Certain Types of Hypotheses Involving the Dispersion Matrices
of Two or More Multivariate Normal Distributions and the Associated
Confidence Bounds. S. N. Roy, University of North Carolina, aNp R.
GNANADESIKAN, Bell Telephone Laboratories.

For N (ffx’l zjfx z,) (i = 1,2), one of the authors derived several years ago, on a certain

principle, a test for Hy : =1 = 3 against H: 2; & 2, , with an acceptance region g1 < all
ch (8187') = us , where S; and S; are the sample dispersion matrices, and also the associated
confidence bounds. In this paper the same principle is used to derive tests for Hy : 21 = =,
against the respective alternatives (i) H: all ch (Z:22") > 1, (ii) H: all ch (2:277) < 1,
(iii) H: (i) U (i), (iv) H:at leastone ch (2:27") > 1 and (v) H: at least one ch (Z27h) < 1.
The associated confidence bounds are also obtained and interpreted, and finally, a partial
generalization of these results are made to the case of k¥ populations, with regard to both
testing of hypotheses and confidence bounds.

20. On the Monotonic Character of the Power Functions of Two Multivariate
Tests. S. N. Roy axo W. F. Mikuaiwr, University of North Carolina.

The power function of the largest root test of normal multivariate linear hypothesis on
means or of independence between two sets of variates involves, in each case, aside from
the degrees of freedom, certain non-negative, non-centrality parameters. This paper sup-
plies a relatively simple and compact proof that the power function monotonically in-
creases as each parameter, separately, increases—a result that was conjectured and proved
(but not published) by one of the authors several years ago by a very lengthy and laborious
method. It is believed that, with suitable and slight modifications, the method used here
should prove useful in proving or disproving similar results in a wide variety of problems
in testing of hypotheses involving multivariate normal distributions.
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21. Confidence Bounds for an Integral Function of an Estimate with Applications
to Reliability Theory. Sam C. SaunpErs, Boeing Scientific Research Lab-
oratories.

Let X and Y be independent random variables with distributions F ¢ F and G ¢ G,
respectively, where § and G are subsets of the class of continuous distributions on given
positive sample spaces & and Y. Let « be a homeomorphism from ¢ into X and define
H(w) = [F(w) dG. From samples X1, -+, Xp and Y1, -+, Y, we form F, and G, , esti-
mates of F' and @G, respectively, and define H, the empirical estimate of H, by H(w) =
[Fo(w) dGp for w £ Q, a class of homeomorphisms linearly ordered by H.

We are interested in problems associated with this phenomenological interpretation.
For some device: let »(Y) be the taxation on life under usage w and let X be the capacity
for endurance. Then H(w) = P[X < w(Y)] is the unreliability and H (») is an estimate
of this unreliability. Using H to determine a maximum usage ®, what is the probability
the unreliability H (&) is too large? We define & so that H (@) is distribution-free re ¥ X G
or obtain a stochastic bound majorizing H (&) for each (F, @) ¢ F X Gunder the assumption
F(F~1) is distribution-free re & and similarly for &, G. This provides an answer in one im-
portant application and the theory is developed so that many such reliability problems
can be treated.

22. A Rank Sum Test for Comparing all Pairs of Treatments. RoBerT G. D.
SteeL, Cornell University.

Consider a permutation of 7,.X1’s, -+ , msXs’s with ny £ -+ = n; arising from ordering,
from smallest to largest, observations on % treatments. Assign ranks 1, ---, n; + n; to
the observations on all possible pairs of treatments and sum the ranks assigned to the
observations on the treatment with lower subscript. This gives a test criterion denoted by
Ty, +++, Tk, Tes, -+ , Tho1.6). A recursion formula is developed for computing prob-
abilities and is used to show, by induction, that u(Ts;) = n:(n: + n; + 1)/2, 6*(Ts;) =
nini (i + n; + 1)/12, o (ThiTh;) = nnini/12 = o (Ta;Ti;), o (ThiTs;) = —mnanin;/12 and
(T T;i;) = 0. From the distribution of (T12, --- , Tk_1.x), the distribution of min{7’;}
can be obtained. Several such distributions are computed for a common value of n. These
provide critical values for a non-parametric multiple comparison rank sum test.

23. Asymptotic Expansions for the Mean and Variance of the Serial Correlation
Coefficient. Jorn S. WHITE, Aero Division, Minneapolis Honeywell Regu-

lator Co.
Following the procedure used by W. J. Dixon (Ann. Math. Stat., 1944, pp. 119-144)
series expansions are obtained for the first two moments of @ = 2 z,-1/2 o7y where

(x;) is a first order auto-regressive Gaussian process with parameter «. The series expan-
sions are carried out to terms of order 7—% and a* thus extending the asymptotic results

of several authors.
The results are obtained for both the stationary and fixed initial variate case.



