ABSTRACTS OF PAPERS

(Abstract of a paper presented at the Washington, D.C., Annual Meeting of
the Institute, December 27-30, 1959.)

76. Moment Generating Functions of Quadratic Forms of Normal Order
Statistics. HaroLp RuBeN, Columbia University.

A general method is derived for obtaining the joint moment generating functions of an
arbitrary set of quadratic functions, not necessarily definite positive, of order statistics
in normal samples. Thig class of functions probably includes all or most functions of order
statistics likely to be of practical interest, e.g., squared linear functions used in censored
samples and other applications, squared range, squared subrange, squared deviation of
extremes from the sample mean, etc. The determination of the generating functions reduces
to the classic problem of the evaluation of the contents of hyperspherical simplices (the
generalization of the circular arc and spherical triangle).

(Abstracts of papers presented at the Lafayette, Indiana Meeting of
the Institute, April 7-9, 1960.)

1. Note on Significances of Differences for Attributes. Irviné W.. BURR,
Purdue University.

Assuming equal sample sizes and either a Poisson or binomial population, the maximum
likelihood estimate of the parameter is used. Then the exact probability of a difference
in “defects’ or “defectives” at least as large as was observed is obtained by double sum-
mation. This probability then gives the exact significance levels for various differences and
sample sizes. A table gives these results up till when the normal curve approximation takes
over accurately. A quick and accurate approximation for unequal samples is indicated.

2. A Characterization of Some Location and Scale Parameter Families. Sup-
HisH G. GHurYE, Northwestern University. (By title)

Zinger (Vestnik. Leningrad. Univ., Vol. 1 (1956), pp. 53-56) has proved the following
result: Let X;, --- , Xa,n = 6, be independent random variables having a common distri-
bution, which is of continuous type: let t(X) = (1/n)ZX:, s(X) = [ZX? — ni2(X)]* and
Y = [Xi — t(X)]/s(X). If the Y; are distributed uniformly on the (n-2)-dimensional
sphere {Zy; = 0, Zyi = 1}, then the X-distribution is normal. I extend this result in an
obvious way to characterize the exponential and rectangular distributions, and also the
multi-variate normal and Wishart distributions. The following result is proved incidentally :
Let f(x) be a measurable function of real z, having the property thatzx+y+z=a + b + ¢
and 22 + y2 + 22 = a2 + b2 + c2imply f (z)f (y)f (z) = f(a)f (b)f (c). If f(z) # O for two values
of z, then there exist numbers «, 8, ¥ such that f(z) = a exp (Bx + v22?) for all z.

3. A New Class of Sequential Decision Rules for Symmetric Problems. WiL-
LiaM JacksoN Hawrwn, University of North Carolina. (By title)

A class of sequential tests is derived for choosing between two symmetric hypotheses
with equal preassigned error probabilities. The class includes the Wald sequential prob-
ability ratio test (SPRT) and numerous other sequential tests. For a number of problems—
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including tests on the mean of a normal distribution and a variety of two-population
problems—there is one or more test available with ‘‘converging boundaries’”’ (bounded
sample size) in contrast to the ‘‘parallel boundaries’” (unbounded sample size) of the
SPRT. The relative merits of such tests are investigated, and some extensions to multiple-
decision problems are discussed.

4. Normal Approximation to the Distribution of Two Independent Binomials,
Conditional on Fixed Sum. J. HANNAN, Michigan State University and
W. HarkNESs, Pennsylvania State University. (By title)

For ¢ = 1, 2, let k; be independent binomials with parameters (N; — 1, p;) and let
fe = Pr[k1=k|2k.~ = c].

Theorem: With (P., P,) defined by P:g:/Q:p: = P1q1/Qip: and ZN P; = ¢ + 1, and with
H? = Z(NPQ ) land Xi = H(k — N\Py + %), fr ~ Hp(X4), E ka‘I’(Xp+l) - ‘1’(Xa_l),
Zalv X X7'9(X.) or ~1 — ®(X,-1), as H and, respectively, HX} , HX® and HX,,, HX,
or HX — 0.

5. On the Analysis of Split-Plot Experiments. H. Leon HARTER, Wright-
Patterson Air Force Base, Ohio.

A crucial question in the analysis of split-plot experiments is whether or not the inter-
action between subplot treatments and replications should be pooled with the three-factor
interaction of main plot treatments, subplot treatments, and replications, the result being
called subplot error. A brief history of the controversy over this question is given, along
with a rule for deciding, on the basis of a preliminary test of significance, whether or not
to pool. Several numerical examples are cited, and one of these is worked out in detail.

6. An Extension of a Theoretical Gene Model to Provide for Genic-environ-
mental Interaction Terms. CeciL L. KaLLER and VirRGiL L. ANDERSON,
Purdue University.

A statistical model for the study of quantitative inheritance was introduced by Anderson
(1953) by utilizing the techniques of factorial experimental models. Kempthorne (1954)
pursued this further by developing the general gene model in which he used the symbol
IIi-: Ai;A%; to denote the genotype of an individual from a population § whose members
are diploid and have NlociG;,7=1,2,---, N, where locus G; has available h, alleles
A.,, i, =1,2, , hj, with respective relative frequencies pi, pi, ---, ph;; where
2.,-1 p‘J = 1. By use of algebraic identities and identification of resultant terms with
genetic effects, Kempthorne provided a complete theoretical gene model. The extension
of these developments to a general phenotyplc model is accomplished by 1ntroducmg en-
vironmental factors E., r = 1, 2, M where E, has K, “Ievels” E, VB, - , B ,
with associated occurrence frequenc1es Py, DE, e, p, , where E._; pr = 1. Then the
phenotype of any diploid individual is denoted by a symbolic product of genotypic and
environmental components as P;li%,iy ™. ;yiy which is expanded by use of identities and
symbolic algebraic multiplications into a sum of uncorrelated terms which account for
all genetic effects, all environmental effects, and all genetic-environmental interaction
effects contributing to the phenotypic expression of the individual. This is the theoretical
genic-environmental interaction model.
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7. Comparison of Estimators for Some Generalized Poisson Distributions.
S. K. Karri, Florida State University, and Joun Gurranp, Iowa State
University.

For the generalized Poisson distributions, Neyman Type A and Poisson generalized
Pascal, the well-known asymptotically efficient methods of estimation yield highly cumber-
some equations to solve. In view of this, certain methods have been studied for these distri-
butions from the point of view of obtaining simple estimators and the joint asymptotic
efficiency of the estimators evaluated. In the case of Neyman Type A, it is found
that the estimates of the two parameters obtained by minimising the quadratic form
t — 21 — 7), where t = Ry , 221 , log Po), 7 = (ki) , xi1 , log Py), and & is a con-
sistent estimate of the co-varnace matrix of ¢, have remarkably high efficiency in a wide
region of the parameter space. For the three parameter Poisson generalized Pascal distri-
bution, the method of using the first two moments and the ratio of the first two frequencies
looks promising.

8. Generalization of Thompson’s distribution III. ANDRE G. LAURENT, Wayne
State University.

Let the p X N matrix X = (X1, ---, X%, ---, X¥) be a sample of N vectors X* with
distribution N (BZ¢, £),7 = 1 to N where Bisp X gand Z = (2%, --- , Z¢, --- , ZN) is
g X N of rank ¢. Let £ be a subsample of k vectors,¢ < k < N — p — ¢, Z; the correspond-
ing (21, --- Z*). Let B, 2, B; , 2; be the M.L. estimates of B, Z obtained with X and ¢
respectively. The conditional distribution of £, given the sufficient statisties, B 3is

ClI— (k| N)E1E, .
— (I/N)21(Be = B)[(ZeZe)™* — (Z2Z')7']7(By — B)t |®W-k—»p—a-i2| NE |2 dg

with C = | ZZ' |22 | ZZ' — ZZ¢ |»ln*el2[IP T[(N — ¢ + 1 — 4)/21/T[(N — k — ¢ +
1 — 2)/2] in the proper domain. The conditional distribution of the ‘‘studentized’’ variable
n = (N£)-#(t — BZ,) is, in the proper domain

C| T = kEy — nwilwe(I — wiwe)w]™wgy’ [NV —4-a-p=D12 dy

where w; = (ZZ’')74Z; ; n is independent from £, B. Formulae simplify when at least one
of p, g, k, is unity. Applications to estimation problems are given.

9. An Expansion for the Quadrivariate Normal Integral when p; = pu =
<pu = 0. J. A. McFappEN, Purdue University. (By title) (Introduced
by J. H. Abbott)

Let &, &2, & , and & obey a quadrivariate normal distribution with all mean values equal
to zero. Let the correlation coefficient between £ and & be ps;, and let pi; = 0
when | ¢ — j| > 1. The value of the quadrivariate normal integral, i.e., the probability
that £ , £, £2, and &, are simultaneously positive, is equal to (5){1 + (2/x)[sin~! pys +
8in~! pyg + sin? pgy] + Wpiz, p2s , pu)}, where

Worz , prs » pas) = (4/72)p12031D () mp2s™ (1) G (p12)Gm (p34) 5

Gn(x) =F&},3+m;$;2%); (@n=a(@+1) -+ (a+m—1); (a)o = 1. Go(x) is expressible
in terms of an arcsine function, and the other G, (z) can be written as products of (1 — z2)t-m
and polynomials of degree m in 2?; thus the series is well suited for computation. Numerical
values from the first four terms compare well with known, exact values of the quadrivariate
normal integral.
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10. An Expansion for the Quadrivariate Normal Integral for a Stationary
Markov Process. J. A. McFappEN, Purdue University. (Introduced by
J. H. Abbott)

Let &, %2, £, and £ be successive measurements from a stationary Gaussian Markov
process, with the mean value equal to zero. Let the correlation coefficient between £; and
£; be pi; . The value of the quadrivariate normal integral, i.e., the probability that # , £ ,
£, and &, are simultaneously positive, is equal to (%){1 + (2/7)[sin~! py» + sin~! pys +
sin™! pgs + sin~! (p12p23) + sin~!_(p2spss) + sin? (p1apaspas)] + W(psz , pos, pas)}, where
W12, paa, p3s) = (4/7%)p120se Zg (—3)m (—H)ml F)ml 2p2?™ (1) "1F 1y (p19) F (p34); Fru(z) =
FG 3 — m; 4 — m; 22); @w = al@ + 1) -+ (@ 4+ m — 1); (@) = 1. Fo(z) is
expressible in terms of an arcsine function, and the other F,, (z) can be written as products
of (1 — 2?)* and polynomials of degree m in 2?; thus the series is well suited for computation.
Numerical values from the first four terms compare well with known results obtained by
numerical integration.

11. On Evaluation of Negative Binomial Distribution Function. G. P. PariL,
University of Michigan. (By title)

In this paper, we show that in order to evaluate the negative binomial distribution

function Y (r, p, k) = Zi-o (k +: - 1) P*(L — p)° where 0 < p < 1,0 < k < o, we

can use (positive) binomial distribution function tables, when k is a positive integer. To
be more general, we show that we can use the incomplete beta function tables for any
general k. Thus, we indicate that there is no necessity as such of having numerical ta-
bles for the negative binomial distribution function, since extensive tables are available
for binomial distribution function and incomplete beta function. To be precise we estab-
lish Theorem 1: Y (r,p, k) =1 — Bk — 1,p,r 4+ k), k =1,2,3, --- , where

B, p,n) = cho (:) p*(1 — p)r==.

=

Also Theorem 2: Y (r, p, k) = I,(k,7 + 1),0 < k < », where
D
I,(m,n) = 1/B(m, n) ofu"'“(l — u)"ldu.

Incidentally, one gets from the above the well-established identity between the binomial
distribution function and the incomplete beta function, namely B(k — 1, p, r + k) =
1 =TIk, 7+ 1) =L_p(k,r" 1).

12. On Some Extensions of Sampling with Probability Proportional to Size.
D. K. Ray-Craupnuri, Case Institute of Technology.

Consider a finite population II consisting ‘of N units U, , U, --- Uy . Let Y denote the
variate under inquiry and X denote an auxiliary variate related to Y. Let X; (X; > 0)
denote the value of X for U; which is assumed to be known, i = 1,2, --- N. Sampling with
probability proportional to size (PPS) is an efficient method of utilizing the supplementary
information provided by X for the purpose of estimating Y, the population mean of ¥
only if Y is approximately proportional to X in a certain sense. Several extensions of PPS
sampling have been obtained which give efficient ways of utilizing the supplementary in-
formation provided by X even when Y is approximately any linear function of X. A derived
unit W;; is defined to be a pair of original units (U; , U;) where X; > X and X; < X and X
denotes the mean of X. In one of the sampling schemes considered a number of derived
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units is selected with probability proportional to | X; — X | + | X; — X |. These exten-
sions of PPS sampling are compared with other sampling schemes and the method is gen-
eralized to the case when U is approximately a quadratic function of X.

13. Application to Stochastic Processes of a Uniqueness Property of the Rec-
tangular Distribution. HErMAN RuBiN, Michigan State University.

If the random variable X has a tth moment x (¢) forall ¢ e(—1,1), and forall ¢ £(—1,0),
we have (t + 1) u(t) = —tu(t + 1), then X/(1 + X) is rectangular (0, 1). This can be
shown by observing that u(t) sin #t/xt is periodic of period 1 and bounded in the strip
| R(t) | <4by A+ B|sinnt|,and hence is constant. Let Y be a process with independent
increments, statlonary on both sides of a value «. If Z(2\) is the llkellhood ratlo fora = A
against & = 0 and is positive almost surely, and o = 0, then f o Z(\) dN/ f __Z)d\is
rectangular (0, l) This follows from the recursion formulas for the moments (of all orders
less than 1) of J' o Z(\) dx and f —_ Z(\) d\, and an application of the preceding theorem.

14. Test for Regression Coefficients when Errors are Correlated. M. M. Sip-
piqui, National Bureau of Standards, Boulder, Colorado.

In a previous paper (Ann. Math. Stat., Vol. 29 (1958), pp. 1251-56) the variances and
covariances of least-squares estimates of regression coefficients were obtained when the
errors are assumed to be correlated. In this paper it is shown that the usual test statistic
for a regression coefficient is approximately distributed as ct, where ¢ is a constant and ¢
is a Student variate with h degrees of freedom. h is a number determined by the covariance
matrix of errors.

15. Joint Distribution of Medians in Samples from a Bivariate Population,
M. M. Siopiqui, National Bureau of Standards, Boulder, Colorado.

(By title)
Let F (z, y) be the joint distribution function of (X, Y'), possessing a pdf f(z, ). A ran-
dom sample (X;, Y;),7=1,2, ---, nis drawn, n odd. Let X, and Y, denote the medians
of sets X1, ---,X,and Y, --- , ¥, , respectively. The joint distribution of (X, , Y,) is

obtained and it is shown that it tends to N (¢, Z) as n — « where ¢ = (&, &),

2 *
z = (p,:;lu s :%”) . Here ¢, and £, are the medians of the marginal pdf’s f1 (z) and f:(y) of
102 2

X and Y respectively, 4nfi (£:1)0} = 1, 4nf3 (£2)03 = 1, and p* = 46 — 1, where 0 = F (&1 , &).
As a corollary it is shown that (F(X,, Y,) is asymptotically normally distributed with
mean 6 and variance ¢/n where ¢ is constant depending on the parameters of F. Generaliza-
tion to the distribution of the median vector in samples from multivariate populations is
obvious.

16. A Characterization of the Uniform Distribution in Compact Topological
Groups. James H. StapreEToN, Michigan State University.

Let I be a connected compact topological group with a countable basis. Let X, , X, , -+,
X, be independently and uniformly distributed (I.U.D.) in T' (the distribution of the n-
tuple is the Haar measure in I'™). Define ¥; = Xl a:;; X; (6 = 1, --- , n) for integers
a:; . Then the Y; are I.U.D. if and only if (a:;) is non-singular. In a sense this characterizes
the uniform distribution in I'. Let X, , --- , X be independent, and suppose that for no j
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does X ; take all its values in a fixed coset of a proper compact subgroup of I'. Let Y, , -+,
Y, be as before, assume at least two a;; are non-zero for each ¢, and let det(a;;) = 1.
Then, if Y, , ---, ¥, are independent, each X; which has an absolutely continuous part
with respect to the Haar measure is uniformly distributed in I'. The proofs make use of the
theory of characteristic functions for compact topological groups.

17. Some Results in the Analysis of Variance I. (Preliminary Report) SELiG
Starr, George Washington University. (By title)

Using the finite model (Model III) for the nested case, it is shown that the expected
values of certain quadratic forms in the observations can be expressed simply in terms of
the same quadratic forms in the population values. The usual expected mean squares are
obtained as an immediate consequence. Using Model III for a complete n-factor asymmetri-
cal factorial, without replication, it is shown that the usual mean squares based on observa-
tions can be expressed in terms of the sums of squares of all possible 2" factorials that can
be formed from the array. This result is used to develop the usual expected mean squares.
The factorial with replication is then derived by a combination of the two foregoing results.
The approach in both cases uses only the simplest combinatorial considerations and does
not involve the expectations of cross-products usually encountered. Matrix algebra simpli-
fies the presentation and, in the case of the factorial, leads to the Kronecker product of n
simple 2 X 2 matrices. The results are proved rigorously, by induction, for the general case.
It is then shown that the development by the usual linear models is a natural consequence.

18. Power of Some Two Sample Distribution Free Tests. B. V. SUKHATME,
Michigan State University. (By title)

A two sample distribution free test based on the number of observations of one sample
lying outside the extreme values of the other sample was first proposed by Wilks (1942) and
its probability distribution was later tabulated by Rosenbaum (1953). Kamat (1956) pro-
posed another two sample distribution free test based on the numbers of observations of
each of the two samples lying outside the extreme values of the other sample. This paper
gives the exact distributions of the two test statistics both under the hypothesis and the
alternative. These results are used to compare the power of these two tests against scalar
alternatives for small samples from normal population for different levels of significance.
A discussion is also given concerning the relative efficiency of these tests with respect to the
variance ratio F test.

19. Nonparametric Tests for Location and Scale Parameters in a Mixed Model
with Discrete and Continuous Variables. SHAsHIKALA B. SUKHATME,
Michigan State University. (By title) (Introduced by B. V. Sukhatme)

Let Z,, 2, , -+, Zy with Z; = (X, Y) be independent observations from a bivariate
population. Let the random variable X assume two values 1 and 0 with probabilities p and
1 — p respectively. Let P(Y < y | X = j) = F;(y), (j = 0, 1). This paper considers the
problem of testing the hypothesis H: F, = F, against the alternative A: F, # F, . Several
nonparametric tests for location (e.g. two sample median and Wilcoxon tests, etc.) and for
dispersion (e.g. rank test) have been proposed and their asymptotic properties investigated
in the case when p is known. In the case when p is unknown, the test statistics are modified
by replacing p by its usual estimator and it has been proved that some of the tests based
on the modified statistics are asymptotically distribution free. The generalisation to the
case when the random variable X has a multinomial distribution is also considered.
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20. Efficiencies of Estimators of Scale and Location Parameters Constructed
From Order Statistics of Censored Samples. J. A. TiscHENDORF, Bell
Telephone Laboratories. (Invited Paper)

Estimators of the location and/or scale parameters of distribution functions with p.d.f.’s
of the form g(z) = o~ [f(x — m) /o] are constructed from k order statistics where the sample
size n is large. The order statistics are the sample quantiles corresponding to the specified
constants 0 < A\; < --» < A\ < 1. The estimators are unbiased, linear and of minimum
variance for the particular set of A\;’s, 7 = 1, --- | k. Necessary conditions for an optimum
spacing of A1, - -+ , \x are given for distributions satisfying certain continuity and differen-
tiability conditions. This optimum spacing may be approximated by a relatively simple,
graphical procedure in each of the three cases, estimating the location parameter, the scale
parameter, or both parameters. Upper bounds on the efficiencies of these estimators are
obtained. These bounds may be interpreted with respect to the ordered sample in such a
way as to also yield upper bounds on the efficiencies of such estimators when the large
sample is a censored one. Interesting comparisons of estimation situations can be made
for the case where time is the random variable, i.e., censoring is on the right.

21. Some New Single Level Continuous Sampling Plans. (Preliminary Report)
Joun S. WuiTE, Aero Division, Minneapolis-Honeywell Reg. Co. (By
title)

Generalizing the methods of Dodge (Ann. Math. Stat. Vol. 14 (1943) pp. 264-279 and Ind.
Qual. Cont. Vol. 7, pp. 7-11) some new single level continuous sampling plans are given. The
procedure for these plans is as follows: (a) At the outset inspect, in succession, 1009, of the
units produced until 7 units in succession are found clear of defects. (b) When ¢ successive
units are found clear of defects, discontinue 1009 inspection, and inspect only a fraction
f of the units. (¢) When a defect is found, revert to 1009 inspection until either a second
defect is found or until m successive units have been found clear of defects. (1) If a defect
is found before m successive units have passed inspection, revert to 1009, inspection as
per (a). (2) If no defect is found, revert to sampling inspection at rate f. (i) If a defect is
found in the next k£ sample units inspected, revert to 1009, inspection as per (a). (ii) If no
defect is found in the next k sample units, continue sampling until a defect is found and
then proceed as in (¢). Tables have been computed giving AOQL, 7 and f values correspond-
ing to various values of k& and m.

22. Existence of Wald’s Sequential Test in the General Case. ROBERT A.
WissmaN, University of Illinois.

A sequential probability ratio test (SPRT) for choosing between two hypotheses H; ,
i = 1, 2, is defined by the acceptance intervals I; . Let w = sup I, ,v = inf I, , v < v. In
order to cope with discrete distributions, define a randomized SPRT R(s, ¢), with error
probability vector a(s, ¢),s = (u,N), ¢t = (v, ), 0 = A\, p = 1, as follows: If u < v, u is
included in or excluded from I; with probabilities A and 1 — X\; » is included in or excluded
from I, with probabilities 1 — g and p. If v = v, then p = X and w is included in [, , in I, ,
or in neither, with probabilities 1 — u, A, and » — X. The existence proof in the continuous
case (Ann. Math. Stat. Vol. 29 (1958) p. 938) remains formally valid in the general case if
s and ¢ are considered elements of a space Z of points z = (z,¥),0 < z < ©,0 =y = 1,
with the points (0, 1) and («, 0) added. Define a linear ordering: z; < 22 if z; < z; or z; =
z; and 11 < ¥2 . A topology for Z is generated by sets of formz < z; ,0orz > 2z, . If f is con-
tinuous on Z, if @, b ¢ Z and c is a number between f(a) and f(b), then f(z) = ¢ for some 2,



ABSTRACTS 531

a = z = b. This is applied to the functions «;(s, t) for fixed s or ¢, and a;(s, s), which are
continuous and monotonic on Z. Let C = {a(s, s): s ¢ Z} and let A be the closed set in the
a-plane bounded by C and the coordinate axes. Then, if a* £ A, there is no solution to
a(s, t) = a*, and if a* ¢ A there is an essentially unique solution. This solution has opti-
mum property, hence is admissible, provided © < 1 < ». In any case, the solution has opti-
mum property among all solutions which take at least one observation. For any a* with
o) 4+ a; < 1thereis a test with error probability vector a*, possessing optimum property,
in the form of a mixture of R; , R; and R(s, t) for some s, { withu =< 1 < », where R; accepts
H; without any observation.

- (Abstracts of papers presented at the Eastern Rogional Meeting, Columbia
Unaversity, April 21-23, 1960.)

1. Transition Probabilities for Telephone Traffic. V. E. BENES, Bell Telephone
Laboratories and Dartmouth College. (By title)

A stochastic process N (t), representing the number (out of a total N) of telephone trunks
that are in use, is defined by the conditions that arrivals form a renewal process, and that
holding-times of calls have a negative exponential distribution. The transition probabilities
of the (not necessarily Markov) process N (t) are determined in terms of their Laplace
transforms (i) by augmenting N ({) to be a suitable Markov process, and (ii) directly by
using the regeneration points of N (¢). The practical relevance of the transition probabilities
to traffic measurement are described.

2. Efficient Sequential Estimators With High Precision Only in a Small
Interval. ALLaN BirnBauM, New York University.

The requirement that an estimator * = 6*(z) of a real-valued parameter 6 have high
precision in a small interval [6; , 6:] can be formulated in part thus: The probability that
0* be closer to 6; than to 6, when 6, is true, and the probability that 8* be closer to 6 than
to 6, when 6. is true, should equal or exceed specified lower bounds 1 — «, 1 — B respectively.
In many problems such specifications cannot be met by an estimator based on a single
observation. If sequential sampling is allowed, these requirements can be met most effi-
ciently, in the sense of minimizing the expected sample size under all values of 9, by use of
the sampling rule of Wald’s sequential probability ratio test of 6, against 6, at strength
(a, B8) under general conditions met in common examples. On the resulting sample space
{r}, the stated requirements are met efficiently by every estimator which takes values
exceeding 8’ = (6, 4+ 6:)/2 on points z where the corresponding sequential test would reject
6, , and values less than 6’ on other points. The definition of the estimator can be completed
to make it admissible. The description of such estimators is simple when there is no ‘‘excess
at termination” (or when excess is ignored): let { = {(z) = 1/nif z is a ‘“‘rejection’’ point
based on n observations, let { = —1/n if zis an ““acceptance’’ point based on n observations,
and let 8* be any monotone function of { meeting the above condition. In problems with
suitable symmetry, * can be determined thus so as to be a median-unbiased admissible
estimator. Admissibility is proved by noting that the class of estimators first described are
(sequential) Bayes solutions, and by determining within this class a unique Bayes solution
for another a prior: distribution.

3. Partially Balanced Arrays. I. M. CHAKRAVARTI, University of North Carolina
and Indian Statistical Institute. (Introduced by David B. Duncan)

Earlier (1956) this author had defined partially balanced arrays as follows: An array
involving n factors F1, F,, --- , F,. , each at s levels such that for any group of d factors
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(d = n), a combination of levels of d factors, Fi;; , Faiy , -+ , Faig , 0CCUIS Nij4q---54 tilmes
where \iji,...54 remains the same for all permutations of a given set (i1 , %3 ,- - - 14) of levels
and for all groups of d factors chosen out of n, i; ranging from 0 to (s — 1) for all j. Then
it can be easily shown that this property also holds for any ¥ < d. Examples of partially
balanced arrays are given. These arrays require less number of assemblies than the corre-
sponding orthogonal arrays for estimating the effects of interest; but the estimates are not
mutually uncorrelated. For s = 2, it is shown that a class of partially balanced arrays are
derivable from the well-known (A-u—») configurations.

4. Extensions of the Poisson and the Negative Binomial Distribution. A.
Crirrorp CoHEN, JR., The University of Georgia.

In biological studies which involve fitting the Poisson or the negative binomial distribu-
tion to counts of organisms, considerable disparity is often encountered between observed
and expected frequencies in the zero class. This paper concerns the addition of a selection
parameter to these distributions in order to alleviate this difficulty. Maximum likelihood
estimators of the original and the added selection parameters are derived. Asymptotic
variances and covariances are given and illustrative examples are included.

5. Asymptotic Variance as an Approximation to Expected Loss for Maximum
Likelihood Estimates. WiLLiam D. Commins, Jr., Alexandria, Va.

From bounded estimation loss functions which are approximately parabolic when the
estimate is near the parameter 6, Chernoff (Ann. Math. Stat., Vol. 27, pp. 1-22) defines a
normalized loss function. For an estimate based on a large number n of observations, the
normalized expected loss is generally sandwiched between the variance o2(8) of the asymp-
totic distribution of the estimate (the asymptotic variance) and the expected squared error
(normalized). This paper is a proof under suitable restrictions that, for the maximum likeli-
hood estimate T'» the normalized expected loss converges to the asymptotic variance, which
can be smaller than the limit of expected squared error (normalized). The proof of the con-
jecture resolves into a proof that lim,.,, nP(| T» — 0| > K) = 0 forany K > 0 and lim,_,.,
J17,-01<gn(Tn — 6)* dP = ¢2(8) for small K > 0. The proof that the first limit holds is a
modification of Wald’s proof (Ann. Math. Stat., Vol. 20, pp. 595-601) that the maximum
likelihood estimate is consistent. The analysis of the integral involves a modification of the
standard proof that the maximum likelihood estimate is asymptotically normal. The multi-
parameter case is treated separately but analogously.

6. Multi-Stage Bayesian Lot-by-lot Sampling Inspection. HErBERT B. EI1SEN-
BERG, System Development Corp, (Introduced by Herbert T. David)

Based on the work of Arrow, Blackwell, and Girshick (Econometrica, 1949), this paper
develops the theory for constructing Bayesian multi-stage (that is, single, double, multiple,
and sequential) attribute sampling plans for finite lot size, arbitrary profit function, and
arbitrary a priori lot quality distribution. Using a linear profit function, this theory is
applied to the following a prior: lot quality distributions: binomial, two-point, degenerate
one-point, discrete mixed binomial, and continuous mixed binomial. Parametric and dis-
tributional conditions under which sampling never pays are discussed. Profit efficiencies of
single, double, and multiple sampling plans relative to sequential plans can be computed.
Effect of optimizing with respect to the wrong lot quality distribution is considered.
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7. A Representation of the Bivariate Cauchy Distribution. THomas S. Frr-
gusoN, U. C. L. A. and Princeton University. (By title)

A pair of random variables, (X, Y), is said to have a bivariate Cauchy distribution if
every linear combination, aX + bY, has a (one-dimensional) Cauchy distribution (possibly
degenerate). The main theorem proved is the following: A function, ¢ (u, v), is the logarithm
of the characteristic function of a bivariate Cauchy distribution if, and only if, ¥ (u, v) =
tau + by — g(u, v) where, (1) @ and b are real numbers, (2) g(u, v) is a real, non-negative,
and positive-homogenous function of degree one (i.e. g (tu, tv) = | t| g(u, v) for all real values
of ¢, w and v), and (3) the set {(u, v): g(u, v) < 1} is convex. The relation between this
representation and that found in Levy’s book, Theorie de I’addition des variables aleatoires,
1937, is discussed. It is shown that this theorem does not extend directly to higher dimen-
sions: namely, that in three dimensions, there are convex sets symmetric with respect to the
origin which cannot be obtained as a set, { (u, v, w): g(u, v, w) < 1}.

8. A Noiseless Comma-free Coding Theorem. THQMAS S. Ferauson, UCLA
and Princeton University.

A unique feature of noiseless coding theorems is unique decipherability of the code.
However, this decipherability is unique only when one knows on which of the members of
the infinite sequence of incoming symbols new words start. Ordinarily, wrong guesses as to
the starting position may be detected only through the “nonsense’’ of the decoded sequence.
This drawback may be avoided through the use of so-called comma-free codes (Golomb,
Gordon, and Welch, Can. Jour. Math. 1958). It is shown that one can achieve the same
asymptotic average transmission rate under the stronger restriction that the code be
comma-free and uniquely decipherable.

9. Inference About Non-Stationary Markov Chains, Ruta Z. GoLp, Columbia
University.

Extending results of Anderson and Goodman (Ann. Math. Stat., Vol. 28 (1957), pp. 89-
110), we consider N (large) observations taken at times 0, 1,2, --- , T on a finite non-sta-
tionary Markov chain in which the transition probabilities are specified functions of a set
of unknown parameters. By methods analogous to those of Neyman (‘“Contribution to the
theory of the x2-test,’”” Proceedings of the Berkeley Symposium on Mathematical Statistics and
Probability, University of California Press, Berkeley, 1949, pp. 239-274), best asymptoti-
cally normal estimates and tests of hypotheses are derived for these parameters. We also
show that certain x? expressions arising in Markov chains with arbitrary transition proba-
bilities can be decomposed into a sum of squares of asymptotically independent normal
variables with 0 means and unit variances after the manner of “‘partitioning’’ proposed by
Lancaster (Biomeirika, Vol. 36 (1949), pp. 117-129) despite the fact that in Markov chains
the number corresponding to the number of observations in a contingency table is a random
variable. A method of finding joint asymptoti¢ confidence intervals for linear combinations
of transition probabilities as well as of probabilities in independent sequences of multi-
nomial trials analogous to that used in the analysis of variance is suggested.

10. A Central Limit Theorem for Systems of Regressions. E. J. HaNNAN,
University of North Carolina. (Introduced by David B. Duncan)

The theory of regression on fixed variables, when the residuals are generated by a sta-
tionary process, has been illuminated by the introduction of certain restrictions on the
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regressor vectors by Grenander. It is the purpose of the paper to show that, for a reasonably
wide class of stationary residuals, these conditions are sufficient to ensure that the esti-
mates of the regression coefficients are asymptotically normal. The case of a multiple sys-
tem of regressions is considered.

11. Power Functions for the Test of Independence in 2 X 2 Contingency Tables.
WiLriam HarknNEss, Pennsylvania State University.

A unified treatment for testing for independence in 2 X 2 tables is given. Using the uni-
formly most powerful test for independence in each of the three 2 X 2 tables, as determined
by the number of restrictions on the marginal totals, a comparison of the exact power func-
tion for each test is made. Using an asymptotic normal approximation to the distribution of
two independent binomials, conditional on fixed sum, asymptotic power is examined. The
adequacy of the non-central chi-square approximation to power for small sample sizes
(n = 10, 20, and 30) is considered, with exact values of power having been calculated. The
availability of these exact values makes it possible to evaluate the adequacy of other
approximations, particularly Patnaik’s [Biometrika, Vol. 35, pp. 157-175] and Sillitto’s
[Biometrika, Vol. 36, pp. 347-352] approximations to the power for the test of equality of two
binomial parameters. The normal approximation theorem shows Patnaik’s results are based
on erroneous considerations. The asymptotic results are similar to those of Mitra [Ann.
Math. Stat., Vol. 29, pp. 1121-1234].

12. The Partition of Phenotypic Variance Based on the Genic-environmental
Interaction Model. Cecin L. KALLER and VirReiL L. ANDERSON, Purdue
University.

The genic-environmental interaction model in population genetics is developed by a
direct extension of Kempthorne’s (1954) theoretical gene model to include environmental
factors. Both the genetic and the environmental factors are considered as the main factors
in a factorical experimental design. This permits the separation of all orders of interaction
terms. By employing algebraic identities and extensive algebraic manipulations, a complete
phenotypic model is developed which is the sum of terms to account for all environmental
and all genetic main effects influencing phenotypic expression as well as terms for all pos-
sible orders of genic-environmental interactions. Each effect is accounted for by a different
term in the model, and all terms are shown to be uncorrelated. Hence for a population
described by this model, the total phenotypic variance, o% , may be readily partitioned into
a sum of components due to the various effects. Any changes made in the assumptions or the
existence of interactions in the genic-environmental interaction model are reflected imme-
diately in the variance partition by merely adding or dropping components of the sum.

13. A Robust Approximate Confidence Interval for Components of Variance.
Howarp LeveNE, Columbia University.

Letxii =p+yite,t=1-- 717] =1, nyWIt’hE(yt) = E(zij) =0, Var(y:) =
or, Var(zi;) = o2 The classical F test for testing Hy: o5 = 0 is exact for normality of the
y and z, and is robust. Previously suggested confidence intervals for o; are approximate,
and strongly affected by non-normality. (See e.g. Scheffé, The Analysis of Variance.) I give
a robust method for testing equality of variances in Contributions to Probability and Sta-
tistics: Essays in Honor of Harold Hotelling. In the same spiritlet V; = I (x; — z.)2 (I — 1)1
— Z(xi; — 2:.)2 (J — 1)71. Then E(V;) = oy, the V; have a common variance and they
have a positive correlation of order /=2. An ordinary Student’s ¢ test may be used on the



ABSTRACTS 535

V:totest Hy: E(Vs) = of = a4 for any a; and hence to obtain confidence intervals. However
for a; = 0 the F test should be used. If I = 10, and probably for even smaller values, the V
test is generally satisfactory, while for very small I any confidence interval is unsatisfac-
torily long. The above method can be extended to r-way classifications, and, less satisfac-
torily, to unbalanced 1-way classifications.

14. An Inequality for Balanced Incomplete Block Designs. WapiE F. MIKHAIL,
University of North Carolina. (By title)

Consider a Balanced Incomplete Block Design (B.I.B.D.) with parameters v, b, r, £,
A where b is the number of blocks, r is the number of replications of each treatment, and
M is the number of times a pair of treatments occur together in a block. It was proved by
Bose (Sankhya, Vol. 6, 1942) that if the B.I1.B.D. is resolvable, then b = v + r — 1. The
present paper shows that the condition of resolvability is not necessary and that the above
inequality holds under the weaker condition » = nk where n is an integer greater than 1.

15. Markov Renewal Processes of Zero Order. RonaLp Pykr, Columbia
University. (Invited Paper)

A Markov Renewal process (M.R.P.) determined by (m, 4, Q), where m is the number
of states, 4 is the 1 X m vector of initial probabilities and Q is the matrix of transition
distributions Q;; (t), is said to be of zero order if for every 7, Q:; () = Qux(t) for all j, k£ and
¢ > 0. The general th jory of M.R.P.’s simplifies considerably in this case, and the author is
able to give more expl icit results pertaining to first passage times, statlonary distributions,
and limit theorems of the number of visits to specified states. An example of a zero order
M.R.P. which arises in counter theory is worked out in detail.

16. On Centering Infinitely Divisible Processes. RonaLp Pykg, Columbia
University.

The concept of centering stochastic processes having independent increments, introduced
by Lévy, is applied to processes having both stationary and independent increments (i.e. to
Infinitely Divisible (I.D.) processes). The question of what centering functions preserve
the stationarity of the increments is studied. It is shown that for an I.D. process, there
exists a unique centering function c satisfying c(s + ¢) = ¢(s) + c(¢) forall s, ¢t = 0 and
¢(1) = 0, such that the resulting centered process is also an I.D. process. A proof of this
result which does not use the Lévy-Khintchine representation of the characteristic function
of an infinitely divisible random variable is given.

17. The Asymptotic Power of the Kolmogorov Tests of Goodness of Fit. Dana
Quabpg, University of North Carolina.

Let F.(z) be the empirical distribution function of a random sample from some continuous
distribution function G, (z). Then the (two-sided) Kolmogorov test of the hypothesis that
G.(z) = H(x) rejects if supz n? | Fu(z) — H(z) | Z Q. . Let Zo.(t) = (n)2(F, ) =0
and S, (t) = (n)2(H[GZ ()] — t). Then the power of the test is

P,=1-— pr {supt l Zn(t) - Sn(t) | < Qn} .

As n increases, and « is kept fixed, Q. approaches & limit @, and Z,(¢) becomes a certain
Wiener process Z (t). Suppose that S.(¢) also approaches a limit S(¢{). Then, extending
Donsker’s justification of Doob’s ‘‘heuristic procedure’’, some sufficient conditions that
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limn,, Pn = 1 — pr {sup: | Z(t) — S(¢) | < Q} are given. The one-sided test can be treated
similarly. Upper and lower bounds on the asymptotic power of both tests against the class
of all possible sequences {G(z)} such that lim,., sup: | Sz (¢) | = A, and various subclasses
of this class, are exhibited. Finally, some numerical examples for the case where G.(z)
consists in a translation of H (z) are provided: in particular, it is shown that for detecting
shifts in the mean of a normal population the one-sided test has an asymptotic efficiency of
roughly .6 to .7.

18. Some Results on Error-Correcting Non-Binary Codes. D. K. Ray-CHAUD-
HURI, Case Institute of Technology.

Consider a communication channel which can transmit p symbols where p is a prime
number. A group code for such a channel with n places of which k are information places, is
called an (n, k) p-ary code. A matrix M with elements in a field is said to possess the prop-
erty (P:) if not rows of the matrix are dependent. If thereisa (n X n — k) matrix M with
elements in GF (p), the Galois field containing p elements, which possesses (Pa:)-property,
then there exists a ¢ error-correcting (n, k) p-ary code. Let n be the least integer such that
for some integer ¢, cn + 1 = p™. Let r(j) denote the number of distinct residue classes mod
n among the integers 7, pj, p%, --- ™Y, G+ 1), pG+ 1), p2G+ 1) --- p» G+ 1), -
G+2t—-1),pG+2t—1),p*(G+2t—1), .- p™1(j + 2t — 1). Using the theorem on
(Py¢)-property, a t-error correcting (n, k) p-ary code is constructed with &k = n — r(j).
The result is extended to the case when p is a prime power.

19. Concerning Achievement of the Lower Bound for the Power of the Kolmo-
gorov-Smirnov Test of Fit. Jupan RosenBrLATT, Purdue University.

A lower bound for the power of the Kolmogorov-Smirnov test, as a function of distance
from the null hypothesis, F, , is easy to compute, using the fact that for fixed z, nF.(z)
has the Binomial distribution with parameters n and p = F(z). A natural question which
arises is whether there is any distribution function F, with sup, | F(z) — Fo(z) | = | for
which the computed lower bound for power is achieved. It is shown that if the asymptotic
theory of these tests is conservative, then for those alternatives satisfying the condition
! < .1 and for which the computed lower bound for power exceeds .95, there is a distribution
function F which comes close to achieving this lower bound, when the asymptotic probabil-
ity of Type I error does not exceed .05.

20. On the Admissibility of a Class of Tests in Normal Multivariate Analysis.
S. N. Roy and W. F. MiknuA1L, University of North Carolina.

This paper proves the admissibility of (i) the largest root test, under a normal multi-
variate linear model, for a linear hypothesis against the general linear alternative, (ii) the
largest root test for independence between a p-set and a g-set of variates (havinga (p + ¢)-
variate normal distribution) against Zi; # 0, where 2y, is the covariance matrix between the
p-set and the ¢-set, and (iii) the largest or smallest root test for the equality of two dis-
persion matrices against certain types of one-sided alternatives. In each of the cases (i),
(ii) or (iii), the test has an acceptance region which is the intersection of a class of regions,
and the proof depends upon showing that if the acceptance region is to be proved inadmiss-
ible by a rival, then that rival region must be contained in every member of the class of
regions just mentioned, or, in other words, the rival itself must coincide with the acceptance
region of the proposed test. Hotelling’s 7% is a very special case of (i) and the usual multiple
correlation test is a special case of (ii). The same kind of proof, with some modifications,
would go through for the corresponding A-criteria.
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21. On Dependent Tests in Analysis of Variance. S. N. Roy and P. R. KrisH-
NAIAH, University of North Carolina.

Let F; = 83/82fori =1,----- , k be k F-statistics to test the null hypotheses H;
where 8} is the mean square due to Hy and 82 is the error mean square in ANOVA. Rama-
chandran (these Annals, 1956) solved the distribution problems connected with the simul-
taneous test of Hop =+ ++-v-- , Hoe when 83, -+ , 8i, S are independently distributed.
The present paper extends the above results to the situations where 8}, ------. , St are
not independently distributed.

22. Lower Bounds on the Probability Associated with Certain Confidence Regions
for the Multivariate Median. (Preliminary Report) ErNEsT M. SCHEUER,
Space Technology Laboratories. (Invited paper)

Congsider a k-dimensional random variable (X;,:--, Xx) having unique median
(1, - v). (DEF.: »; = med X;.) Take a sample of size n of this random
variable: (11, *++, @u), *++ , (Zin, *++* , Txn) and order the values ;1 , -+, Zin to yield
z;(1) S ;(2) £ -+ £ zi(n), 7 =1, .-+, k. Select positive integers r; such that 2r; < n
(¢ =1,---, k) and form the set

R={@, ,2z)ai(ri) <zi<zim—ri+1),i=1,.--,k}.

We ask (*) “what is the probability @ that R covers (v1, -+ , »x)?’’ The answer (fork > 1)
depends on the joint distribution of (X, -+, X&), but sharp lower bounds over all distri-
butions having unique medians have been obtained for ® (a) by Dunn (Ann. Math. Stat.,
Vol. 30 (1959), pp. 192-197) for the case k = 2 and r, = r, = r (say); and (b) by the present
author in this paper for the cases3 = k £ 7and r;, = --- = r; = 1. The results under (b)
can be summarized in the inequality ® = 1 — 2k(3)»+4 Bk—7) $)»—16 (k — 3) })=
It is conjectured that this result is true for all £ > 3. A result on the general problem (*)
which, while not sharp, may prove to be quite satisfactory is given by the simple result
®P=1- 3k, [1 = P {z:(r;) < vi < &i(n — r; + 1)}]. This formula is useful in that the
terms in square brackets are readily obtainable from tables of the incomplete beta dis-
tribution or of the cumulative binomial distribution.

23. Asymptotic Shapes of Optimal Stopping Regions for Sequential Testing.
GipeoN ScawaRz, Columbia University. (Introduced by T. W. Anderson)

A hypothesis § < a is to be tested sequentially against an alternative 8 = b (a < b) on
the basis of independent observations on a random variable X whose distribution depends
on a single parameter 6 and is of the Koopman-Darmois type. If ¢ < 8 < b neither decision
is penalized. A given a prior: distribution of @ is assumed. The cost per observation is c.
Theorem: If the optimal stopping region in the (n, X1 X;)-plane is transformed by divid-
ing both coordinates by log (1/¢), the transformed region approaches a finite limiting region
as ¢ — 0. An explicit formula for the limiting region (‘‘asymptotic shape’’) for arbitrary
a priori distribution of 8 is given. By transforming the asymptotic shape back to original
scale, approximations to the optimal regions for small ¢ are obtained. The theorem is proved
by showing that the optimal boundary lies between two curves of constant Bayes risk, and
finding the asymptotic shape of such curves. Finally the theorem is extended to two cases
of two-parameter families. One is the case of testing the mean of a normal distribution with
unknown bounded variance. In the other case H, , H; and the indifference region consist of
three arbitrary specified mutually dominating distributions.
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24. Invariant Bayes Rules. (Preliminary Report) MoRRrIs SKIBINSKY, Purdue
University.

Given a sequence of independent random variables with a common distribution function
known a priori to be one of K specified distribution functions, let 8 be a class of rules for
deciding which one of the K is correct. Let 3(g, A) denote the set of all Bayes rules in $
relative to a priori probabilities g = (g1, g2, -+ , gr), loss matrix A = (\;;), and cost per
observation unity. Let G® = {g: 3% ¢; = 1,9;>0,7=1,---, K}; A be the space of K X K
loss matrices, with zero diagonal and non-negative off-diagonal elements; M be a mapping
from G° into A. The class 3(M) of invariant Bayes rules relative to M, is defined to be
N (3(g, M(g)) | g £ G°). The class of invariant Bayes rules is then, 3 = J (3(M) | all map-
pings M). The importance of this class follows from the fact that if 7 ¢ 3(M), then 7 mini-
mizes the expected number of observations required uniformly over the K hypotheses,
among all rules whose error probabilities are bounded above by its own. Necessary and
sufficient conditions for a rule to be an invariant Bayes rule are given. Several examples
are considered for K = 3. For K = 2 (and 8 the class of all rules) it has been shown (See
Wald and Wolfowitz, “Optimum Character of Sequential Probability Ratio Test”’, Ann.
Math. Stat., Vol. 19 (1948)) that J is equivalent to the sequential probability ratio tests.

25. On a Generalization of Balanced Incomplete Block Designs. J. N. Srivas-
TAVA AND S. N. Roy, University of North Carolina.

A generalized BIBD (GBIBD) is defined as follows: Let the total number of treatments
v =0+ v2 + --- + v, be divided into S sets, the th set containing v; treatments. Then
the GBIBD is such that any treatment belonging to the sth set occurs (once only) in r;
blocks, a pair from the ith set occurs in A; blocks, and a pair consisting of one treatment
the ith set and another from the jth set occurs (once only) in exactly u;; blocks. The
design may be arranged in equal or unequal block sizes. The motivation behind the
use of such designs is that it permits treatment contrasts corresponding to the compar-
isons within a set or for comparison of different sets among themselves, to be estimated
with any given precision, provided the design with the corresponding values of N’s and
w’s exist. Since with fixed d.f. for hypothesis and error, the power of a test depends on
the noncentrality parameter only, these designs allow the total hypothesis Ho: t;, = &, =
-+« = t, to be split up into subhypotheses corresponding to comparisons between or within
sets, the subhypotheses being tested with given powers. The multivariate or multiresponse
generalization has also been considered. In this paper, the analysis of this design (for the
case of equal block sizes) has been presented both for fixed and mixed models. Several basic
relations and inequalities among the parameters have been defined. Some studies on the
structure of BIBD’s and GBIBD’s have been made. Several methods of construction of
different kinds of GBIBD’s using known BIBD’s, factorial and other designs, have been
presented.
26. Maximum Likelihood Characterization of the Normal Distribution. HENRY

TEicHER, Purdue University.

Let {F(x — 6)}, 0 real, be a translation parameter family of absolutely continuous dis-
tributions on the real line. If, for all (random) samples of size two and three, a maximum
likelihood estimator of 6 is the sample arithmetic mean, then F (z) is the normal distribu-
tion. Analogous results are demonstrated in the case of a scale parameter family.
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27. On Two Methods of Unbiased Ratio and Regression Estimation. W. H.
WiLLiams, McMaster University. (By title)

R. M. Mickey (J. Amer. Stat. Assoc., Vol. 54, pp. 594-612) introduced a procedure for
generating unbiased ratio and regression estimators. Another was used by Williams (Ann.
Math. Stat., Vol. 29, p. 618). The two procedures have different appearances, but it is shown
that a slight modification of Mickey’s method will lead to estimators which have the same
form as those presented by Williams. The combinatorial equivalence is demonstrated also.

28. On Linear Estimation of a Single Parameter of a Mean Function Under
Second Order Disturbance. (Preliminary Report) N. DoNaALD YLVISAKER,
“Columbia University.

Let {Px, A& A C Ry} be a family of probability measures on (2,4). Let {Y (¢), te T} be a
family of random variables on (Q, A) satisfying EgY (¢) = m(¢;8),te T, E[Y (s) — m(s;B)]
[Y(&) — m(t; 8)] = K(s,t), s, te T, T an abstract set. The problem of linear estimation of
the parameter 8 is considered. Let H (K, T') denote the reproducing kernel space of func-
tions on T associated with K. Then the span of {Y (t),te T} in L. (dPB), written V[V (¢),t e T
is operationally independent of 8 if m(-,8) e H (K, T) for all 8¢ A (operational independence
here means a sequence of random variables of the form {¥; ¢;»Y ({;»)} is a Cauchy sequence
in L;(dPg) for all B& A or no B¢ A). The precise lower bound

BolZ — B> = /(1 + [m(-, Bl kexy)

is obtained for Z & V[Y (1), t € T] with the bound interpreted as zero if m(-, 8) 2 H(K, T).
Bayes estimates of B are considered in special cases of the above model.

29. A Generalization of a Theorem of Balakrishnan. N. DoNALD YLVISAKER,
Columbia University. (By title)

Let T be an abstract set and let K be a covariance kernel defined on 7 X T. A function
m defined on T is said to be an admissible mean function for the covariance kernel K if and
only if there exists a family {X (¢), t e T} of random variables on some probability space
@, A, P) with E[X (¢)] = m(¢t),te T, E[X (s) X(t)] = K(s,t),s,teT. Let H(K, T) denote
the reproducing kernel space of functions on 7" associated with K. Theorem: m is an admiss-
ible mean function for the covariance kernel K if andonly if me H(K, T) and || m || ;g < 1.
This is a generalization of a result due to Balakrishnan (Ann. Math. Stat., September,
1959) and provides an alternative proof of that result.



