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1. Introduction. This note stems from the following problem posed us by J.

Loevinger.! Let X;, - -+ X, and Y be real-valued random variables such that,
conditionally on Y, the {X;} are mutually independent with

p(Y) =Pr{X;=1|Y} =1 —Pr{X;=0|Y)

and p:(y) is nondecreasing in y. Let S = X; + --- + X, . IsE{Y |S =r} a
nondecreasing function of 7? The answer, yes, will follow from showing that
Pr{S =1+ 1|Y}/Pr{S = r| Y} is a nondecreasing function of Y for each r.
Here we have a simple case of the convolution of families of distributions with
monotone likelihood ratios (hereafter MLR) being an MLR family. It is easy
to see that the convolution of two MLR families is not necessarily MLR. In
Section 2, a sufficient condition on MLR families is given that their convolution
be MLR. In Section 3, some special results are given for multidimensional
distributions. The problem leading to this work is discussed in Section 4.

The MLR property is identical with the Pélya type 2 property (cf. [2]). The
definitions used here extend to Pélya type m but the extended results, except for
Lemma 4, are not generally true for m > 2.

2. Convolutions of MLR families. Let G be an ordered additive group, let
© be an ordered set, and let u be an invariant, o-finite measure on G. Throughout
this section, a family f will mean a real-valued, nonnegative function on
G X O, such that f(z, 6) is measurable in z for each 6 and

0 < [of(z, 6) du(z) < ».*

Ordinarily, f is a family of probability densities relative to u for a random variable
with range contained in G and with parameter space ®. The convolution family
f * g of two families f and g is defined by

F20(,0) = [ o = u,0)g(4,0) duu).

The spaces G and © must be ordered for the definitions which follow and G
must be at least a semigroup for convolutions to be defined in the same space.
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1 The consultation with Dr. Loevinger (Jewish Hospital of St. Louis) and the research
connected with this paper were performed under a grant from the Rockefeller Foundation.
2 For some purposes, such as in Section 3, it would be convenient to permit the integral
to be zero for some 6. Lemma 3 and the theorems of this section clearly hold under this ex-
tension.
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The group requirement is only a slight restriction. G will ordinarily be the real
line or the integers, and is taken as an ordered group primarily because it permits
a simple unified treatment at no extra cost.

Definition. A nonnegative function h defined on the product of two ordered
sets X, Y, is Pélya type 2 if, for all z, 2’ ¢ X and y, ¢’ ¢ ¥ such that « < 2/,

y=y,
h(z, y)h(z', y') — h(z, y)h(2',y) 2 0.

Definition A. A family f has property A4 if, as a function on G X 0, it is Pélya
type 2.

Definition B. A family f has property B if, for each 6 ¢ O, the function hs on
G X @ defined by

is Pélya type 2.
Definition C. A family f has property C if, for all z, 2/, y, ¥ € G such that
y<z =<y andz+ 2 =y -+ y andall g, ¢ ¢ O such that 6 < ¢,

fz, 0)f (', 0) = f(y', 0)f(y, ).

Property A is the monotone likelihood ratio or Pélya type 2 property for the
family f. Property B is the monotone likelihood ratio property for the location
parameter family generated by f(-, 6) for each fixed 6. Provided all quantities
used as divisors are positive, the definitions of properties A and B can be ex-
pressed in the more intuitive form:

A:f(x, 8)/f(x, 6) nondecreasing in z for all § < ¢’, or

A:f(x + h, 8)/f(x, 0) nondecreasing in 6 for all z and all & > 0, and

B: f(x + h, 8)/f(x, 8) nonincreasing in x for all 8 and all » > 0.

Note that on taking * = y and 2’ = ¥’ in C, one obtains 4 ; that on taking § = ¢’
in C, one obtains B. We shall now show that property C is, in fact, equivalent
to A and B together, and that it is invariant under convolution.

It may be helpful to note that all results and methods of this paper are un-
affected if any f(x, 6) is multiplied by any positive function of 6. Multiplication
by a positive function of x does not destroy MLR, but does affect the convolution
and its MLR properties.

LemMa 1: If f has property B, then the set 1,(0) = {z:f(x, 6) > 0} s, for every
0 ¢ O, an interval of G;ie,yel,y eI imply xz el for all x € G such that
y=z=y.

Proor: Suppose f(y, 0)f(y', 8) > 0 and y < y'. To any = ¢ G such that
y < x £ ¢/, there corresponds an 2’ ¢ G such that z 4 2’ = y + ¥’ and by prop-
erty B, f(z, 0)f(«, 0) = f(y, 0)f(y/, ) > 0.

Thus, for each 8, there is a decomposition of G into three intervals M (),
I(8), M’'(8) such that v ¢ M, y ¢ I, z ¢ M’ imply x < y < zand f(z, 0) =
f(z,0) = 0, f(y, ) > 0. For all 6, I;(#) is nonempty, though it may contain
only one point. M (8) and M’(6) may be empty.
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Lemma 2: If f has properties A and B, then for any 6, & & © such that 6 < ¢,
M) € M(0') and M'(0) D M'(¢').

Proor: For any 6, choose &' ¢ I(6). Then for any x ¢ M(8), x < ' and using
property A, f(x, ') = 0. Since this holds for all y < x, then x ¢ M (6’'). A similar
proof holds for M’(9).

Lemma 3: f has property C if and only if it has properties A and B.

Proor. That C implies A and B is immediate. Property C is nontrivial only
when ' ¢ I(6) and y ¢ I(6').Since y < %', we know from Lemma 2 that
f(y, 8) > 0. Using successively A and B,

1y, 0)f(x, 0)f(', &) Z f(y, )f(z, O)f(a’, 6) = f(y, 0')f(y, O (', 0)

and C follows by division.

LeMMa 4. (Schoenberg [5]). If f and g have property B, then f * g has property B.

Schoenberg’s proof for the real line extends immediately to the group G. He
proves this result in its Pélya type m form.

TraeorEM 1: If f and g have property C, then f * g has property C.

Proor: Using Lemmas 3 and 4, it remains only to show that f * g has property
A,ie,forx <2’ =xz+h 6<§6,

Ay = [fxg(z, 0)If * g(a’, &)] — [f % g(z, O)IIf * g(=, ¢)] 2 0.
Throughout the proof, write f(z) = f(x, ) and f'(z) = f(z, ¢).
Ay = f[f(u)g(x — w)f'(0)g' (@’ — v) — f'(w)g' (x — u)f(v)g(z’ — v)]
- dlp(u) X #(U)] =L+ L+ 1I;

in which I, , I, , I; are respectively the integrals over the sets, u > v,u = v, u < v.
Interchange » and v in I; and incorporate with I; .

L+1I;= f {f)f'(0)g(z — w)g' (2’ —v) — g(z’ — u)g'(z — v)]

u>v
+ f(w)f(n)lg(z — v)g' (2" —u) — ¢'(xz — u)g(a’ — )]} - dlu(w) X p()].

For u > v, the quantity in the second brackets is nonnegative by C and its co-
efficient f'(u)f(v) = f(u)f’'(v). Then,

L+, 2 ];Nf(u)f’(v)[g(x —u)g' (¢’ —v) — ¢'(z — w)g(z’ —v)
+ g( - v)g (@' — u) — g(a’ — u)g (x — v)] dlu(u) X u(v)]

and

Az [ @Ol = g @ = o) = ¢'e = wg(@’ = )] dluw) X w(0)]

+ /; - F)f' gz — v)g' (@ — w) — gl@’ — wg'(x — )] dlu(w) X u@®)]
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+ f(u)f'(v)[g(x —v)g' (2 —u) — g(@’ — u)g' (z —v)]

b<u—v<
“dlu(u) X u@)]
= J1 + J: + J; respectively.

In J; make the transformation v = «’ + h, v = v’ — h, suppress the primes
on v, v/, and recall that h = ' — z > 0. Then

htd= | F6) = fu+ W6 — )

gle — w)g' (&' —v) — ¢'(x — w)g(a’ — v)] dlu(u) X u()] =2

Break J; into three integrals respectively over the sets 0 < u — v < h, b <
u — v S 2h, u — v = h. The third integral vanishes, and on making the transfor-
mation u = v’ + h, v = % — hin the second and suppressing the primes on u’,
v, we get

Jo=[ 1) — o + W — )
O<u—v<h
gl — v)g' (2 — u) — g(a’ — w)g'(z — v)] dlu(u) X u(®)] 2 0

Hence A; = 0, and the theorem is proved.

Remark. This result would appear to be subsumed under Theorem 3
of Lehmann [3], taking gs(z, £) = f(x — &, ) and d\e(§) = g(§, 0) du(£). How-
ever, in lines 6 to 8 of page 410 of his proof, an additional assumption is needed,
which is not met in our case.’

CoroLLARY 1: If ® = G, f(z, 0) = f(x — 0), g(x, 0) = g(z — 0) and f
and g have property A, then f % g has property A. (This result for location param-
eter families is known and is just the Schoenberg result of Lemma 4.)

COROLLARY 2: If G is the set of integers, if for each i = 1, --- , n,
fi(z, 0) = 1 — pi(6) z=0
0 otherwise

and p:(0) is nondecreasing in 0, then each f; and the convoluiton f, * - - - = f, have
property A.

That B is not a necessary property for the convolution of two MLR families
to be MLR is shown by the construction below based on the following theorem,
whose proof is a simple computation.

TueorEM 2: If f has property A and if, for each 0, the range of x for which
f(z, 8) > 01s contained in (0, 1, 2), then f * f has property A.

This result does not extend in general to nonidentical convolutions, to three-
fold identical convolutions, or to fourpoint ranges.

A family f which satisfies Theorem 2 but does not have property B is easily

3 We wish to thank Professor S. Karlin for calling this fact to our attention.
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constructed by taking © as the real line, a(6), b(8) as increasing functions on
O such that 0 < a(f) < b(6) < o, and letting f(-, 6) be the distribution with
probabilities at 0, I and 2 respectively given by

c(6), a(8)c(8),  a(8)b(6)c(8)
with ¢(8) = [1 + a(6) + a(0)b(6)]™".

3. Some results for multivariate distributions. A family of generalized densities
f(z, 8), where z is a vector is said to be MLR (or Pélya type 2) if it is MLR
along each increasing curve, i.e., if for every vector function z(¢) of the real-
parameter ¢ for which the components are nondecreasing functions of ¢, g(¢, 8) =
flx(t), 6} is MLR in ¢ and 6. (Cf. Lehmann [3], Pratt [4].) The definition can
also be stated in the form:

f(n, -+, ax, 8) is MLRf, forallz; < 2}, =1, -+, K, 0 < 6,
f(xl7"'7 Tk, a)f(x;’;xjfy 0/) = f(x;;a xllf; a)f(xla"'r Tk, 0,)'

We consider only the simplest problem of extending Corollary 2 to families
of distributions on the vertices of the cube or the simplex in K dimensions. In
two dimensions already, two MLR families on the points (0, 0), (0, 1), (1, 0)
need not have an MLR convolution (Counterexample 1). Restricting con-
sideration to n-fold convolutions of a single family, the n-fold convolution of an
MLR family on the vertices of the square is MLR (Theorem 3), but even the
two-fold convolution of an MLR family on the vertices of the three-dimensional
cube need not be MLR (Counterexample 2). However, the n-fold convolution
of an MLR family on the vertices of the K-dimensional simplex is MLR for
all n and K (Theorem 2).

Counterexample 1. The convolution of two MLR families f; and f, on the points
(0, 0), (1, 0), (0, 1) need not be MLR: Let a(6) be a positive, increasing func-
tion of 6 and let f; place nonzero probabilities only on the three points (0, 0),
(1, 0), (0, 1) proportional, respectively, to 1, 2, a(6). Let fo(x, 8) = 1 at each
point. Both are MLR. Then at the two points (0, 1) and (1, 1), f1 * f> has proba-
bilities proportional, respectively, to [1 + a(8)] and [2 + a(68)], and hence
fi * f2 is not MLR.

Counterexzample 2. The two-fold convolution of an MLR family on the vertices
of the three-dimensional cube need not be MLR: Let f place nonzero probabilities
only on the five points (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0) propor-
tional, respectively, to 1, a(8), a(8), 2, a(8), with a(6) as above. Then f is MLR
but f * f is not, since at the points (1, 1, 0) and (1, 1, 1) the probabilities are
proportional, respectively, to [1 4+ a(8)] and 2.

TueoreM 3: If f is an M LR family on the four points (0, 0), (1, 0), (0, 1),
(1, 1), then, for every n, the n-fold convolution of f with itself vs MLR.

Proor. Let f(x, 0) = p;;(8), for x = (7, j), and let ¢;;(8) be the value of the
n-fold convolution of f at (7, j), which is given by

(1) Z 0:;(0)tu’ = [E i (0) )",
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We are given that foralls < ¢, < 7,6 < ¢,

(2) Pii(0)psr o (0') Z pii(0')pirjr (0),
and must show that forall r < v, s £ ¢, 0 £ ¢,
(3) 0rs(0)qrs(0') Z ¢rs(0")grs ().

From (1), it follows that, for given s, the sequence {¢,;(8), r = 0, 1, --- } has
the generating function

20 = (7) (5wl + pl0)™ pu0) + pu(0)0)’
and, for given r, the sequence {¢,;(6), s = 0, 1, - - - } has the generating function
Qr(u) = (,:&) {Poo(o) + Pol(o)u}n_r{pm(l?) + Pu(o)u}r-

Both represent convolutions of two-point, one-dimensional families, MLR by
(2), and hence, by Corollary 2 to Theorem 1,

QN(G)Qr’s(GI) z Qr’s(o)qrs(o’)
and
@rs(0) @ () = rer(0)qrs(6).

The desired conclusion (3) follows easily if at least one of ./s(6), g.s(8"), g (6),
gre (8) is positive. (3) is trivially true unless ¢,.(6')gv.(8) > 0 and is one of the
above special cases unless ¥ > rand s’ > s. If ¥ < ¢, then ¢~y (6) > 0 implies
either p11(0)pau(8) > 0 or Pw(0)pu(8) > 0. In either case, ¢.»(8) > 0 and (3)
follows. A similar argument holds if 7" > s’ and also if 7’ = s’ except when
pu(0) > 0, p1o(6) = pu(8) = 0. But then, by the MLR property, also pio(6’) =
pu(0’) = 0 and at 6, ¢ the distributions are one-dimensional along the diagonal.
Hence Corollary 2 (for the group of diagonal integers) applies directly.

TuaeoreM 4: If f is an MLR family on the K + 1 vertices of the unit simplex
in K dimensions, then, for every n, the n-fold convolution of f with itself is MLR.

Proor: Let {p,(8),7 = 0, 1, - - - K} be the values of the family f at the origin
and unit points of the K axes respectively. Let ¢.(6) denote the value of the
n-fold convolution at the point r = (ry, - -+, rx). We must show that for 6 < ¢/,
andr, r such that r; < r;, =1, ---, K,

(4) 2:(0)gr (0') 2 ¢:(6")g-(6).

A generating function argument similar to that used above easily proves the
result when r and 7’ differ in only one coordinate. But if g, (8) > 0, then p;(6) > 0
for all coordinates such that r; > 0, and hence ¢,(6) > Ofor all ssuch that s; < r;,
j =1, ---, K. Division by ¢,(6) is permissible and (4) follows easily by repeated
application of the result for changes in a single coordinate.

4. An application. The problem mentioned in the introduction arose in the
following way. Let X;, ---, X, denote the scores made by an individual on
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n test items with the value 1 for correct, O for incorrect. Let S = X; + -+ + X, .
Let Y be a real random variable representing the individual’s (unobservable)
position on a single scale (latent continuum) assumed to determine his per-
formance on the test according to the model: For each ¢,

fl1,Y) = p(Y) = Pr{X; = 1Y} =1 —Pr{X; = 0| ¥}

and conditionally on Y, the {X,} are mutually independent. Let ¢ be the prob-
ability density function for Y, representing, perhaps, the distribution of the
ability Y over some population. If it is assumed only that each f; is a nonde-
creasing function, what can be said about the individual value of ¥ conditionally
on the sum S of the scores of the n items? The answer is that the conditional
distribution function of ¥ given S = a lies to the left of that for S = b > a.
Hence, the conditional mean (or median or quantile) of ¥ given S is a non-
decreasing function of S.

(The result would not be true without restrictions on the functions p; if, for
example, the difference between a correct and an incorrect score differed from
item to item.)

The result is an application of Corollary 2 to Theorem 1 and of the following
lemma.

Lemma. If X, Y are real random variables, if Y has density ¢(y) relative to
the measure v, if X given Y = y has the conditional density f(x, y) relative to the
measure u, and if the family f is MLR, then

PrfY <a|X =2} 2Pr{Y 2a|X =2}

forall a and all z = «'.
The lemma can be proved by relatively simple calculations and is equivalent
to a result of Good [1].
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