CONTINUOUS SAMPLING PROCEDURES WITHOUT CONTROL'
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1. Summary. Several modifications of the Dodge CSP-1 procedure [1] are
presented. Changes are made in the rule of action when a defective item is
observed while on sampling. The Average Outgoing Quality Limit (AOQL) for
these new procedures are derived without the assumption of control. These
results are compared with the AOQL assuming control. A production process is
said to be in statistical control if there is a constant probability p that an item
is defective, and if the states of all the items (defective or nondefective) are
stochastically independent. Further, the AOQL for the CSP-1 procedure using
probability sampling (looking at every item with probability 1/k when on samp-
ling) is derived without the assumption of control.

2. Introduction and results. Two continuous sampling procedures are con-
sidered. The first procedure is denoted by CSP-42 and is as follows:

a) At the outset, inspect 100 per cent of the units consecutively as produced
and continue such inspection until 7 units in succession are found clear of defects.

b) When ¢ units in succession are found clear of defects, discontinue 100 per
cent inspection, and inspect only a fraction 1/k of the units, choosing the item
to be observed at random from a segment of size k (this type of sampling will be
called random sampling).

¢) If a sample unit is found defective revert immediately to 100 per cent
inspection, eliminating from the production process the remaining (k — 1) items
in the segment, and commencing 100 per cent inspection with the next item fol-
lowing the eliminated segment. Continue 100 per cent inspection until again ¢
units in succession are found clear of defects, as in paragraph (a).

d) Correct or replace with good units all defective units found.

It is important to discuss the implications of (c¢). These eliminated units can
be considered as a source of good items for (d). Furthermore, under certain
mathematical models for the production process such as “a state of statistical
control”’ condition ¢ is equivalent to the following:

If a sample unit is found defective revert immediately to 100 per cent

inspection, commencing such inspection with the segment in which the

defective item is-observed. Continue 100 per cent inspection until again ¢

units in succession are found clear of defects, as in paragraph (a).

The second continuous sampling procedure considered will be denoted by
CSP-5 and is the same as CSP-4 except for condition (¢c) which is as follows:
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1 This work was sponsored by the Office of Naval Research under contract N6onr-25126.
2 CSP-2 and CSP-3 have already been used to denote other continuous sampling proce-
dures.
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¢’) If a sample unit is found defective screen the remaining & — 1 items in
the segment. Upon completion of this screening, commence 100 per cent inspec-
tion with the next item produced. Continue 100 per cent inspection until again
% units in succession, not including the & — 1 screened items, are found clear of
defects, as in paragraph (a).

These procedures differ from the Dodge CSP-1 procedure in paragraphs (b) and
(¢). Dodge’s statements [1] analogous to (b) and (c) are as follows:

When < units in succession are found clear of defects, discontinue 100 %

inspection and inspect only a fraction 1/k of the units, selecting individual

sample units one at a time from the flow of product, in such a manner as to
assure an unbiased sample.

If a sample unit is found defective, revert immediately to a 100 % inspec-

tion of succeeding units and continue until again 7 units in succession are

found clear of defects, as in paragraph (a).

It is not immediately evident what Dodge meant by the phrase, - - - , select-
ing individual sample units one at a time from the flow of product, in such a manner
as to assure an unbiased sample.” However, Dodge did study properties of his
procedure and presented equations and charts for determining the Average Out-
going Quality Limit (AOQL) as functions of the parameters & and ¢, under the
assumption that the process is in a state of statistical control. There are several
interpretations of the sampling procedure while on partial inspection which
lead to Dodge’s operating characteristics under the assumption of control.
These are as follows: (1) look at every kth item. This type of sampling is denoted
as systematic sampling and has the practical disadvantage that the particular
item to be chosen is known in advance. (2) sample every item with probability
1/k. This type of sampling is denoted as probability sampling and has the dis-
advantage that the number of uninspected items is a random variable. The
result showing the coincidence of the operating characteristic using this type of
sampling with CSP-1 is due to Resnikoff [2]. (3) sample only a fraction 1/k of
the units, choosing the item to be observed at random from a segment of size k&
(random sampling). If the sample unit is found defective begin 100 % inspection
with the item following the segment in which the defective item was observed,
allowing the & — 1 uninspected items to enter into the production stream.

The CSP-4 and CSP-5 procedures are variations of this last type of samp-
ling, i.e., random sampling. These procedures are investigated under the assump-
tion of the existence of a state of statistical control and the AOQL’s so obtained
do not coincide exactly with the values given by Dodge for CSP-1. More im-
portant, however, the CSP-4 and CSP-5 procedures are analyzed without the
assumption of the existence of a state of statistical control.

The problem of determining an AOQL for a Dodge type procedure without
the assumption that the process is in a state of statistical control was first con-
sidered by Lieberman in [3], where it was shown that the CSP-1 procedure guar-
antees an AOQL whether or not the process is in a state of statistical control. In
fact, for this case the AOQL equals (¢ — 1)/ (k + 2). This result was obtained
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under the hypothesis of random sampling while on partial inspection. The same
result is obtained in this paper under the hypothesis of probability sampling
while on partial inspection. For a given k and 7, the above value of the AOQL is
always higher than that obtained using Dodge’s equations. This is to be expected
since the AOQL, without the assumption of control, is the least upper bound of
the average quality level that a production process is able to achieve. This is not
to imply that this is the average outgoing quality of a typical production
process, but rather, that the average outgoing quality of the process can never
exceed this AOQL value. The production process that actually achieves this
level is one which alternates between producing all defective items during partial
inspection and producing all non-defective items during 100 % inspection.

It is the authors’ contention that the assumption of control is not always
justified. Whereas a production process which achieves the AOQL found by
Lieberman seems unlikely, it should be emphasized that deviations from control
can produce values of the average outgoing quality ranging up to the AOQL
found by Lieberman.

It is intuitively clear that under CSP-4 and CSP-5 a production process which
alternates between producing all defective items during partial inspection and
producing all non-defective items during 100 % inspection, will not represent the
least favorable case. It is shown in this paper that both of these proeedures
guarantee a non-trivial AOQL whether or not the process is in a state of statisti-
cal control. In fact, for CSP-4

(s +2) —24/c, + 1 o0 5 0
AOQL = c? ? 4 where cs = (¢ — k+ 1)/k

% ’ =0

The AOQL is actually achieved when the process alternates between producing

dy = t—k+1 ’
k/2 , i=k—1

defective items in a block of size k during partial inspection and producing all
non-defective items during 100 per cent inspection. Similarly, for CSP-5

2) — 24/ 1
AOQL = (c5 + ) . Cs + ,

Cs

where ¢s = ¢/k.

Note that the AOQL depends only on the ratio /k, and not on the individual
values. This AOQL is achieved when the proeess alternates between producing

J KNk —F
5= 7

defective items in a block of size k during partial inspection and producing all
non-defective items during 100 per cent inspection.
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Naturally, these results are always higher than those obtained assuming con-
trol. However, the values of d given are not so high as to be unrealistic. For ex-
ample, if an operator knows that only 1 in k items is to be chosen at random and
observed, he may be careless enough to produce d defective items in this block,
whereas if he knows every item is to be looked at (100 per cent inspection) he
will be very careful and produce all good items. Hence, the AOQL values given
above may not be unreasonably large.

Finally, the CSP-4 or CSP-5 procedures are used in practice because of a
reluctance to pass a segment in which a defective item has already been observed.
Usually, the equations for the AOQL of CSP-1 under the assumption of control
are used to find the necessary parameters ¢ and k for the CSP-4 or CSP-5 proce-
dures since this is a “conservative” approximation. However, its conservatism
depends upon the realism of the assumption of control. It is interesting to point
out that the CSP-5 procedure guarantees that the AOQL will never exceed 25 %
regardless of the choice of 7 and k.

3. Theorems and proof for the AOQL without the assumption of control for
CSP-4 and CSP-5. Define

D,; = number of defects produced in the sth block of the ith cycle,
D, =0,1, -, Fkforalls,t.

A cycle is the period where partial inspection begins to the time a defective is
observed. A block is a segment of & items produced while on partial inspection
from which a single item is chosen at random for inspection.

N: = number of blocks (of k items) sampled in the tth cycle. It is pointed out
that the cycle terminates when a defective is found and that for the procedures
considered the block in which the defective is drawn is not put directly into the
production stream. However, it will still be considered as part of the ith cycle.
Under CSP-4, the block is eliminated and under CSP-5, the block is screened
replacing all defective items by good ones.

X; = total number of defects being passed in the tth cycle. X, = ZL‘II D,,.

ds¢ are zero-one random variables and indicate whether the sth item in the 100%
inspection sequence preceding the {th cycle of partial inspection are non-defective
or defective.
M, = number of items inspected in the 100% inspection sequence preceding the
tth cycle of partial inspection. This is a sure function of &;; .

A strategy of nature is characterized by a pair of doubly infinite sequences of
possibly dependent random variables

{{D.d, {8:4} }
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Define the number L;, (j = 4, 5), as the smallest numbers with the property
that for every process the probability is zero that

M=

X:

(1) lim sup ——— e > L5 (G =45)

" kY. N — ma;+ tZ‘,IM,

t=1

-~
]

where

k=1, j=4
% =10, ji=5

The numbers Ls and Ls are called the AOQL for CSP-4 and CSP-5 respectively.
It is evident that the ratio whose lim sup is taken in (1) is just the total number
of defectives contributed to the outgoing product in the first m eycles divided
by the total number of items contributed to the outgoing product in the m cycles.

1t is clear that in order to determine L we may confine ourselves to considera-
tion of strategies of nature for which the number of cycles is infinite with prob-
ability 1. Furthermore, if we choose {3,4 = {0, 0, ---, 0, - -+ } with probability
1, independent of the past, we are assured that M, = 4, (¢ = 1,2, - -+ ), with
probability 1. Hence, any strategy of nature for which the 8,; are not of this form
is dominated by a corresponding strategy for which they are. Similarly it is suffi-
cient to consider the special class of strategies for which the number of defectives
in every block on partial inspection is = 1. Hence, by confining ourselves to such
strategies we may characterize nature’s strategy by the single infinite sequence
{D,s}, where the random variables D, take on the values 1, 2, - - - , k, with prob-
ability 1. It then follows that

> X, > X,

=1 < lim sup

m—>0

lim sup —; —
(2) ™" kX Ne—ma+ 2 M,
t=1 t=1

k>, N — ma; + mi

t=1

(4 =4,5).
TaroreM 1: For every strategy {D.:} of nature and for all m
2 E(X.| D)
(3) = = L(c) (7 =4,5);

ki E(N.| D) + m(i — o)

3 The authors are indebted to Professor S. Karlin for suggesting the method of proof
used in this theorem.
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where
(ei4+2) — 24, + 1 ,
(4) Lie) = 3 a0 oy,
% ) ;=0
(5) ¢ = ?—_—,;——a’
and
(6) Dt={D1t7D2t’°"}'
Proor: We may write
_ 2 _ 1, Nt > 8
(7) Xt = az-a:l Dsz Ugt N where Usc = { 0, otherwise

Hence,

E(X.|D.) = Z1D“ E(U. | D:)
o n-B)em(-2)-

Du Doy, Dy,
o (-2 (=B (- B+

This is a geometric series that is bounded uniformly by the convergent series

kY oa (1 — 1/k)"

Similarly,
(9) N,=1+ZIU8,,
so that

EN.|D:) =1+ (1 - %})

22+ 020202+

Again, this is uniformly bounded by a convergent geometric series.
From (8) it follows that

(10)
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;:E(thpt)=f Du 1 D“)+Du(1_9k_lf)<1_9ky)+...]

t=1

Du
> < Du (v + G - a1 22)

E4+ (¢ — o) 5=
1 _9_” Dui D
an -~ (z > th (k+ 6= a2 22) (1= 2)

o(1-22)
D (k+(z'—a,->%)
k+(1, o) - 3t

From (10) it follows that

m

kY, E(N:|D:) + m(i — o)

t=1

a2 7
L
Noting that
Dlt DZt Dlt D3t Dlt D2t —
B (% )+ 5 7)(“7)“"‘

since the left hand side is just the probability of ultimately achieving a success
when performing successive Bernoulli trials with success probabilities bounded
away from zero, we see that expression (12) can be written as

B BV D) + mli — o)
B

+(k+ (i —a,)D“)( %“)(1 —%—“)+ ]
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Hence,

3 B(X.1D)

k}f: E(N.| D.) + m(i — o)

is merely a non-negatively weighted average of quantities of the form

pe(1-29
(14) f(Dsl;'i,k)= D..’ (j=4)5§3=1>2:"')
b+ @ — o) 3

and has an upper bound obtained by maximizing each of these expressions inde-
pendently. Taking the derivative of (14) with respect to the value dy; of Dy
(treated as a continuous variable) we obtain

k T 2dat _ (kdat - dft)(i - aj) i ~ o
K + (¢ — o d, k 4+ (2 — a; e ) j
(15)  f(du,i k) = (= a)de T+ G — a)dad]
P2 i = a;
A '

The quantity f(ds:, ¢, k) is clearly maximized by setting (15) equal to zero.
Denoting the maximizing value of d.: by d; since it is independent of s and ¢
we obtain

2\/‘T‘T—_2
FVG—a)l/k 1=K

)

(16) d; = (G — o) (j =4,5);
k/2, 1= a
It then follows that
> B(X.|D) i(1-2)
=1 é
83 BW.|D) +mG —a;) k(= a)d
17y = b
G +2) =2ve+1 .
= c; = L(¢s); (=405);
1/4, ¢i=0

where c; = (’L d aj)/k.
TuroreM 2: For any strategy {D.:} of nature, for either CSP-4 or CSP-5

m->0 m
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with probabelity 1, and

(19) lim [l >N, — 1 > E(N.| Dt)] =0,
m>0 | M t=1 m t=1
with probability 1.
Proor: Fort =1,2,:---, let
(20) Zt = Xt - E(Xz l l_)t)-
Then
(21) E(Z:| D) = E[X: — E(X:|D:) | Dj] =0

so that E(Z;) = 0. Furthermore, for ¢t > s, Z; and Z, are conditionally inde-
pendent given D, so that

(22) E(Z.Z:) = E|E(Z:Z:| D.)] = E[E(Z.| D.) E(Z.| D,)] = 0.
Now
E(Z}) = E(X}) — E[E*(X.|D,)] < E(X}) < KE(N?})
(23) — PEEWN!| D) £ B3 & (1 - 1>H <
D)l S B3 2 :

since D,; = 1 with probability 1. Now by a well known Law of Large Numbers
for sums of orthogonal random variables ([4] Chapter IV, Theorem 5.2) equation
(22) together with the uniform boundedness of E(Z}) shown by (23) implies
that

(24) im 13z = o,

. msc0 M t=1
with probability 1,
so that (18) is established. Letting Z% = N, — E(N, | D¢), the proof of (19) is
similar.
THEOREM 3. For any sirategy {D,s of nature
(25) L; £ L(cj) (7 =435).

Proor. By Theorem 1 we have
() L3 BCID) - 1) | E X BID) + (- )] 50,
m i=1 m t=1-

for all m. If for each m we let

1 « 1 <«
(27) Vm _géXt —;'—LEE(thDt),
and
(28) v =13 N - 1> B, D),
m t=1 m t=1

(26) we have
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i Xt ’
) L) + 2= IL@Ve
k;N;+m(i—a,-) SN (- )

and (25) follows upon taking the lim Supm-. of both sides of (29).

If we now let
FVE=a)/k+1—F .
(30) di = integer nearest to T— ’ ! (7 =4,5);
k/2, 1= @

then we have
TarorEM 4: If the production process alternates between producing ds [ds] defec-
tive items in blocks of size k during partial inspection and all non-defective items
during 100 per cent inspection, then for CSP-4 [CSP-5]
2 X,

t=1

lim sup

m->c0

m

ktle¢+m(i—a,-)

equals Ly(c) [Ls(c)] (approximately, due to the discreteness of di and d3) and hence
the AOQL 1s given by Li(c) [Ls(c)l.

Proor: This result follows immediately from (16) and Theorems 2 and 3.

We remark that it is easily verified by differentiation that L(cs) = limco
L(cs) = 1/4, so that the AOQL =< % for CSP-5 for any choice of ¢ and k. We
further remark that if defective items found when on 100 per cent inspection
are not replaced by good items but are discarded, the previously derived results
are still applicable, i.e., the AOQL is still given approximately by L(c;). If,
under the CSP-4 procedure, a unit found defective while on sampling is also
discarded together with the remaining (k¥ — 1) items and not replaced, the
previously derived results are also applicable provided that «; is set equal to k.

4. CSP-4 and CSP-5 under control. This section will be devoted to determining
the Average Outgoing Quality (AOQ) function and the AOQL for the CSP-4
and CSP-5 procedures under the assumption of the existence of a state of sta-

tistical control.
The AOQ function is defined as

AOQ; = lim sup — _
e kE:lNg—Ma,-+ZM‘
t= Lo

(31)

E Xt/m
= lim sup =1 (J =4,5)

m

e kX, Ny/m — a; + ) lM;/m

t=1
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where
E—1, | = 4

a; = .
0, j=25

Under the assumption of the existence of a state of statistical control at level
P, the law of large numbers becomes applicable so that the AOQ function can
be expressed as
(32) A0Q; = B(X.)

kE(N:) — o; + EQM,) (7 =4,5).

It is easily verified that

3

(33) B(M,) =1 “qz.q
(34) B(N) =L
P
and
(35) E(X,) = (k— 1)q

where ¢ = 1 — p. Hence, .
(k= 1)(¢™ = ¢*) _ (k= 1)pg™
T+ ¢ k-1 1+ &= g’

The maximizing value of ¢ for a fixed 7 and % is given by solving for ¢ the ex-
pression

(36) AOQs =

(37) (k=1 g"+ GE+2)g=(G+ 1)

Denote this value by @max-« . The AOQL can then be written as
G+ 2)

8 AO L = ]. — max-. 0

(38) QL o=t D)

or, solving for gmax-1, the expression
@+ 1)

3 max-4 — 1 — A.O L .=

(39) Imax-4 ( Q 4) G2

is obtained. Substituting this expression for gmax-« into (37) and solving for £,
the relationship between k and 7 for a fixed AOQL is obtained, i.e.,

_ i+ 2Y* (4 + 1) AOQL,
(40) Bl (z F 1) 1 — AOQL)™"

For fixed k and %, the expression for the AOQL for the CSP-4 procedure as-
suming control never exceeds the AOQL which is obtained without making any
assumptions about the behavior of the process. However, the differences are
much smaller for this procedure than for the CSP-1 procedure.
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Similarly, for CSP-5, the AOQ function can be written as
[¢" — ¢k — 1) _ (b — 1)pg™
14 ¢4k —1) 1+ (& — )¢’

The maximizing value of ¢ for a fixed 7 and k is given by solving for ¢ the ex-
pression

(42) 20k — g™ — (k= g' + G+ 2)g =i+ 1.
Denote this value by ¢max-s . The AOQL can then be written as

(41) AOQ; =

A.OQLs = (71 'I' I)Qma.x-ﬁ : ('L + 2)qzaax-5

(43)

or, solving for ¢ma.x-s , the expression

_ G+ 1)+ (G 41 — 4 + 2) AOQLs
(44) me-s = 2(1' _I_ 2)

is obtained.
Substituting this expression for gmax-s into (42) and solving for k, the relation-
ship between k and ¢ for a fixed AOQL is obtained, i.e.,

k=1 + (7' + 1?+-1- ('L +‘.2)Qmax-5.

2Qmax-5 — Qmax-b
Curves of constant AOQL derived from expressions (40), (44), and (45) are
given in Figure 1.

b. CSP-1 without assuming control and using probability sampling. In this
section, CSP-1 will be studied without assuming control but using a sampling
procedure such that while on partial inspection, every item will be inspected with
probability 1/%, or passed without inspection with probability (1 —1/k). The nota-
tion of Sections 2 and 3 will be used, but for this problem % need not be an integer
but may be any number >1.

If we let N; denote the number of items contributed to the production stream
during the ¢th partial inspection cycle, then the AOQL is defined, as before, as
the smallest number L with the property that for every strategy of nature the
probability is zero that

(45)

2. X
m->0 E N:k + Mt
t=1 t=1
To obtain the AOQL it is again sufficient to consider the special class of strategies
of nature such that M, = ¢ for all {, and we must investigate the quantity

2. X
(47) lim sup —=——,
m->0 ;1 N:k + m/i
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for such strategies. For this problem a (randomized) strategy of nature may
be characterized by a double sequence of possibly dependent random variables
{P,s} where 0 < P, < 1 with probability 1 for all s, ¢ and where P, is interpreted
as the probability that the sth item in the ¢th partial inspection cycle is defective.
As before we restrict our attention to strategies for which an infinite number of
partial inspection cycles will occur with probability 1.

Let R; be the number of items passed until (and including) the first item
inspected during the ¢th cycle of partial inspection. Then the R,’s are independ-
ently and identically distributed random variables with E(R;) = k and, further-
more, Ni = R, for each t. Hence, by the Strong Law of Large Numbers

(48) lim inf = E N{ 2 lim — ! Z Ry =k,  with probability 1,

ms Mt m>00 M t=1

for any strategy {Ps} of nature.

We now prove two theorems which enable us to characterize the behavior of
the numerator of (47).

THEOREM 5: For any strategy of nature {Pgs}
(49) E(Xe|P) =k -1,

with probability 1 for all t, where Py = {Py;, Pa, -+ -}.
Proor: If all s, ¢ we define

(1,  if the sth item in the tth cycle contributes a defective to
(50) Zgu = the output,
0, otherwise,

then for all { we may represent X; by
(51) Xi= 2 Zs.
swl

Furthermore, since the probability that the sth item reached during the tth
partial inspection cycle is either not inspected or inspected and found non-defec-
tive is given by (1 — P;/k), we have for all s, ¢

3—1 X
(52) E(Zstht)—<1—")Patn(1_£{'t),
k J=1 k
where the empty product is interpreted as 1. Hence,
s—1
(53) E’(thP;)—(l—-)ZP.tH< k)
s=1 J=1
We now establish the following equation for all » = 1 by induction:
s~1 r .
(54) > radl —&)=k[1—111( —%)]
J=

The equation clearly holds for » = 1, and if it is assumed true for r = n then for
r = n + 1 the left hand side becomes
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G- e
. ) k =1 k
n41 .
- G-
=1 k
and the proof by induction is complete.

We now remark that if the number of partial inspection cycles occurring is to
be infinite with probability 1, then we must have lim,., P{N; > 7} = 0 for
each ¢, which implies that

(55)

(56) lim P{N} > r| P;} hmH ( 5—‘) =0,
r>00 r>c0 j=1

with probability 1 for all strategies { P,;} under consideration. The desired result
(49) now follows from (53), (54) and (56).
THEOREM 6. For any strategy of nature { Py}

(57) E(X}) 22(k—1)+ (k—1)
for all t.
Proor: As in Theorem 5 we have
»—1
(58) E(Xt|P:) =2 Z ZE(ZNZW | P:) + ZE(Z,, | P2,

and for v > w

E(Zut Zut | PY) = [ﬁ: (1 - Ek—t)] [P w (1 - %)]

_ 1 v—1 Pst

= (1 E) P,,,P.,,,'I#ID (1 - T)

— 12Pvthtv_l< P)
B k<1 E) k— wt sI;Il 1 _’E—

Hence noting (49) of Theorem 5 we may write (58) as

(60) E(X2|P¢>—2k(1——)ZPN”I_Il(l——‘—‘)f P"" =+ (k= 1).

(59)

=2 8=1 w-l

We now establish the following equation for all » = 2 by induction:
P v—1 Pwt
§P°‘H(I —)wz_:lk—P.,,,
- (2 fR) 0 - B)
w=1 k— wt 8=1 k

(61)
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It is easily verified that for r = 2 both sides of (61) are equal to Py, Ps./k. If
(61) is assumed to be true for r = n then for r = n + 1 the left hand side may
written as

— Py A _Pst

o[- (4 2 2 1T (- 5)
Popa 1 3t “ P
+ k SI_II(]- k wz=1k—Pwt]

I Pt Py A P,

(62) = k|1 (1 )wz_;lkJer)g 1 — >]

T B k “  p., n+l( _ P”)]

=k (Ic‘—P,,mJ“,,,z.1k+1>,,,,),I=I1 1=

%1 T Pat
=k 1—<1+ k+P.,,),I.II<1"_k‘)]'

which is the right hand side of (61) with » = n -+ 1, so that the proof by induc-

tion is complete.
Now (60) and (61) imply that

(63) E(X:|P) =2k (1 - %)2 +(k—=1) =2k -1+ (k—1),

and the desired result (57) follows. An examination of (61) shows that if the
P,/’s are (for example) bounded away from zero then equality holds in (57).
We now prove the main result of this section.
TaEOREM 7. For CSP-1 with probability sampling the AOQL is given by

k-1
k471’

and this value of L is achieved by (47) when nature’s strategy is to produce all
defective items during partial sampling and all non-defective items during 100%
sampling.

Proor: The results of Theorems 5 and 6 together with the argument used in
Theorem 2 imply that

(64) L=

(65) Z X,=k—1, with probability 1,

m->00 m t=1
for any strategy {P} of nature. This result together with (48) implies that
k-1
S —.
(66) =57

The fact that equality holds in (66) follows by applying the Strong Law of Large
Numbers to the quantities
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t=1

1 1 ¢
(67) sy Ve and -3 X,
for the case where nature uses the strategy described in the Theorem above.
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