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ARMED BANDIT PROBLEM
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1. Introduction. Let Ex I and Ex II be two experiments, the outcomes of
which are described by the two random variables X and Y. Let P(X = 1) =
p=1—-PX=0), P(Y=1)=¢q=1—-—P(Y =0) and 0<p, ¢ <1
An experimenter has to do n experiments, one after another, and at every step
he may choose between Ex I or Ex II. He does not know the values of p and ¢
and he wants to maximize the sum of all outcomes. Therefore he will choose a
strategy, i.e. a procedure which tells him which experiment to use at the kth
step as a function of his previous choices and the previous outcomes of the ex-
periments. The question how to find a suitable strategy is known as the problem
of the two armed bandit. For approaches other than the one used in this paper
see [1], [2], [4], [5] and [6].

We will measure the value of a strategy by a loss function. Let II; be the un-
conditional probability of choosing Ex I at the kth step. The expected value of
the performed experiment at the kth step will be

Mp+ (1—M)g=p—(p— A —1IL) =¢— (¢ — p)k.
We define as loss at the kth step:
max (p,q) — (Ip + (1 — M)g) = (p — @) (1 — IIk)
if p=qor (¢ — p)lIyif p = ¢. The loss L(p, q) for the whole game is then
(p—¢) 2 (1—T) or (¢—p)2 .

In L(p, q) and I:(p, q) the first argument is always related to Ex I. Let 0 =
max (p, q) and 7 = min (p, ¢); then

Lio,7) = (o = 7) 3 (1 = (s, 7))

and
L(r,0) = (6 — 1) 1; (7, o).

As we do not suppose any previous knowledge about p and g, it seems natural
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to use only strategies which are symmetric in Ex I and Ex II, i.e. for which
L(o, ) = L(7, ). Every strategy s can be made symmetric. Define s’ just as
s, but with Ex I and Ex II interchanged, and then choose s or s’ with prob-
abilities %, 3.

We give an example: Let s be: use Ex I all the time. The loss is L(p, ¢) = 0
for p = q and L(p, q) = n(q — p) for p = ¢q. The corresponding symmetric
strategy is: choose Ex I all the time or Ex II all the time with probabilities 3,
1; the loss is then L(p, q¢) = n|p — ¢|/2.

For a symmetric strategy L(s, 7) = L(7, o), and we can therefore write

g — T

(L) Lp,9) = 7

> (1 = s, 7) + hu(r, 0)).

This is also the loss for an arbitrary strategy if the possibilities p = o, ¢ = =
and p = 7, ¢ = ¢ have a priori probabilities %, £.-We shall always use (1.1)
as the loss-function.

Besides the strategy of the experimenter there is a strategy of ‘“nature”
which consists in choosing a pair p, gq. The use of (1.1) as loss function may be
interpreted in two ways.

First interpretation: Nature’s strategy is to choose a pair o, 7 and then to
play either Ex I with ¢ and Ex II with 7 or vice versa. The experimenter is
free to use any strategy.

Second interpretation: Nature is free to use any strategy but the experimenter
is restricted to symmetric strategies.

Let s be a strategy of the experimenter and let ¢ be a strategy of nature. We
will write L(s, t) in place of L(p, ¢q) in order to exhibit the dependence of L
on both strategies.

2. Statement of the theorems. In this paper we are interested in sequences of
strategies. Both, the experimenter and nature have to choose strategies for
every n. Let S = {s,} be a sequence of strategies of the experimenter and let
T = {t,} be a sequence of strategies of nature. This defines a sequence

{Ln = L(sn ) tn)}

of loss functions. We use the “order of infinity” of this sequence to construct
a “weak” loss-function I(S, T'). For \ large enough we have L, = o(n"). Now
let ‘

(2.1) I(8, T) = inf {\| L, = o(n")}.

The following theorems will be proved.
THEOREM 1. mingmax-I(S, T) = maxmmingl(S, T) = %, i.e. there are se-
quences Sy and To such that for every sequence S and for every sequence T'

1S, T) = U(S, To) = 3 = IS, To).
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An example of a sequence T is given by
(2.2) |Pa— gu| =mx +0(n);  Pa, oD

where m > 0and 0 < p < 1.

An example of a sequence S, is given by the strategies defined in [7], These
strategies are given by numbers a (a serves to construct a sequential plan),
and in order to get a sequence S, we must choose

(2.3) an = a-n' + o(n}), a > 0.

We will reserve the letters So and Ty for sequences of strategies for which
(2.3) and (2.2) hold.

Of course the strategies Sy will not be the only minimax strategies for the
weak loss-function I(S, T). There may be a large class of such strategies. To
pick an especially good one out of this class one has to use a stronger criterion
than [. -

TaEOREM 2. Let Ty = {130} be a sequence as defined by (2.2). Then we have
for every sequence S
(2.4) lim inf (L(s,, t)/7") = ¢, > 0.

C; depends on the values of m and p in (2.2)

CoRoLLARY To THEOREM 2. Let {t} be defined by | pn — ¢.| = 0.849 n™%,
Dn, @n — 3. Then we have for every S
(2.5) lim inf (L(sa , t)/n}) = 0.1876.

TuroreEM 3. Let {s\”} be the sequence of minimaz strategies as defined in [7)
(see also (4.2) in this paper). For these strategies, (2.3) s valid with a = 0.292
and we have for every sequence T
(2.6) lim sup (L(s{”, t.)/n') < 0.376.

TuroreM 4. Let Sy = {s&} be a sequence of strategies as defined by (2.3). Then
we have for every sequence T
(2.7) lim sup (L(s5, ta)/n}) < C: < =.

C, depends on the value of a in (2.3).

ReMARK: If the random variables X and Y of Ex I and Ex II are normally
distributed with common known variance, we can prove virtually the same
theorems.

Theorem 1 follows immediately from Theorems 2 and 3 or 4. The proofs of
Theorems 3 and 4 depend on results of [7]. The minimum over all possible C,
of theorem 4 is 0.96; therefore Theorem 3 is not merely a corollary to Theorem 4.
The proof of Theorem 2 is independent of [7]. The main idea of the proof of
Theorem 2 is as follows: Construct a new game which obviously gives a smaller
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loss than the old one and which is simple enough to allow the computation of
a best strategy. Then the new game can be used to obtain a lower bound for
the loss of the old game.

The author is very grateful to the referee for his valuable suggestions.

3. Proor oF THEOREM 2. We need a lemma.

LemMA. Let Z; (i = 1, 2, --- n) be n identically distributed random variables
with
E(Zin) = ma = mn + o(n™?),  Var (Zin) = o — o,

>0, E(Zin— E(Zin)|*) = b, > b.

Let further Uy® = > iu Zi, . Then (for n — ) we have
n 1
Ls p(u” <0) - [ ® (—Z‘ (x)*) dx
N k=1 0 o

where ® denotes the standardised normal cumulative distribution Sfunction.
Proor: Let

4= .%Z”:P(Ué"’ <0) — j‘:l@(—% (x)*) do

k=1

n
§ Z Ak n
K==l
where

k/n
neApg = \P(Ulﬁ"’ <0) — nf ® (—-? (:c)*) dz| £ 2.

(k—1)/n

As a first step we prove that n-A;., — 0 uniformly for all £ = nl. By a theorem
due to Berry and Esseen ([3], p. 201) we have
ba ba
P(UP" <0) — @ (-a% (k)’) < ca—ak_‘} Scsnto0.

n

3.1)

By the mean value theorem there is a &, with (k — 1)/n < &, < k/n s0
that nf¥ 1, ®(— (m/o)(z)dz = & (— (m/o)(&.n)}). Therefore

Ma 194 kin m, \3
o (- ) - [ #(-2@ ) e
Here ¢ = —(m/o)(k/n)} + o(n?) and @ = —(m/a)ehn. Now |a —a|— 0

uniformly in k and therefore B — 0 uniformly in k. This together with (3.1)
shows that n-A4x,, — 0 uniformly in k (for & > nt). It follows that

Dot Agn— 0

= (2«)‘*‘ f ¢ dt. = B.

and we have
()4 n

0<A< Y Aent+ 2 a2+ X A.—0.

k=1 ' k=[(n)}]+1 k=[(n)$141

This proves the lemma.
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We define a new game with a loss-function A so that

(3.2) inf L(s, t) = inf A(s, t)

for every fixed n and ¢. The new game will give the experimenter greater stra-
tegic possibilities.

We can play the old game in the following manner: At every step an umpire
performs Ex I and Ex II. The experimenter simply states whether he wants
Ex I or Ex II this time and then the umpire tells him the outcome of that ex-
periment which he had chosen and this outcome counts for the loss-function.

The new game will be played as follows: The umpire performs the two ex-
periments. The experimenter states which experiment he wants. Then the
umpire tells the experimenter the outcomes of Ex I and of Ex II. For the loss-
function, only the outcome of the chosen experiment counts, but of course this
time the information which the experimenter gets at évery step is greater. As
the experimenter is free to use this additional information or not he has all the
strategic possibilities he had before as well as some new ones. The set of values
A on the right side of inequality (3.2) contains the set of values of L on the
left side. Therefore the inequality is justified.

We will now show, that there is a uniformly best strategy in the new game,
namely to play whichever experiment is ahead so far.

In the old game the choice at a certain step will not only influence the gain
at this step but also the information available at the following steps. In the new
game the information can not be influenced by a strategy, so that the best thing
to do is to minimize the loss step by step. All we have to do is to get a strategy
which (at the & + 1th step) minimizes 1 — Hi4i(e, 7) + Miyi(7, ¢) or maxi-
mizes Iyy1(o, 7) — Ipya(7, o) where ¢ = 7 (see (1.1)).

The k& + 1th'step of a strategy is given by a function
f=fXy, - Ye; Y1, - Vi)

with 0 =< f =< 1. f gives the probability of choosing Ex I as a function of the
previous history and we have II;,; = E(f). In the new game X, --- X; and
Y, - -» Y are independent binomial random variables with parameters p and gq.
Since (3 fa1 Xi = p, D 4= Y: = ») is sufficient for (p, ¢) we may restrict our-
selves to functions of u and » alone. Therefore

Meni(a,7) = BE(f| o, 7) = gif(p, u)P'(:; X, = ”|6>P <§ Y: = y17>

with P Xi = p|o) = (ﬁ) (1 — ¢)*™ and similarly for y, », 7. It fol-
lows that

Moo, 7) = T, 0) = 23 16 (£) () 21 = 11 = 2=,

p=1 y=
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where Dy, = 1 — (7(1 — o)/o(1 — 7))*” 2 0if u> v and D,, =
Oif u < w.

This shows that we maximize Iy41(e, 7) — Ii41(7, o) by choosing f(u, ») = 1
for p > v and f(u, ») = 0 for p < ». For p = » we choose f(u, ») = % in order
to have a symmetric strategy. It follows that the best symmetric strategy
(regardless of the strategy of nature) is to play Ex Iif u > » and to play Ex I
with probability + when u = ».

Let X; — Y:= Z;and D iy Z: = Uy . If we use the best symmetric strategy
we have

Oy = P(Ux > 0) + 3P(Ur = 0)

The formula is correct even for k = 0 if we put Uy = 0. The loss-function A
is then (see (1.1))

o — T

n—1
A= 3 ;(I—P(Uk>0|0,’l')_‘%P(Uk'_“ol""r)
0
+P(Uk>OIT,U)'{‘%P(Uk:O'T,”))

Using P(Uy = 0|o, 7) = P(Up = 0|7, ¢) and P(Uy, > 0|1, o) =
P(U, <0|a, ) we get

(3.3) A=(a—f);io@(uk<0|a,f>+%P(Uk=o;a,f)>.

Let nature use Ty, i.e. let 0, — 7, = m-n? + o(n_*) and on;7, — p. U will
depend now on n and we write U{™. In (3.3) we drop the terms P(Ur=0]o,71)
and we write = in place of =. It then follows, that,

n—1
i, 2 m;li > P(UM < 0|o,7) 4 o(1).
k=0
For Ui™ the assumptions of the lemma hold and therefore

1
lim inf 7 An = m f ® (—’,L1 (x)*) dz,
o ]

n-»>0

where 8 = 2p(1 — p). As we have used the best possible strategy (say §) we
conclude that

w2 L(s, 1) = inf nHA(s, t0) = (s, t).

But then we have
lim inf (L(s, , t$)/n}) =2 ¢, > 0

with C; = mfi®(— ma'/s) da.

Proor or THE COROLLARY To THEOREM 2: C) attains its maximum for 8° = 1
(i.e. for p = 1) and m = 0.849. The value of the maximum is 0.187. This follows
by numerical computations.
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4. Proof of Theorem 3. We give some results from [7] which will be needed
in the sequel. The strategy treated in [7] runs as follows: At the first 2K steps
(K is a random variable) Ex I and Ex II will be used alternately so that we
have a sequence of random variables X;, ¥, X,, Y, -+ X3, Y. Let U, =
Dia(Xi — Y.). As long as —a < Uy < +a we make another pair of ex-
periments and so get Xy41, Yi41 . When U, = +a we continue for the remain-
ing n — 2k steps with Ex I and when U, < —a we do so with Ex II. In every
case, we stop after n experiments. A sequence of strategies for the experimenter
consists of choosing a number « for each n, and from now on s, always means
this kind of strategy.

It was shown in [7] that

(41) L, =n(e—n/@w+1) 4+ aw —1)/@w+ 1)’ =M

where ¢ = max (p, ¢) and 7 = min (p, ¢) and v = (¢(1 — 7)/7(1 — ¢)).
There are strategies s\ and ¢{” such that, for all s, and t. ,
(4.2) M, t) = M(sP, t) £ M(sa, t),

i.e. there are minimax strategies for the approximate loss-function M. For the
strategies s we have

(4.3) an = 0.292 0} + o(n}),
and for the strategies ¢{\” we have
(4.4) On — ™o = 1.89 07 + o(n™; On} Tn — %,
and
(4.5) us" — 9.06.
It is now easy to prove Theorem 3. We use (4.1) and (4.2) and get |
n2L(s, ta) < nM(s, t) < nM (s, ).
The last expression converges (using (4.3), (4.4) and (4.5)) to 0.367. Therefore
lim sup L(s(:: t) < 0.367.

6. Proof of Theorem 4. Now let s\ be a strategy as defined in (2.3) i.e. let
o, = an® + o(n?) and @ > 0. Then

(5.1) n'L(P, 8 = wM (D, t)
= n*(a — )/ + 1) + (a + o(1))(u™ — 1)*/(u™ + 1)°.

The last term is smaller or equal to a + o(1). To get an upper bound for the
term ni(c — 7)/(u™ + 1) we first show

Inu = (¢ — 7) In 5.
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From o = 7 follows w = 1. Therefore the inequality holds for ¢ = 7. Now let
¢ > 7. Because 7(1 — ¢) < % we have

(¢ =n"lhu= (e~ "I+ ((¢ = 7)/r(1 = 0)))
>(c—7)"'In(l+4(c— 7)) = mima"In(1+ 4z) = In5.
0<z<1

Therefore
ni(o- —)/(u™ 4+ 1) £ ’ﬂ}(a _ T)/5n*(v—r)(a+o(1))

< max z/5°°7® = (e-a-In5)"" + o(1)
z=20

This proves that
lim sup n M (52, t,) < C»

n->0

with C; = a + (aeln 5)7". Taking account of (5.1) it also proves (2.7).
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