A SEQUENTIAL DESIGN FOR THE TWO ARMED BANDIT

By WarLTeER VogGEL!
Universitit Tubingen and University of Chicago®

1. Introduction. Let the two random variables (r.v.) X and Y, with E(X) = p
and E(Y) = ¢, describe the outcomes of two experiments, Ex I and Ex II.
An experimenter, who does not know the values of p and ¢, has to perform a
sequence of experiments, and at each step he may choose between Ex I and
Ex II. He has to stop after n steps, and he wishes to maximise the sum of all
outcomes. His decision between Ex I and Ex II at the kth step will depend on
the corresponding decisions at prior steps and on the outcomes of these prior
experiments. We call a plan, which fixes his sequence of decisions according to
his previous knowledge, a strategy.

Robbins [6] shows that it is easy to find a strategy so that the arithmetic
mean of n outcomes tends (n — «) towards max (p, ¢) with probability 1.
Bradt, Johnson and Karlin [3] try to find a best strategy for fixed n rather than
asymptotically. They assume known a priors distributions for the values of p
and q. For other approaches see Robbins [7] Isbell [5], Bellman [2] and Vogel [8].

The purpose of this paper is to describe a class of strategies, which results from
the following kind of restriction. In the first 2k steps we perform each of Ex I
and Ex II k times. Then the rest of the n — 2k steps are made either with Ex I
alone or with Ex II alone. The decision whether to continue with Ex I or with
Ex II will be made with the help of a sequential probability ratio test for double
dichotomies. Therefore k is a r.v. that will be denoted by K when appropriate.

Strategies of this kind are not exceptionally good ones (in the sense of the loss-
function defined in Section 3). But when a strategy is applied in practice it may
be found economic to do only one sort of experiment for most of the steps.
Perhaps the equipment of the other sort of experiment can be used for other
purposes; perhaps the shift from one experiment to the other is costly. For such
reasons it may be quite natural to use only those strategies described above.
Another justification for treating this class of strategies are the results in [8],
for which the Theorems 2 and 3 of this paper are needed.

Section 2 contains some auxiliary material. Except for Theorem 1, which we
give in a slightly more general form than needed for the rest of this paper,
nothing here is new, but we found it convenient to summarize some definitions
and easy-to-prove formulas in one section.

The loss-function and an approximation to the loss-function will be derived
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in Section 3. Section 4 is devoted to a minimax theorem for the approximate
loss-function. In Section 5 we give some results for n — . It is assumed in
Sections 2-5 that the r.v’s X and Y are binomially distributed. In Section 6 we
consider a more general case.

2. Some remarks about sequential plans. Let Z; (z = 1, 2, 3 - - -) bea sequence
of r.v.’s with £(Z;) = m,;,and let | Z;| £ A < ». We make no assumptions
about the dependence of the Z;. Let N > 0 be an integer-valued r.v. with
E(N) < . We assume that E(Z;| N = n) = m; for i > n.

TrEOREM 1: From the assumplions made above it follows that

(&) - #(Em)

Proor: It is obviously sufficient to assume m; = 0 and to prove E( D 1= Z;) =
0. From E(N) < o it follows that 0 < nP(N = n) .< > e, kP(N = k) —0,
(n — ). Therefore

(2.1) |E(5:‘1 Z;|N =z n)P(N = n)| =< AnP(N = n) — 0 and
1E<iZ;IN§n)P(N;n)I§AE(N|N;n)P(N§n)

=AY kP(N =k)—0.
k=n

From

N N N

E(Zz,) = E(ZZ,-|N <n)P(N < m) +E<ZZ,~|N 2 n)P(N = n)
i=1 7=1 =1

and the last relation it follows that

(2.2) E(?;Z,-|N<n>P(N<n)——>E(§:Z¢).

i=1

AsE(Z;|N = k) = 0for z > k we have

E(f:Z¢|N<n)

i=1

(23) =E(2Z¢|N<n>+E(i§_1Zi|N<n>

i=1

Now

0= E(;Z>
E<§Z,~|N < n)P(N < n)+E(iZ,~|N;n)P(Ngn).

7=
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(2.1) shows that the last term converges to zero. The other term on the right
side converges to E( D i-1 Z;) because of (2.2) and (2.3). This proves the
theorem.

If the Z; are independent and identically distributed and if {N = n} is de-
fined on the first n Z; the theorem reduces to the well known formula

E(g Z;) = E(N)E(Z,)

We describe now a random walk with absorbing barriers. Let X; and Y;
(1=1,2,8, - -+ u) beindependent r.v.’s with P(X; = 1) = p = 1 — P(X; = 0),
P(Yi=1)=¢q=1—P(Y;=0)and0 < p,q < 1. Let further Z; = X, — ¥,
and Uy, = D51 Z;. We define some events (a is a positive integer).

A ={—a < U;< +afori <kand Uy = +a}, (k=12 ---u)

Asp = {—a < U; < +afori <kand Uy = —a}, (k=1,2,---4)
B, ={—a < U;< +afort £ pand U, = 3}
(v=—a+1,—a+2  -a—2a—1)

» B
CAi=2 A, A=A,  B= 3 B.

—a<i<a
We have P(A,:) + P(4;) + P(B) = 1.

Let p(1 —¢q) =7,¢(1 —p) =51 —7r — s =tandu = r/s. Here r, sand
¢t are the probabilities that Z; = 1, —1 or 0.

We will prove

LeMMA 1:

P(Ayi | Arge + A2p) = w/(u*+ 1) = 5
P(A, | Aip + Aop) = 1/(w*+1) =1 — -

PRrOOF: P(Ayx) = D, ck.r’s’t, where ¢, is the number of admissible paths
which the point (¢, U;) describes in the plane before reaching (k, a). The paths
have p steps up, o steps down and 7 horizontal steps with the conditions p +
o+ r=%kand p — ¢ = a. The sumfnation-range forris0< 7=k — a
By introducing % and « instead of p and o we get

P(A1x) = (r/8)(rs)** > ot (rs) ™™

and likewise

P(Asp) = (r/s)"*(rs)** 2 cint’ (rs) ™2
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Taking account of P(Aix + Asx) = P(A1x) + P(As) the lemma follows
immediately.
From Lemma 1 follows

P(4)) = 72 P(Asy + 4ss) = (1 — P(B))u™/(u® + 1)
(2.4) - ,
P(4,) = (1 — v>;P<Al.k + A24) = (1 — P(B))/(u* + 1).

We now define an integral valued r.v., K, by {K = k} = Ai1x + Az for
k < pand {K = p} = Aiu + Az, + B. An application of Theorem 1 gives

E(E (X + Y») — (p + QE(K) and

i=1

(2.5) x
E(Ux) = E (; (Xi — Y,-)> = (p — QE(K).

From (2.4) follows
E(Ux) = aP(A;) — aP(4y) + 2, vP(B,)

—a<<a

=a((u* = 1)/@*+ 1)1 - P(B)) + <Z< vP(B,).
As P(B) — 0 for y — o, we have E(K) = (p — ¢)"E(Ux) — o/(p — q)
((u* — 1)/(u* + 1)). Obviously E(K) is a monotone increasing function of
w so that

) < _Pf__ ua_—_l) .
(26) Y (u“ +1

In Section 5 we are interested in sequences of such random walks as described
above by a, u, Ux and K. In order to define a sequence of random walks let
n = 2u be an even number and let X" and Y™ (4 =1,2,3 -+ u) be inde-
pendent r.v.’s with P(X{” = 1) = p, = 1 — P(X{® =0)and P(Y{" — 1) =
g =1 —P(Y{” =0). We assume pn = ¢n, Pn — ¢ = mn ™ + o(nh), pa,
¢. — pand 0 < p < 1. Let a, be an integer such that

o = ant + o(n*), a > 0.
Putting p.(1 — ¢4)/gn(1 — pa) = u, we get
(2.7) up® — " (with v = exp m/p(1 — p)).
Proovr oF (2.7):
Inup® = a,ln <1 + J’"—_q—"—>
gn(l — pn)

mn

_ H b
= (an’ + o(n")) In (1 + o0 =)

+ o(n_%)) — am/p(1l — p).
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Formula (2.7) will be useful in Section 5.

Let the r.v.’s K and U™ be defined correspondingly to K and U, . We
want to evaluate the limit (for n — ) of n ' E(K™). In the following argu-
ment we do not give a proof but proceed heuristically. “Let the reader who
has never used this sort of reasoning exhibit the first counter example’ (see
[4] p. 395).

The point (k, n*UL™) describes a random walk in the plane. Absorbing
barriers are n U™ = -+a + o(1) and k = n/2 = p. K™ is the “time”
taken to reach the boundaries. We will now construct a suitable Wiener-process
-and compute E(T) where T is the time taken to reach the boundaries in this
Wiener-Process. Then we conclude heuristically that

(2.8) n'E(K™) — E(T).

We have E(n'U™) = n %E(X™ — ¥{") = k-m-n™ 4+ o(n™), and Var
(n_%Ulﬁ")) =n"'k Var (X{" — ¥{") &~ 2kp(1 — p)n~". Now let » — » and
k — o so that k/n = t is fixed. Then n U™ is in the limit normally distrib-
uted with mean ¢m and variance 2tp(1 — p). We will therefore approximate
n'U™ by a Wiener-process V, with absorbing barriers given by V, = +q
and by ¢ = 3 and with mean and variance as stated above. The formulas for
this simple kind of process are well known (see [1] p. 47). Let f(z, t) =

(4rp(1 — p)t) F exp — 2mz — m't i (—1)" exp — (z — 2as)*

4p(1 — p) o= 4p(1 — p)t’
then f(z, t) satisfies the diffusion equation
of o _
5 Tmap =P —p) 2%

and the boundary-conditions f(=+a, t) = 0. For the time T taken to reach the
boundaries * = Z=a the probability density is

a [+
g(t) = 5. f(z, t) dx
(see [1] p. 48) so that E(T) = [Yig(t) dt + [*21f(z, 1) dz. The first term is
related to absorption on the boundaries * = +a, and the second term takes
into account absorption on the boundary ¢ = }. Integration by parts gives

(2.9) E(T) = f * fo " f(x, 1) dt da.

(2.9) gives an expression for the limit in (2.8).
By the same heuristic argument we can get an expression for the limit of the
probability of the event

(2.10) B ={—a, < U” < 4an, k < n/2).

Let an = an' + o(n}), pp — o = mn™* + 0o(n™¥), a > 0, m >0, p,, g — p
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and 0 < p < 1. It then follows that
+a
(211) P(B™) > [ fD @

3. The loss-function. We come now back to the problem stated in Section 1.
let P(X=1)=1—P(X=0)=pand P(Y =1) =p=1—P(Y =0)
and let » = 2u be an even integer. X and Y are the two r.v.’s between which
the experimenter has to choose at each step and n is the total number of steps,
fixed in advance. The strategy runs as follows: Begin sequentially with pairs of
Ex I and Ex II (i.e. of X and Y) until a decision is reached to end this part of
the strategy and to continue with Ex I or Ex II alone. Thus, observe X;, Y,
in the first two steps, and then decide either to observe another pair or to con-
tinue entirely with Ex I, or to continue entirely with Ex II. While pairs are still
being observed we may describe the first 2k steps by-X1, Y1; Xa, Yo 5 -+ Xy,
Y. (all assumed to be independent). The decision at this point is based upon
Uy = 2 5a(X; —Y,) and an integer « > 0. If —a < Uy < +a, another
pair is observed if Uy = +a(= —a) we stop observing pairs and use only
Ex I (Ex II) for the rest of the n steps. Let K be the random number of ob-
served pairs (0 < K £ n/2). a, u (n = 2u) and the r.v.’s Uy and K form a
lay-out as described in Section 2 and we may use formulas (2.4)-(2.6).

The expected sum for all n steps, say W, is

K n n
W=E<Z(Xi+yi)>+'yE( Z Xi>+(1—’Y)E( Z Yi)-
“~ i=2R41 i=2K+1
Here v is defined as in Lemma 1, Section 2. The first term is related to the part
where pairwise observations are made, the second and third terms stem from
the possibilities to continue with Ex I alone or with Ex II alone.
Using Theorem 1 and Lemma 1 we get

=(p+QEK)+>p ~ (n — 2E(K))

(3.1) e

1
+ qm (n—2E(K)).

where r = p(1 — ¢) and s = ¢(1 — p).

The best possible expected outcome of the whole sum is n max (p, ¢q). We
define the loss-function L, = L(a, p, ¢) as L, = n max (p, q) — W. Let ¢ =
max (p, ¢) and + = min (p, g), then

n(a —-7)
n = - E
L w1 + (o 7')< > (K),
with v = ¢(1 — 7)/7(1 — ¢). We remark that the loss-function is symmetric
in p and ¢, i.e. that L(e, o, 7) = L(a, 7, ¢). A strategy simply consists in the
choice of an integer «(0 < a = n/2).
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Suppose, now, that a fixed n has been given and that we intend to use a strat-
egy, i.e. we want to choose an «. Our intention is to minimize L, . The question
of which a to choose cannot be answered unambiguously. When some knowledge
about p and ¢ in the form of an a prior: distribution is given, we can try to
compute the expectation of L, with respect to this a priori distribution. This
will be a function of « only. As « is an integer between 0 and n/2 there exists
at least one «, which gives a minimum. The actual computation will be difficult,
because no exact formula for E(K) is available. We therefore use an approxima-
tion. Let.

(o' —-7) u* — 1Y
(3.2) M, = M(a,0,7) = py + T + <m> .
From (2.6) follows M, = L, and for n — « (but « fixed) we have L, — M, —
0. Aslong as « is small compared to n, we will use M, as an approximation of L, .
We illustrate the use of M, by an example. Let (g, ¢) be either (0.6, 0.4) or
(0.4, 0.6) and n = 100. Then ¢ — 7 = 0.2 and u = 2.25. An easy computa-
tion shows, that & = 3 is the only integer that makes Miyp a minimum. Since
a is small compared to 7, the approximation is justified.

4. A minimax theorem for the approximate loss-function. In this section we
are concerned only with the approximate loss-function M,, and we regard o
not as an integer but as a continuous variable (0 < a < n/2).

THEOREM 2: For n = 4 we have

min max M(e, ¢, 7) = max m1n M(a,o,7)

a o, 7,7

We will prove the theorem by showing

(4.1) M(an,0,7) £ M(an, 00, ™) S M(a, 00, 72).
TueoREM 3: The asymplotic behavior of an, o, and 1, is given by an = an'
+ o(n') witha = 0292 -+ ;00 — 7, = mn? + o(n™) withm = 1.89 --- ,

Ony Ta — 5 and uy™ — 9.06 - - - .

We prove Theorems 2 and 3 together and proceed in several steps.

(i) M, is monotone increasing in (¢ — 7) and we compute max(a - 7)
under the condition ¥ = constant. We find max (¢ — 7) = (! — 1)/ (W + 1)
and ¢ = 1 — 7 = u!/(4} + 1). Then (4.1) is equivalent to

Mo, u) = M(ans un) = M(a, un),

3 a 2
n u — 1 uw —1
Mayu) = u——l—1<u*_—l—1) N “<u«+ )
(ii) The saddle-point of M(a, ) can be obtained by setting
oM oM

da ou

where
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We will show that these equations have a common solution, e, , u, , that (under
(iii) and (iv)) a, gives a minimum for M («, u,), and that u, gives a maximum
for M(an , u).

Setting Zi[ = 0 gives (after division by (u* + 1) *u® ln )
(64

(u“—-l)z_ w =1 ' —1
(4.2) CITeY nu*—|—1+4au——°‘+1_o'
. oM . o asl) a —
Setting v 0 gives (after division by cu® ™ (u* + 1)7%)
3/ a 3 a
w(u® 4+ 1) uw -1 ut =1
(4.3) nau“(u*-l— e nu*_*_ i +4au°‘+ 7= 0.

From (4.2) and (4.3) it follows that
n((w = 1)/ + 1)) = (a(u — 1) = 1)*)/(@(u* + 1) In u).
This, introduced in (4.2), gives

u—1_ v 41 4
Wlnu welnue  wue—1"

(44)

We now rewrite (4.4) and (4.2), but set u* = z, thus
u—1 =41 4

(45) whnu zhnz ' z—1’

3 2

u -1 _(z-1) z—1
(4.6) n(u*_i_l)lnu— = +4x+llnx.

A simultaneous solution of (4.5) and (4.6) would yield a simultaneous solu-
tion of (4.2) and (4.3), which is desired. Now, the left side of (4.5) is a mono-
tone increasing function of u. As u ranges from 1 to « the left side ranges from
1 to « also. The right side of (4.5) is a monotone decreasing function of z.
Let ¢ be the unique solution of

(4.7) l1={z+1)/(zlnz)) + (4/(z — 1)), ¢c=9.06---

so that (4.5) defines a function, z = A(u) say, which is monotone decreasing
from ¢ to 1.

The same kind of argument shows that (4.6) defines a function, z = B(u)
say, which is monotone increasing from 1 to «. So the two functions have
exactly one point in common. Its abscissa is %, and its ordinate, z, = ug",
gives a,. This shows that there is exactly one pair, u,, a,, which satisfies
oM _ oM
da  ou

(ili) We show that M(a, u,) has a minimum for & = a, . The left side of
(4.2), times a positive factor, is just dM/da. This left side is monotone increas-

= 0. It is easily seen that 0 < u, < « and that 0 < a, < n/2.
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ing, therefore it is negative for @ < a, and positive for @ > @, . Then this is

true for E;il also and M has the desired minimum.
a

(iv) To show that M(a,, u) has a maximum for w = u, is a bit more diffi-
cult, and, before doing so, we investigate the behavior of a, as a function of n.
The function z = B(u) depends on n and we will write it as B,(u). As is seen
from (4.6), the following holds for all w > 1: If n; > n, then B,,(u) > B,,(u)
and if » — o then B,(u) — . It is therefore clear that, if n — o, then u,
is monotone decreasing towards 1 and A (u,) is monotone increasing towards .
Now A(u,) = z, = up" and

(4.8) a, = In z,/In u,

so that a, is monotone increasing in n.
For n — « and u — 1 the left side of (4.6) may-be approximated by

(n1In® u)/4

and the right side (as x — ¢) by a constant. From this we see that In u, = bn~?
and from (4.8) that a, & an', where b and a are constants. A more careful
examination gives In wu, = bn? + o(n_*), On — T = mn 4 o(n_*) and
o, = an® + o(n*).

A numerical computation shows that «s > 1. As n = 4 was assumed, we
may use o, > % in the following proof that M(«, , ) has a maximum for v =
Uy .

‘;—]‘—j is, aside from the positive factor cu®*(u® + 1)72(u! — 1) + 1)7,

given by

(w*+ n* <u°‘—1)<u’+1)
nau“(u—l) n+ da wur+ 1/\ut —1/°

The first term is monotone decreasing in u, the second term is constant, and,
for « > 1, the third term is monotone decreasing also. But then % goes from

positive to negative values at v = u,, which is what we wished to show.

(v) The next step is the determination of the constant in n*a, — a. From
(4.7) we find ¢ = o = 9.06 -+ . Then (4.6) gives, for n — =, 1 n In’u, &~
(c—=1)%¢"+4(c—-1(c+1)"Inc=1421--- or In u. ~7.54 n* and
by (4.8) we have

an =~ (Inc)/7.54 = 0292 --- = a.

In a similar way it can be shown that (¢, — ra)n! > m = 1.89 --. . Fur-
thermore, we have 2, = us" — ¢ = 9.06, andfrom e, = 1 — 7, and g, — 7, —
0 it follows that ¢, , 7» — %. Thus Theorems 2 and 3 are proved.
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In order to compute a, = a(n), we first get x = A(w) from (4.5). In for-

mula (4.6), or
_G@-1) (x—l) /u*—l
__.;___-}-4 1 Inx mlnu,

we put * = A(u) and get n = n(u). Formula (4.8), or o, = (In 4(%))/In u,
gives @ = a(u). So we have gotten a representation of a(n) in terms of the
parameter u. This allows us to compute a(n)n_’. We find n*a(n) = 0.292
for n = 100, and for » = 70 the third decimal is influenced for the first time by
two units. The whole computation was made with a slide rule. n *a, changes
only slowly with n. We therefore propose to compute the sequential plan (for
n = 100) by the simple formula

an = [0.292 n}).

M, is a good approximation only as long as P(B'™) is small (For the defi-
nition of B™ see (2.10)). The asymptotic behavior of ay, , o, and 7, is such that
we can apply (2.11), which shows that P(B‘™) does not vanish in the limit.
Therefore M, should not be used asymptotically if both the experimenter and
nature use the strategies derived in this section.

6. The loss-function as n — . In the previous section we used the approxi-
mation M because no exact formula for the truncated sequential procedure is
available. If the number of steps tends towards infinity the random walk will
become a Wiener-process and we can use the results from the end of Section
2. In this way, we will get another approximation for L, , valid when n is large.
Let

an = an® + o(n’), a > 0,
on — Ta = mn + o(n_’), Ony Tn —> D, 0<p<l1

(an , on and 7, have now different meanings than those in Section 4).
THEOREM 4: lim,.. n_’}L,.(a,. , 0n, ™) = Le(a, m, p), where L., is given by
Formula (5.1) below.
Proor:

— } %n (n)
nL, = (o0 = ma)t’ + (o0 — )0 <un I)E(K ) .

usr + 1 up® + 1 n
We use (2.7)-(2.9) and get
(5.1) Lo =m@ + 1)+ m@ — 1) + 1)7E(T),

where v = exp (m/p(1 — p)) and E(T) is given by formula (2.9).
L., has a cumbersome formula because E(T') has one, and it would be worth-
while to try to find a value @y which gives a saddle-point, i.e. for which

Lw(ao y m, p) é Lw(ao y Mo, po) *<—" Lw(ay mo , pO)
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Then a = am’ could be used as an approximation to a minimax strategy.
We can make only one step in this direction, namely we can prove that L, is
monotone increasing in m for fixed » and a.

The first term of L., , m(v* 4 1)7", surely is monotone increasing and we will
show that mE(T) is also. Putting 2mt = \, we get

mE(T) = m/:a /:f(x, t)dt dx = f:z j;m (7r 3(—1——_—2)—))—% exp

2m
N ed S S N SR I CPRR k) M
8p(1 — p)/m +== 21 = p)/m '

This shows that, if v = exp (m/p(1 — p)) is fixed, then mE(T) is monotone
increasing in m (the integrand is positive and depends only on v).
The maximum of m, if v is fixed, iS Mmax = (In v)/4. Putting m = Mmax

(and consequently p(1 — p) = 1) we get

Lo = (Inv/(4(v* 4+ 1)) +1Ino((* — 1)/(* 4+ 1))E(T),
with

+a py 1.2 400

B = [ [ ey ep - BRI S gy

—a 0 §=—00

_(z = 2as)?

; dt dx.

Here L., is a function of » and a only. We strongly suspect, that this function
has a saddle-point, but we did not succeed in proving it.

6. Generalization to other random variables. In order to generalize the
procedure to other than binomial r.v.’s we have to make strong assumptions
about the mathematical form of their distribution functions. Let

PO s0) = [ f@ndu), BT®) = pt)

and

In f(xy tl)f(y) tZ)
f(il?, t2)f(y7 tl)

We make the following two assumptions:

= z(x, Y; tl ) t2)

(61) z(x, Y; tl ) t2) = g(tl ) tz)h(l', 21/);
where g does not depend on & and y and % does not depend on ¢ and #, ;
(6.2) g(ti, &) > 0 whenever p(4) > p(&).

Now let the outcomes of Ex I and Ex II be described by the r.v.’s V(¢) and
V(&) so that X = V(#;) and ¥ = V (&), and that the density for the pair Ex I,
Ex II is f(=, t)f(y, t.). Besides this hypothesis H; we consider the hypothesis
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H; that the pair Ex I, Ex II has the density f(x, t:)f(y, t1), i.e. that X = V(ts)
and Y = V(#). All computations will be done under H;.

Let Z = g(t, t)A(X, Y) and Uy = D iuZ;. The Z; are independent
realizations of Z. We consider the following random walk in the (k, ») plane.
The walk starts at (0, 0). Absorbing barriers are (i) u = a and (i) v = —a.
There should be a third absorbing barrier at & = n/2 (n is assumed to be even),
but we do the following computations without regard to it, and therefore get
only approximations. As long as the walking point is not yet absorbed, its
general position is (k, Uy). The usual approximation for the probability of being
absorbed at (i) isy = ¢*/(¢" 4+ 1) (see [1], p. 95). The conditional probability,
v say, for absorption at (i), provided the walk ends after k steps, is approxi-
mately v, = v. As this may not be well known, we prove it.

The hypotheses H; and H, are such that v;(H;) = 1 — ~,(H;) and P(K =
k| H,) = P(K = k| H,). Here K is the random number of the step at which
the point is absorbed. We define the event @& as

k
C={U2aqU;<a for i<k} ={Hf(Xi;tl)f(Yi;t2)
=1

k
= ¢ [1f(Xi,)f(Yi,t); Us < afori < k}.
i=1

Then, for all k with P(K = k) = 0,

v P(K =k) =P(a|H,) = /agf(xntl)f(yi ) H du(z;) du(y,)

2 ¢ [ I1#Gos, )/, ) 1T du(e) du(y) = Pla| i)

= ¢"(1 — y,)P(K = k).
It follows that vi = €*(1 — v&) or v = €*/(¢" + 1), and therefore

/(" +1) =y = Ig')’kp(K =k) z /(" + 1).

But then v, = €¢"/(e" + 1) = +.

A strategy is as follows: we first take pairs X, Y of observations, say & times,
and the rest of the n — 2k observations are made either with X alone or with
Y alone. The number & and whether to continue with X or with ¥ is given by
the sequential plan. (We choose X when the random walk stops at (i)).

The expected outcome W of all n experiments is approximately

(6.3) W = (p(t) + p(L))E(K) + (n — 2E(K)) (vp(tr) + (1 — v)p(t)).

This follows in the same way as equation (3.1).
Our strategy is completely symmetric in the treatments of Ex I and Ex II.
The loss L = n max(p(t1), p(t2)) — W does not change when the names of
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the experiments are changed. We therefore may assume that p(t) = p(:)
and we compute the loss under this assumption.

n(p(t) — p(t)) | alp(h) — p(t)) (& — 1\
e ¥1 T BZH) (ea+1>

where the relations E(K)-E(Z) = E(Ux) = a(e” — 1)/("+ 1) and y =
¢"/(e" + 1) have been used.

To use the strategy practically we must be able to compute Z from X and Y;
i.e. g(t , t2) must be known. As it is essential that no complete information about
t; and £, is available, we proceed as follows:

Let a = ag(tl , t2), draw a plan with absorbing barriers at 4 = =4 « and use

= > %.17Z,,(withZ = h(X, Y)) in this plan. This means only a change of
scale (for ¢ > 0). Then, with u = exp g(#, t), we have

n(p(t) — p(t)) | alp(t) — p(t)) <u - 1)2
ur + 1 EMhX,Y)[H) \u=+1/ -

Now our strategy is feasible as soon as we have decided which « to use, for
the functional form of A is known. The loss is a function of our strategy « and
of the pair ¢, ¢ (but not of the ordered pair).

To give an example, let f(z, t) = (21r)_” exp — (¢ — t)?/2. Then z =
(i — t)(x — y). We choose g =, — t;and b = z — y for then ¢ > 0 when-
ever p(t;) = &, is greater than & = p(f). Further

L=n(l—t)/(w+1)+ au* — 1)(u*+ 1)

with % = exp(fy — ) is the loss computed under the assumption & = ¢,.
Without assumptions about ¢ and ¢ the loss will be

=nn/(u* + 1) + a(u® — 1)*(u*+ 1)*

with 9 = |t — &;| and u = exp ».
We can easily find a minimax solution. The maximum of 7 if « is constant,
1S Pmax = In w. Inserting this in L we have

(6.4) L=nhu/(u*+1) +au® —1)>w*+1)"

Now the formula

L =

IJ=

b
e AR e R N

from Section 4 (at the end of (i)) gives, as n — « and v — 1,
M~nlnu/4(u® + 1) + a(u® — 1)*(uw* + 1)7%

and it was shown that there is a minimax solution a.n™* — 0.292. A comparison
with (6.4) gives the following minimax solution for the above example:

a = 0.292 (4n)! = 0.584 n’.
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For another example,let P(X = 1) =p=1—P(X =0)and P(Y =1) =
¢ = 1 — P(Y = 0). Let the likelihood-quotient be @, then InQ = (z — y) In
(p(1 — q)/q(1 — p)). With u = exp g(p, ¢) = p(1 — ¢)/¢(1 — p) for p >
gand u = q(1 — p)/p(1 — q) for p < gand with ¢ — 7 = | p — ¢ | we get
(3.2) as loss-function.
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