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0. Summary. Suppose that a distribution A is a mixture of distributions similar
to B but with different scale parameters; or (almost equivalently) that a dis-
tribution F is a convolution of a given distribution G' with some other distribu-
tion. We derive conditions on (i) the moments of A and F and (ii) on the deriva-
tives of A and F'; these conditions are necessary, but are not sufficient in general.
The conditions (ii) are appropriate when B (or @) is of Pdélya type 3.

1. Introduction. Suppose A () and B(z) are cumulative distribution functions
(c.d.f.’s) on the real line, continuous on the right, and a.e. symmetric about the
origin, so that

(1) A(z) +A(—2—0) =1=B(z) + B(—z —0), —o <z< .

We write X, for a random variable (r.v.) having the c¢.df. A(z), and similarly
for X5 . We shall say that A(z) is a B-mixture if there exist r.v.’s X4, X5,
and Y, where Y is non-negative and independent of X5, such that

(2> XA = XBY

or equivalently, if there exists a c.d.f. C(¢”) on [0, =), continuous on the right,
such that

(3) Alz) = [ B(z /o) dC(), 0<a

where we interpret B(xz/0) as 1 for z > 0. It is clear that 4 () is discontinuous
atx = 0if C(0) # 0.

In a closely related situation (see Section 3 below), if F(z) and G(z) are c.d.f.’s
on the real line (not necessarily symmetric), we shall say that F is a G-convolu-
tion if there exist r.v.’s Xr, X¢, and Z (Z having c.d.f. H(z) and being inde-
pendent of X¢, not necessarily non-negative) such that

(4) Xr = Xo + Z.

Some general theorems concerning the existence and measurability of func-
tions related to mixtures of distributions were proved by Robbins [3]. Teichroew
[6] considered the case where B(z) is the unit Normal c.d.f., and C(d%) is of
Pearson type III.
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1146 E. M. L. BEALE AND C. L. MALLOWS

Our interest in the mixture problem arose out of some research where it was
possible to prove that a certain procedure was optimal whenever an error dis-
tribution was Normal with zero mean but arbitrary variance, and also whenever
it was a mixture of such distributions. It was thus of interest to determine as
far as possible the properties of such mixtures. In general, given A and B, we
would like to be able to determine whether or not A can be regarded as a B-mix-
ture; and similarly for the convolution problem.

Hirschman and Widder [1] investigate (4) at great length, but their results are
not in the form we desire; thus for the case where X¢ is normal (with mean zero
and variance v, say) they give two sets of necessary and sufficient conditions for
(4) tohold. The first of these ([1] Theorem 12.2) requires a knowledge of dF (x) /v,
and the second ([1] Theorem 12.4) achieves the inversion of (4) by means of an
infinite series of derivatives of F(z); the required condition is that the sum of
this series be everywhere non-decreasing (i.e. gives a.c.d.f.). This last formula
has been much used in practice; see e.g. Smart [5]. )

We assume that the distribution A (or F') is completely known; we do not say
anything about the statistical problems of testing whether a random sample can
reasonably be assumed to come from some B-mixture, and if so of estimating the
mixing distribution C. Robbins [4] considers this estimation problem. He re-
marks that it is of considerable importance in other connections, but awaits a
satisfactory practical solution.

In Section 2 we derive necessary and sufficient conditions for the existence of
some A that is a B-mixture having given moments through order 2r. In Section 3
we examine the relation between the mixture problem and the convolution prob-
lem. In Section 4 we obtain a necessary condition for a given A to be a B-mixture
(or for a given F to be a G-convolution) in terms of the frequency functions
A’ (z) (or F'(x)) and their derivatives; the validity of these conditions depends
on certain properties of the derivatives of B (or @), related to the theory of
Pélya types; this relation is explored in Section 5.

2. Conditions on moments. From (2) we have immediately that if 4 is a B-
mixture, then

(5) E(XY) = E(X5)E(Y™)

and the Lh.s. exists if and only if each of the factors on the r.h.s. is finite. Since
Y?is to be a r.v. on [0, =], its moments must satisfy certain inequalities, the
simplest of which is the obvious one E(Y*) = {E(Y?)}’. Hence we obtain neces-
sary relations between the moments of A and B; the simplest is

(6) pe(A)/p2(A)? = pa(B)/ua(B)™

so that the kurtosis of a mixture is never less than the kurtosis of a single com-
ponent. Conversely, these relations are sufficient for the existence of some dis-
tribution 4 (x) that is a B-mixture, having the given moments.

The result that a mixture of Normal distributions (with zero means) is neces-
sarily leptokurtic (unless it reduces to a single Normal distribution) seems to be
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widely known, though apparently unpublished. It is worth bearing in mind
when considering the argument that practical error distributions “must’ tend
to Normality because the error is the sum of many independent components.
It is arguable that many error distributions are mixtures of distributions with a
common mean but different variances, and can therefore be expected to be lepto-
kurtic.

3. The distribution of In | X4 |. Another simple line of approach to the mix-
ture problem is to consider the distribution of In | X4 |. Before we can do this
we must consider the probability that X, = 0, since In X4 is then undefined.
Writing 4o = Pr {X4 > 0} and similarly for By and C,, we have immediately
from (2) that

(7) Ao = BoCo .

Also from (2), conditioned that none of the r.v.’s are zero (i.e. X4 # 0), we
have

(8) In|Xs|=In|Xs|+1nY

which is exactly (4). Thus we have transformed the mixture problem into the
convolution problem. If we define the conditional characteristic functions of
In|X,|andIn | X5 | by

) et = 2 [ aAG), el = 2 | 2" dB(z),

then we have from (7) and (8)

TaEOREM 1: A necessary and sufficient condition for A to be a B-mixture is that
Ao £ By and ¢4(t) /os(t) is the ch.fn. of some distribution on (— ®, ©).

In a sense this is the complete answer to the problem, but unfortunately the
criterion is not in general easy to apply. In some circumstances a numerical
approach based on (8) may be effective. An approach via the moments of
In | X, | and In | X5 | (similar to that in the previous section)will yield a series
of necessary conditions.

‘4. Conditions on the frequency function. We now consider criteria based on
derivatives of the c.d.f.’s. Let us assume that B(z) is four times differentiable
everywhere, and that b = B’(z) > 0 for all z. It will follow that any B-mixture
A(z) is four times differentiable everywhere except perhaps at z = 0, and that
a(z) = A’(xz) > 0 wherever this exists.

Now A is assumed to be a mixture of distributions with zero mean and varying
scale parameter ¢; so that part of the distribution 4 near z = 0 will consist pri-
marily of those components with small ¢, while the part with | z | large will con-
sist primarily of components with large o. We may expect to find a necessary
condition for 4 to be a B-mixture based on this fact, and the simplest such
condition seems to be the following:

Conjecture: If one assumed that only one component contributed to a(z) for
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a particular z, and one estimated the value of o for this component from the
values of a(z) and a/(x), then for any A that is a B-mixture, the value of ¢ so
defined is a non-decreasing function of |z |.

The value of ¢ described is defined by the equation

(10) (/o) (x/0)/b(z/0) = za'(2)/a(z).

If this equation holds for more than one &, we could make the estimate unique by
agreeing to take the smallest value satisfying (10). But we can hardly expect
the conjecture to be true unless zb’(x)/b(z) is a strictly monotone function of z.
This is equivalent to the condition that the distribution B is strictly of Pélya
type 2 (monotone likelihood ratio) with respect to the parameter o, as defined
by Karlin [2].

It turns out (see Section 5) that the conjecture is correct if B is also of Pélya
type 3 with respect to o. Although it is possible to construct symmetrical dis-
tributions that are not Pélya type 3 with respect to o, almost all the principal
cases occurring in statistical practice—such as the Normal, double-exponential,
Cauchy, rectangular, triangular—are of this type.

In terms of the distribution of In | X, | and In | X5 |, the conjecture asserts
that if F is a G-convolution, and writing f(z) = F'(z), g(z) = G'(z), then the
value of u defined by

(11) g — /9@ —u) =f@)/(z)

is a non-decreasing function of z. In the following, we shall work in terms of the
convolution problem. We shall write

(12) Ri(z) = ¢ (x)/9(x)
so that
(13) R: = dR,/dx = R, — R}

TueoreM 2: If for all z, (i) g(z) > 0, (ii) dRy/dx < 0, (iii) Rx(z) is a convex
function of Ri(z), then p, defined by (11), is a non-decreasing function of x.

Conversely, given (i) and (ii), if u ts non-decreasing for all G-convolutions, then
(iii) must hold.

The statement of the theorem for the mixture problem, with o defined by (10),
is the same as this with the R’s defined as

b ()
b(x) ’

v(z) , 2b"()

Ro(z) = 1+ 3z 52) + B)

(14) Ry(z) =1+4<=

Proor: From (11),
(15) Ri(z — p) = f'(z)/f(z)

f Ri(z — m)g(z — m) dH(m)

(16)

)

[ o@ — m) arm)
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which shows that u exists (by (ii)). Multiplying (15) by f(z) and differentiating
with respect to z, we find
f(@)Ry(z — p) + f(@)Ri(e — w)(1 — du/dz) = f"(z)
so that (using (13) and (15))
—f(x)Ri(x — p) du/dx = §"(z) — f(z)Ra(z — )

an =f{Rz(x —m) — Ro(x — p)}g(x — m) dH (m).

Now f(z) > 0, and Ri(z — u) < 0 by (ii); further, (iii) implies that for each
x — p there exists some number & (independent of m) such that for all m

(18) Ry(z — m) — RBo(z — p) 2 k{Ri(z — m) — Ri(z — u)}.
But from (16)

(19) [ 1Bz = m) — Ru(a — wig( — m) dH(m) = 0

so that the r.h.s. of (17) is = 0, and du/dx = 0 as required.

Conversely, suppose (iii) is false. We shall construct a G-convolution which
has dp/dx < 0 at £ = 0. By our assumption, there exist m; , ms, p (with m; <
u < my) such that

(20) %{Rl(—ml) + R1(—m2)} = Ri(—un),

(21) HR:(—m1) + Re(—ma)} < Ra(—p).

Now choose H(m) so that dH(m)/dm = 0 except at m = m; and ms , with
1 1 1\ .

(22) dH(m;) = o= {g(_ml) + g(_mz)} , i=12

Then by (20), (16) is satisfied (for x = 0), and by (21), the r.h.s. of (17) is
<0, so that du/dx < 0.

Theorem 2 provides us with a necessary condition for ¥ to be a G-convolution
(or for A to be a B-mixture); namely, the u (or o) defined by (11) (or (10))
must be a non-decreasing function of z. Unfortunately it will not provide a suf-
ficient condition unless R; is a linear function of R; ; and this is impossible over
the whole range of z. (R. can be a piecewise linear function of R, if we allow
d’g/dx’ to be discontinuous.) However, relaxing condition (i) of the theorem,
we can obtain distributions for which R, is a linear function of R; wherever
g(x) > 0; two such distributions for the mixtures problem are the rectangular
and the triangular. It is easy to verify that a necessary and sufficient condition
for A to be a mixture of rectangular distributions is that A be unimodal; and
that necessary and sufficient conditions for 4 to be a mixture of triangular dis-
tributions are that 4 should have a derivative a(z) everywhere éxcept possibly
at z = 0, while a+(:c) exists and is non-positive and non-decreasing for all z > 0.
If b(z) (or g(z)) > O for all z, then, for example, no distribution 4 for which
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the estimate of ¢ is constant for all x > z, , but takes a different value for some
smaller value of z, can be a B-mixture.

If B is a Normal distribution (for which the conditions of Theorem 2 are
satisfied), the result can be utilized in the form of a log/square plot, in which
log a(z) is plotted as a function of z*. It is easy to see that the slope of this
curve is inversely proportional to the estimate of ¢; so the theorem shows that
a necessary condition for the given distribution 4 (x) to be a mixture of Normal
distributions is that the log/square plot be convex.

6. Relation to theory of Pélya types. The conditions required in Theorem 2
can be expressed in terms of the determinants
8 9

i
5;} '5[7 p(xy ’-")

n—1

,J=

forn = 1, 2, 3 with p(z, p) = g(z — p). We shall prove
TrEOREM 3: The conditions (i), (ii), (iii) of Theorem 2 are equivalent to

A1>0, A2>0, Ang.

Proor: It is easy to see that the signs of these determinants are unaffected
by a monotonic increasing transformation of either the independent variable z
or the parameter p; so that a proof of the theorem for the convolution problem
will imply the corresponding result for the mixtures problem also. In the fol-
lowing, the argument of all the functions involved is x — p.

Forn = 1, (23) gives ¢ > 0, which is (i). For n = 2, (23) gives

’

(24) 70 50 e bR,
g -9 B R
i.e. by (13), R1 < 0, which is (ii). Now
(25) &'R,/dR} = (R1)"(RiR; — RiR)
so that condition (iii) is equivalent to
1 0 0]
(26) Ry R RI|Z0
R. R, R;

By differentiation we have successively
g =gR, ¢ =¢gRi+gRi, ¢" =g"Ri+2¢R:i+ R,
¢" = gRy, ¢ =gRe+gRy, ¢ =g"Re+ 2g'R: + gRy .
Hence manipulating the determinant in (26) according to the scheme
(col 3) = g(col 3) + 2¢’(col 2) + g”(col 1)
(col 2)’ = g(col 2) + ¢'(col 1)

(27)

(28)
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we obtain
g gl g//
(29) gl gII gIII é 0
gll glll gllll
which is equivalent to A; = 0.
Karlin [2] calls a family of distributions
(30) Po,u) = ) [ _p(z ) d\(a)
of Pélya type m (strictly of Pélya type m) if the determinants
(31) D, = | p(@i, pj)lim
are = 0 (> 0)forn = 1,2, ---,m, for all
(32) T <2< < Ty, m < pe < ove <y

Karlin shows that Pélya m implies A, = 0 (n = 1, -+, m), while A, > 0
(n =1, .-+, m) implies strict Pélya m.

We are indebted to the referee for the following remarks. One can derive
only A, = 0 when assuming strict Pélya m, with A, > 0 for almost all z and
r. It is true however that if p(x, ) = p(x — u) (as is the case in the present
problem), then the equivalence is correct. This last result is quite deep and is
not published in the literature. Most strict Pélya type distributions satisfy
A, > 0 everywhere, but there may be isolated points where equality takes place.

Thus our conditions (i) and (ii) are equivalent to strict Pélya 2, and (iii) is
implied by Pélya 3.

Karlin [2] remarks that if A, = 0 (n = 1, ---, m) with strict inequality
almost everywhere, then under a certain weak assumption the convolution of
G(z) with a Normal distribution of arbitrarily small variance ¢° will be strictly
Pélya m, and hence (taking the limit as ¢” tends to zero) G will be Pélya m. In
such cases Theorem 2 can still be applied, provided that, whenever (11) does
not define u uniquely, u is taken as the appropriate limit as ¢” tends to zero.

The authors are grateful to the referee for his suggestions for improving the
presentation of the paper, and for clarifying the situation in the last section.
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