ON THE UNIQUENESS OF THE TRIANGULAR ASSOCIATION SCHEME

By A. J. HorFrMAN
General Electric Company

1. Summary. Connor [3] has shown that the relations among the parameters
of the triangular association scheme themselves imply the scheme if n = 9.
This result was shown by Shrikhande [6] to hold also if n < 6. (The problem
has no meaning for n < 4.) This paper shows that the result holds if n = 7, but
that it is false if n = 8.

2. Introduction. A partially balanced incomplete block design with two as-
sociate classes [1] is said to be triangular [2], [3] if the number of treatments, v,
is n(n — 1)/2 for some integer n, and the association scheme is obtainable as
follows: .

Let the v treatments be regarded as all possible arcs of the graph determined
by n points; let the first associates of any arc (= treatment) be all arcs each of
which share exactly one end point with the given arc; let the second associates
of any arc be all arcs each of which does not share an end point with the given
arc and does not coincide with the given arc.

Then the following relations hold:

(2.1) The number of first associates for any treatment is 2(n — 2).

(2.2) If 6, and 6. are two treatments which are first associates, the number
of treatments which are first associates of both 6, and 6, is n — 2.
(2.3) If 6, and 6, are second associates, the number of treatments which

are first associates of both 6, and 6, is 4.

It is natural to inquire if conditions (2.1)-(2.3) imply that thev = n(n — 1)/2
treatments can be represented as arcs on the graph determined by n points in
the manner described above; i.e., if (2.1)-(2.3) imply the triangular association
scheme. This is known ([3], [6]) to be so if n = 7, 8.

We prove the result for 7. Actually we will prove the result for all # except 8.
For n = 8, the theorem is false, as we shall demonstrate by exhibiting a counter-
example. The derivation of this counter-example and a procedure for finding all
counter-examples are given in [4]. They are based on an elaboration of the de-
vices used in Sections 3 and 4 of this paper. Other illustrations of the use of
these devices are contained in [5].

Henceforth, we assume (2.1)—(2.3).

3. The Association Matrix. Number the treatments from 1 to » in any order.
Define the square matrix 4 of order v by
0 ifi=yj
(3.1) A = (a;5) = 1 if 7 and j are first associates
0 if 7 and j are second associates
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Note that a;; = a;; . Nextlet B = AA” = A? since A is symmetric. From (2.1),
we have b;; = 2(n — 2). From (2.2), we have b;; = (n — 2) if 7 and j are first
associates. From (2.3), we have b;; = 4 if 7 and j are second associates. If we
let J be the square matrix of order », with every entry unity, and I the identity
matrix of order », then the foregoing may be summarized by

(32) A*’=2n—2)I4 (n—2)A+4(J — 1 — A)
= (2n —8)I + (n — 6)A + 4J.

All the matrices appearingin (3.2) can be simultaneously diagonalized. Imagine
(3.2) in diagonal form, and one sees that the diagonal entries relate the eigen-
values of the matrices.

Now J has the eigenvalue v, corresponding to the eigenvector (1, 1, -+« , 1);
all other eigenvalues of J are zero. The eigenvector (1, 1, --- , 1) clearly corre-
sponds to the eigenvalue 2(n — 2) of A. Any other eigenvalue, a, of A corre-
sponds to a zero eigenvalue of J; hence (3.2) implies that « satisfies the equa-
tiona® = (2n — 8) + (n — 6)a, sothat « = —2,0ora = n — 4.

The trace of A is zero, since a;; = O for all 7; hence the sum of the eigenvalues
of A is 0. If %k is the multiplicity of » — 4, it follows that 0 = 2n — 4 4
k(n —4) 4+ (v — k — 1) (—2). So the eigenvalues of 4 are

(a) 2n — 4 with multiplicity 1, eigenveector (1,1, -+, 1)
(3.3) (b) n — 4 with multiplicity » — 1
(¢) — 2 with multiplicity v — n.

Note that » > n, so —2 is the least eigenvalue of A.

This is the only use we shall make of (3.3) (¢) in the present paper, although
it plays a major role in the analysis of the exceptional cases for n = 8. We shall
make no use of (3.3) (b).

In what follows, we shall use two well-known properties of eigenvalues and
eigenvectors of symmetric matrices, and for ease of reference, we now list
them explicitly.

Let M be a (real) symmetric matrix whose least eigenvalue is 8, and whose
maximum eigenvalue is @« > B8, with x an eigenvector corresponding to «. Let
K be a principal submatrix of M, § the least eigenvalue of K and y an eigenvector
of K corresponding to 8. Then

(3.4) 8 =6

and

(3.5) if & = B, then y is orthogonal to the projection of z on the subspace
corresponding to K.

From (3.4) and (3.3) (c) follow the fact that a principal submatrix of A
cannot have an eigenvalue less than —2. From (3.5) and (3.3) (a) and (e¢),
if —2 is an eigenvalue of a principal submatrix of A, then the corresponding
eigenvector has zero as the sum of its co-ordinates.
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4. The Case n = 8.
LemMma 1. A does not contain

(4.1)

=OoO OO
= OO
o OO
O = =

as a principal submatrix.

This was proved by Connor [3] for n = 9. We now prove it for all n = 8. We
contend that A cannot contain any of the following three square matrices of
order 5, each of which contains (4.1) as a principal submatrix:

(4.2) (4.3) (4.4)
00011 00011 00011
00011 00011 00O0T11
00011 00011 00O0T1OPO0
11100 11101 11100
11100 11110 11000

The impossibility of (4.2) and (4.4) follows from (3.4), since each has an eigen-
value smaller than —2. Matrix (4.3) has —2 as an eigenvalue, with
(1,1,1, —1, —1) as corresponding eigenvector, violating (3.5).

Let us denote by 1, 2, 3, 4 respectively the rows and columns of A that pro-
duced submatrix (4.1). Because (4.2) and (4.3) are impossible, it follows that
4 is the only treatment that is a first associate of 1, 2, and 3. Hence, by (2.3),
there are exactly nine additional treatments, each of which is a first associate
of two of the set 1, 2, 3. Since (4.4) is impossible, it follows that each of the nine
is a first associate of four. Together with 1, 2, 3, this yields twelve treatments,
each of which is a first associate of 4. From (2.1), we must have 12 < 2n —4,
which is impossible if n < 7.

Now suppose n = 9. Treatments 1 and 4 are first associates, and, by (2.2),
there are n — 2 first associates of each. We have previously encountered 6,
three of which are first associates also of 2, and three of which are also first
associates of 3. Hence there are n — 8 additional ones. Similary, there are n — 8
additional first associates of 2 and 4, and n — 8 additional first associates of
3 and 4. Hence, from (2.1), 2(n — 2) = 12 4+ 3(n — 8), which is impossible
forn = 9.

Next, we prove ‘

Lemma 2. If 1 and 2 are second associates, 3, 4, 5, 6 first associates of both 1 and
2, then (after renumbering, if necessary) the principal submatriz of A corresponding
to rows and columns 1-6 is

(4.5)

Pt e ek e © O
— = OO
— = O O = =
— O O = =
SO
O O o =
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Proor: Consider the 2(n — 2) treatments which are first associates of 3.
None of them can be second associates of both 1 and 2, for this would violate
Lemma 1. Hence, if we let ¢ be the number of first associates of 3 which are first
associates of 1 and 2, we have from (2.1) and (2.2),t + (n — 2 — t) +
m—2—1t) =2(n—2) — 2 ort = 2. These two must be some two of
4, 5, 6, say 5 and 6. It follows that 3 and 4 are second associates, while 3 is a
first associate of both 5 and 6. The inevitability of (4.5) is now clear.

LemMma 3. Any matriz of form

00111111
00111100
11001111
(4.6) 11001100
11110010
11110001
1010100 =z
101001220

s not a principal submatriz of A.

Proor: If (4.6) were to exist, then z # 1. For 6 and 7 would be second associ-
ates, and, if x = 1, then 1, 3, and 8 would mutually be first associates, but this
contradicts Lemma 2. So we must take 2 = 0. But then 2, 7, and 8 are pairwise
second associates; 3 is a first associate of each of 2, 7, 8, and this violates Lemma
1.

Lemma 4. The matrix

00111111
00111100
11001111
(4.7) 11001100
11110011
11110000
10101000
10101000

18 not a principal submatriz of A.

Proor: All we want to show is that the other entries in (4.7) imply that 7 and
8 are first associates, not second associdtes as (4.7) alleges. If 7 and 8 are second
associates, then using the same reasoning as in the first part of Lemma 3, some
two of 1, 3, 5 are by Lemma 2 second associates. But this is not so in (4.7).

Lemma 5. The 2(n — 2) first assoctates of any treatment can be split into two
classes so that the n — 2 treatments of one class are mutually first associates of each
other; the n — 2 treatments of the other class are mutually first associates.

Proor: Let 1 be the treatment. Let 3 be a first associate of 1, 2 a second
associate of 1 and a first associate of 3, and 4, 5, 6 chosen so that we have the
submatrix of Lemma 2. In addition to 5 and 6, there are n — 4 other first associ-
ates of both 1 and 3. Each of these must be a first associate of at least one of
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5 and 6. Otherwise it, 5 and 6, would be mutually second associates, and 1
would be a first associate of each of the three, violating Lemma 1. Further, by
Lemma 3, each of these n — 4 treatments is a first associate of 5 or each is a
first associate of 6. Without loss of generality, say it is 5. By Lemma 4, these
n — 4 treatments are mutually first associates. Further, each is a first associate
of 3 and 5, which are themselves first associates, and thus 3, 5, and these n — 4
treatments are altogether n — 2 first associates of 1, which are mutually first
associates.

Of the n — 2 first associates of 1 and 4, 5 is in the class already described, 6
is not, and there are n — 4 others. These n — 4 are mutually first associates by
the same reasoning as above; they are entirely different from the previous
n — 4 of the first class, since each of those was a second associate of 4; each is
obviously a first associate of 6 as well as 4; so 4, 6, and these n — 4 treatments
constitute our second class. .

TuEOREM 1. If n 5= 8, then condition (2.1)-(2.3) characterize the triangular
assoctation scheme.

Proor: It has been shown by Shrikhande [6] that Lemma 5 implies Theorem
1.

6. The Case n = 8.

THEOREM 2. If n = 8, then conditions (2.1)—(2.3) do not necessarily imply
the triangular association scheme.

Proor: Here is a counter-example. Notice that the first principal submatrix
of order 5 violates the triangular association scheme.

1

COO0COHHOHOHOHOHMRHMRNOOOOOOHKMKMBZIOO
HHEHMHMHMOOHOHOHOHOOOOOOOOOHKMMEMROO
CORMHOFHOOOOOOHMHMOOOOOOHMIMHMO M -
HHOOOHOOOOHHOOHOOOOO O M IH O - -
OCHOFHFHOOOHMHOOOOHOOOOOOHO - - -
HOFROHFHOHFHFHFOOOOOOHOOOHOOO O I m m

COHHOHOOOOOOHHMROHKRRERHEREROOOO~ROO
P, OO OO0 OORHOOHORHHHNOMOORO® O
OCHOHMHOOOHHOOOOHOHFERHORMHOROOOO
HOHOHOHHOOOQOOOHOHKHOHRKHMRMRMNOOOO O
HHEHHHOOOHOHOHOHOOOORHREHMRNOOOOOO
COCOOHHFHOHOHOHOHMHOORKHREMRNOOOOOO
COCOHFHFHMFEEMEMEHMEHMHMOOROOOOOOOOOO ~
COOCOHHFOOOOOOOOOO O i b e 1 O
COHMHOFHOHOHOFRHOOHOHOOOHOOOHOM
COHHOHFHMFHOFOFROOHOHMFEHOOOOROOO K ~O
HHOOOHOHOHFHOOHOHHOHOOHOOOROO M
HHOOOHFHFOHOORMHOOHMHOOOROOORO MO
OCHOFHHOOHHOOHOHOHOHORHOOOHROOO
OCHOHHOHOOHHOHOOHHOOHOOOHHOO~O
HOHOHOMFRFOOHOHOHOHOHMHMHOOOHOOOO M
HOHOHOOHFHHOHOHOOHKHOHNOOOHOOO~O
COO0OOCOCOCOO OO HHHEEMHEHOOOMMHOO M MO -
COO0OOCOCOHHHMHOOOOHHFRHOHMOORMOO O -
OHHOOQOOOHMHOOHHOOOHOHOMRMOMHEOMHEMO
HOOHOOHHFOOOOHHOOOR HMOOMMMOOMMO
HOOHOQOCOOHHHMEMNOOOOOHOHMOOHMHO RO
OCHHOOOHHOOHMHOQOOOOHHOHOHOKMORMO
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NOTE

The results of this paper have also been obtained, using different methods, by Chang,
L. C.,“The Uniqueness and Nonuniqueness of the Triangular Association Schemes,” Science
Record, Vol. III, New Series, 1959, pp. 604-613. Chang has also shown that there are exactly
three counterexamples when n = 8 (“Association Schemes of Partially Balanced Designs
with Parameters v = 28, ny = 12, n, = 15 and ph = 4,” Science Record, Vol. IV, New
Series, 1960, pp. 12-18).



