ABSTRACTS OF PAPERS

(Abstracts of papers presented at the Eastern Regional Meeting of the Institute, April 21-22,
1961. Additional abstracts appeared in the March, 1961 issue.)

6. Tables of Minimum Functions for Generating Galois Fields GF (p"). J. D.
AvaneN, Case Institute of Technology. (Introduced by I. M. Chakravarti.)

A polynomial f(z) of degree n irreducible in the field GF (p) where p is a prime number,
is called a minimum function, if a root w of the equation f(z) = 0, serves as a primitive
element of GF (p~), that is, w® = 1, @, w?, -+ , w?" 2 are the p» — 1 non-zero elements of
GF (p*). It is known that for the GF (p»), there are ¢ (p — 1)/n minimum functions, where
¢ is the Euler function, p a prime, and n an integer. Minimum functions were very success-
fully used in the past in constructing sets of mutually orthogonal Latin squares, balanced
incomplete block designs, confounded and fractional factorial designs. Recently these have
found a new application in the construction of error-correcting codes. While searching for
a minimum function of GF(133%), we noticed a lack of comprehensive tables of minimum
functions in the published literature. A program has been written and all minimum funec-
tions generated for a fairly comprehensive set of values of p and n.

7. Testing to Establish a High Degree of Safety or Reliability. F. J. ANsCOMBEE,
Princeton University and Bell Telephone Laboratories. (Invited paper)

We are concerned with the possibility of establishing the safety of a weapon or the re-
liability of a component or device by testing a large number of specimens under some stand-
ard operating conditions and demonstrating that the proportion of failures, p, is very
small. When possible, a fully economic treatment of such a problem is to be desired, in
which the expected loss from wrong decisions is assessed and balanced against the cost of
testing. But sometimes a noneconomic type of requirement must be considered, such as:
(A) The device will be accepted for service only if the test results permit an assertion with 99%
confidence that p < 1/2000. Most statisticians will interpret such a requirement, by analogy
with the definition of a confidence coefficient, as follows: (B) The acceptance rule must be
such that, for all values of p > 1/2000, the least upper bound to the chance of acceptance = 1%,.
But it is suggested that the following weaker interpretation is sufficiently stringent and
more appropriate: (C) The device will be accepted only if the test results justify fair betting
odds of 99:1 that p < 1/2000. These odds of 99:1 are to be the final betting odds of an ob-
server who before the trial begins is open-minded and unprejudiced. A suitable prior prob-
ability distribution for p, relating to such an observer, is proposed, and an acceptance
boundary for sequential testing is obtained. In order to complete the specification of a
sequential rule of procedure, it is necessary to add a second boundary, for abandoning the
trial when the cost of continuing seems excessive. Possible ways of doing this are discussed,
and a boundary based on a detailed economic analysis is developed. Because the acceptance
requirement (C) is probabilistic (Bayesian), the validity of the acceptance boundary is
not affected by the introduction of a boundary for abandoning the trial.

8. Extreme Values in Gaussian Sequences. SIMEON BermAN, Columbia Uni-
versity.

The first theorem extends a result of Rényi (1958). Let (2, @, P) be a probability space
and {X,} a sequence of independent and identically distributed random variables defined
on the space. For each n, let Z, = max (X,, .-+, X»); suppose that Z, has a limiting
distribution. If Q is another probability measure on @ which is absolutely continuous with
respect to P, then Z, has the same limiting distribution under @ as upder P. An applica-
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tion to a nonstationary Gaussian sequence is given. The second theorem concerns a sta-
tionary Gaussian sequence {X,}. Conditions are given on the covariance sequence which
are sufficient for the convergence in probability of max (X;, --+, X,) — (2 log n)?}to zero.
The conditions are satisfied by the stationary Gaussian Markov process.

9a. On the Foundations of Statistical Inference II (Preliminary report). ALLAN
BirnBauM, New York University. (By title) (Abstract printed in the
December, 1960 issue, p. 1216.)

9h. Some Theory and Techniques for Robust Estimation (Preliminary report).
ArvraN BirnBauM, New York University.

Let f(z, 0, v) be the density function of sample point x, depending on real parameter 8
and any (nuisance) parameter v of specified ranges. For any given estimator 6* = 6*(z)
of 6, let r (0, v) denote the mean-squared-error (m.s.e.) (or alternatively the variance when
it is useful to restrict consideration to unbiased estimators). Admissibility of 6* (possibly
in a restricted class of estimators) is defined as usual. 6* is called robust (over the specified
range of v) if for each v’ there exists a corresponding estimator, admissible when v = '
is known, with m.s.e. r(6, v'), such that r(8, v')/r (6, v') is near unity for all 6. The degree
of attainable robustness depends on the form of f(z, 6, v), and its determination is of in-
terest along with the characterization and construction of robust estimators. It is appro-
priate here to call an estimator admissibly robust if it is simply admissible. (Problems of
robust confidence limit estimation and testing, and: other formulations of point estimation,
can be discussed similarly, taking r as a possibly vector-valued risk function representing
relevant error-probabilities.) Admissibly robust invariant estimators of a location param-
eter 6 are characterized (as having a modified Pitman structure), and problems of comput-
ing r’s and attainable robustness are discussed. Under restriction to unbiased estimators
linear in ordered observations, admissibly robust estimators are characterized, and fairly
tractable theoretical and computational methods are illustrated.

10. Bayes Rules for the Problem of Choosing the Largest Mean (Preliminary
report). Ricaarp P. Branp, University of North Carolina, ANp Davip
B. Duncan, Johns Hopkins University.

Random samples of equal size m are drawn independently from n normal populations
with the same variance ¢2. A Bayes rule is derived for choosing a superior subset of popula-
tion means so as to contain the largest. The loss is the sum of losses for each of the means
involved, these being: zero for the largest mean if chosen, k5 if not; ko for an inferior mean
if chosen, and zero if not; where § is the difference of the mean concerned from the second
largest or largest mean respectively and %1 > ko > 0. The population means have inde-
pendent identical normal prior densities with variance y%?2/m. Rejection from the superior
subset depends on the differences of the sample mean concerned from the largest sample
mean, the second largest and so on, the dependencies rapidly diminishing. The differences
necessary for rejection depend on the loss-ratio k = ki/k, and the prior variance ratio v?
and, notably, diminish slightly with n. These are tabled for n = 3, ¢* known. A conserva-
tive-near-Bayes rule with rejection depending only on the difference from the largest sample
mean is also presented with tables for all » and ¢? unknown.

11. Iterated Steepest Ascent on Ellipsoidal Contours. R. J. BEUHLER, B. V.
Suan, AND O. KEMPTHORNE, Towa State University.
An arbitrary quadratic response in n variablesy = ¢y + S biw 4+ D Y avr; havmg

a unique minimum or maximum may w1thout loss of generality be replaced by y = 3 st
in which &1 2 as = +++ 2 an > 0; a7 bemg equal to the 7th shortest axis of one of the
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family of similar ellipsoidal contours centered at the origin. Starting at an arbitrary point
P, proceed rectilinearly in the direction of the gradient at P, until a minimum of y is found
at P, . Iterate to obtain a sequence P, , Py, P;, - - - of points having responses y1 ,y2,¥s, ***
converging to zero. The relative success of the mth step can be measured by the smallness
of om = Yms1/ym . For n = 2 it is shown that: (i) p1 = p2 = p3 = -+, so that y» con-
verges in a geometric progression to zero. (ii) The ‘least favorable’ starting points on any
contour occur where tangents are at 45 degrees to the axes. (iii) At these points one has
pmax = (12 — 1)2/(r2 4+ 1)? where 72 = a1/as . For arbitrary n it is shown that: (i) p1 =
p2 = p3 < --- 80 that the rate of convergence never improves. (ii) This rate however is
never worse than that associated with the ‘‘least favorable’’ starting point, which occurs
in the two-dimensional subspace containing the longest and shortest axes. (iii) Starting at
this point pi = pmax = (2 — 1)2/(r? + 1)? where 72 = a1/an .

12. Steepest Ascent Partan on Ellipsoidal Contours. R. J. BueHLER, B. V.
SuaH, AND O. KEMPTHORNE, Iowa State University.

In the method of parallel tangents (PARTAN) the ambiguous directions at P; and P,
(and in n dimensions at Py, Ps, --- , Ps._4) can be resolved by proceeding normal to the
corresponding tangent planes (steepest ascent). The resulting procedure is invariant under
translations (z’ = z + ¢) and rotations (' = Uz, U orthogonal) but not under changes
of scale (z' = Az, A diagonal). Thus a general quadratic response may be represented in a
canonical form y = Y1 a;jx}(e; > 0). Let P, be parametrized by squared direction cosines
2 = aix}/Y ajz;, using the z; values at P;. Define S; = > alli(j = 0,1, ---) and
Apn = m X m determinant with (An);; = Siyj—2(m = 2,3, --). It is shown that the re-
sponse at Psn_s iS Yem_z = Y1Am/An (m = 2, 3,-++), where A, is the cofactor of (Anm)u .
For any given n, m and «’s the ‘“poorest’”’ (least fortunate) P; has been determined ex-
plicitly by locating all maxima of A,/A) . Typical results are (i) In n = 3 dimensions if
any two a’s are equal, ys = A; = 0 for any P,, and (ii) In n dimensions y./y, <
(r2 — 1)4/(r* + 6r2 4 1)2 for all P1, a; , where 2 = @max/amin , and the bound improves
if i # % (amin + amax) for every z. '

13. Asymptotic Relative Efficiency of Mood’s and Massey’s Test Against Some
Parametric Alternatives. I. M. Cuakravarti, F. C. LEoNE AND J. D.
AvaneN, Case Institute of Technology.

In an earlier paper the expressions for the exact power of Mood’s and Massey’s tests
have been derived. The numerical values of the power for several sample sizes and selected
values of the parameters were computed. The asymptotic relative efficiency of Mood’s
test against normal and rectangular alternatives was derived by Mood and Andrews. In
the present paper, the asymptotic relative efficiency of Mood’s test against the likelihood
ratio for the change in location of exponential distribution, is derived. Further, this is
carried out for all three alternatives for Massey’s test. The asymptotic powers are com-
pared with the exact powers to find out how large a sample size is needed before one could
use the expressions for the asymptotic power.

14. Several-Sided Kolmogoroff-Smirnoff Procedures. HerBrerT T. Davip, Iowa
State University. (By title)

Let D, be Kolmogoroff’s statistic and let X! and X» be the extreme order statistics.
Consider testing H, : F = F, by the non-parametric test based on max(D, , ki-F,(X"),
ke+ (1 — Fo(X'))), leading to a ‘“four-sided’’ acceptance region for the ‘‘stairway’’ portion
of the sample CDF. A pertinent distributional fact is as follows. Let the statistic
Sp(@1, -+, n), F continuous, have structure (d). Let Sa.s(21, -++ , 2,) be the statistic
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S corresponding to the uniform distribution over [a, 1 — b], @ and b = 0. Let 8 be the
order in n of the sup, for z; in [tn™!, 1 — un~!], of

lSo.o(xl y "ty zn) - Stn‘l.un”‘(xl y 0ty xn)l

Let Pr {Sy; < s| F} = ¢a(s), with lim ¢.(sn®) = ¢(s) continuous. Then, if « + 8 < 0,
F,(X*"), Fo,(X"), and D, are asymptotically independent when the population CDF is F, .
Error bounds are computed for assuming independence for finite n. These bounds show that
independence sets in quite early. For example, for n = 38, Pr {Dyx < .2347| F,} =
Pr {F,(X%) < .99932 | F,} = +/.95, whereas

948 < Pr {Dygs < 2347, F,(X%) < 99932 | F,} < .952.

15. A Generalization of a Simple Test Function for Guarantee Time Associated
with the Exponential Failure Law. Sarya D. Dusgy, Proctor & Gamble

Co.

In a previous paper entitled, “A Simple Test Function for Guarantee Time Associated
with the Exponential Failure Law’’ the author has shown that a test function based on
the first and the r (Zn, the sample size)th observations for testing the hypothesis on the
guarantee time has several desirable properties (see the abstract of this paper in the same
issue of this journal). This has prompted the author to consider a generalized simple test
function based on any two sample observations for the same hypothesis. For the use of this
simple test function upper 1, 5, and 10 per cent critical values are tabulated up to the
sample size 10. Several moment recurrence formulas are established which reveal interest-
ing relationships between its kth and (k'— 1)th order moments. Its power functions are
derived. The results applicable to the special cases of the generalized simple test function
are mentioned and the useful properties of this test function in some special cases are
pointed out.

16. A Simple Test Function for Guarantee Time Associated with the Exponential
Failure Law (Preliminary report). Satya D. Dusgy, Proctor and Gamble

Co. (By title)
Let the probability density function (p.d.f.) of a time to failure random variable, 1" be

represented by -
gl g0

0 otherwise . t>Gand g >0

2t ={

Consider the H: G = Gy against the 4: G ¢ Gy and assume 0 to be unknown. On ‘the basis
of the first r(Sn, the sample size) ordered observations we have derived the likelihood
ratio test of the above hypothesis. Under H this test has an F distribution with 2 and 2r — 2
degrees of freedom. It is completely unbiased, has a monotone power and is a uniformly most
powerful unbiased test. The results cover the work of Paulson (Ann. Math. Stat., Vol. 12
(1941) pp. 301-306). For the same hypothesis an alternative test function based on the first
and rth sample observations is suggested. This test function is completely unbiased and
has a monotone power. Furthermore, its power for @ < G, , which is of interest in life test-
ing situations, is exactly the same as of the likelihood ratio test and is independent of r.
This immediately suggests taking r = 2 and using only the first two ordered observations
of the sample. The results go beyond the work of Carlson (Skandinavisk Aktuarietidskrift,
Haft 1-2 (1958), pp. 47-54).

17. Asymptotically Most Efficient Single Observation Estimator of Expected
Life for Exponential Failure Law (Preliminary report). Sarya D. DuBEY,
Proctor and Gamble Co. (By title)

For the exponential failure law with known location parameter, the minimum variance
single observation unbiased estimator of the scale parameter is investigated. It is found
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that if the r(=n, the sample size)th observation in order of increasing time is the single
observation on which this estimate is based and if we write r = né, , then lim, 8, = &
which is the positive real root of the equation, log (1 — 8) + 26 = 0. It is about 66 per
cent efficient in comparison with the minimum variance unbiased estimator based on all
the n observations in the sample. The sample median has only 48 per cent efficiency. The
smallest sample observation is 100/n per cent efficient and the largest sample observation
has asymptotic efficiency of (600/x2)[(log? n)/n]. The percentile estimator approach also
yields the same results; however, the present investigation has yielded some interesting
side results.

18. Central Limit Theorem for Sums Over Sets of Random Variables. FRiEDHELM
EickeRr, University of North Carolina.

Many estimates are given as linear combinations ¢, = Y ii aaex of independent errors
ex whose distributions are unknown and non-identical. Some of the asymptotic properties
of these estimates are governed by the central limit theorem (CLT). The question is raised
as to what restrictions must be placed upon the set F of random variables (r.v.) from which
the ¢’'s are taken in any arbitrary order, and also upon the matrix of constants in order
that the CLT holds ‘“over F.”” A sequence of functions like {{.} is said to converge over
(or: on)F (in any sense) if this is true for any possible choice of a sequence ¢ , € , -+ with
elements ¢; in F. The following theorem is derived: Let F be a set of r.v. with Ee = 0,0 <
Ee < «. Then it is necessary and sufficient for the convergence of ¢, on F to the normal
law N (0, var ¢») for n — « that simultaneously holds:

(I) MaXgot. . ,n @/ D Gr — 0 for n — .

(IT) There exists a bounded function g(c) for ¢ < 0 with lim.., g(c) = 0 such that for
each r.v. in F [|e|2ce? dG(e) < g(c) holds where G(e) is the distribution function of e.

(III) var ¢ > m > 0 for all r.v. in F.

Application can be made to the least squares estimates in linear regression and in autore-
gressive schemes of time series. Of particular importance is the bearing upon some non-
parametric problems and on some nonstationary time series.

19. Power of a Non-Parametric Test of Independence. Recina C. Eranpr,
Case Institute of Technology. (Introduced by N. L. Johnson.)

In a previous paper [R. C. Elandt, Zastosowania Malematyki, Vol. 3 (1956), pp. 8-45]
the author proposed a test of independence based on the number of pairs, in the two-dimen-
sional sample (z1, y1), -+, (T2n, Y2n), for which (z; — Me,)(y; — Me,) > 0, where
Me. , Me, are the sample medians of = and y respectively. In the present paper the power
function of this test is investigated. If Me, , Me, are replaced by the (usually unknown)
population medians, it is possible to evaluate the power function exactly; this is used as
a basis for a heuristic approximation to the power of the original test. This approximation
is shown to give good results when the null hypothesis (of independence) is true. The asymp-
totic relative efficiency of the test is also evaluated.

20. Location and Scale Parameters in Exponential Families of Distributions
(Preliminary report). T. S. Ferguson, University of California, Los Angeles.

If a location parameter, 6, is the parameter of a one-parameter exponential family of
distributions, then the distribution for fixed 6 is either (1) the distribution of a~! log X,
where X has a gamma distribution and a 5 o, or (2) (corresponding to the case a = o) a
normal distribution. This result is extended to the case where the location parameter is a
parameter in a k-parameter exponential family of distributions, with the aid of the (prob-
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ably superfluous) assumption that the density has & + 2 derivatives. Similar results are
derived for scale parameters. If the parameters of a two parameter exponential family of
distributions may be taken to be location and scale parameters, then the distribution must
be normal. The family of distributions of the first mentioned result is thus seen to be a main
class of distributions to which Basu’s theorem (on statistics independent of a complete
sufficient statistic) applies. Furthermore, this family of distributions provides a natural
setting in which to prove certain characterization theorems which have been proved sepa-
rately for the normal and gamma distributions.

21. A Double-Ended Queuing Process. SamurrL M. Giveen, Northeastern
University. (Introduced by Lionel Weiss.)

A queuing model is considered in which the possible states are designated by the positive
and negative integers and zero. Two types of units, described as ““positive’’ and “‘negative”’,
enter the system. The arrival of a unit of one type constitutes an addition to the queue if
units of the same type are waiting, and a service completion if units of the other type are
waiting. Thus, if the system is in any state n, the arrival of a “positive’’ unit will always
shift it to state n + 1 and the arrival of a ‘“‘negative’’ unit will always shift it to state
n — 1. Arrivals of the two types of units are governed by Poisson probability laws with
time-dependent parameters A (¢) and u(¢). An explicit transient solution is obtained for the
probability that the system will be in state n at time ¢, but a steady-state solution does not
in general exist. In the special case in which A and p are constant, this solution is the well-
known probability of a difference of n between two Poisson variables. In the general case
conditions are determined under which the mean and the variance will remain finite as
t becomes infinite.

22. The Use of Sample Ranges in Setting Exact Confidence Bounds for the
Standard Deviation of a Rectangular Population. H. Leon HARTER,
Wright-Patterson Air Force Base.

A discussion is given of point estimates and interval estimates of the population stand-
ard deviation o, based on the sample range and quasi-ranges. In the case of a rectangular
population, the efficient point estimate and the most effective interval estimates are those
based on the sample range, so it is not necessary to consider estimates based on sample
quasi-ranges. The coefficients of the sample range w in the exact confidence bounds for the
population standard deviation o are found by taking the reciprocals of percentage points
of the (standardized) range W = w/o. The following tables for the rectangular population
areincluded: (1) A six-decimal-place table of the percentage points of the range correspond-
ing to cumulative probabilities P = 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.025, 0.05, 0.1 (0.1)
0.9, 0.95, 0.975, 0.99, 0.995, 0.999, 0.9995, 0.9999 for sample sizesn = 2 (1) 20 (2) 40 (10) 100;
and (2) a table, to seven significant figures or six decimal places, whichever is less accurate,
of the coefficients of the sample range w in the exact lower confidence bounds for ¢ for the
above values of P and n.

23. The Moments of the Non-Central (-Distribution. D. HogBen, R. S. Pink-
HAM AND M. B. WiLk, Rutgers University.

If X is normally distributed with mean & and variance 1 independently of Y2 distributed
as chi-squared with f degrees of freedom, then the random variable ¢ = X (f)}/Y is dis-
tributed as non-central ¢. Let p(z, y2) be the joint density of X and Y2. Then, explicit ex-
pressions for the raw moments of ¢ can be obtained readily from an identity which results
from continued differentiation, with respect to 8, of [ p(x, y?) dy?dx = K (3, f). A table
of numerical values relevant to the first four central moments and cumulants is given.
Application of the table is illustrated in finding the approximate values of the expectation
of certain functions of the non-central ¢.
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24. Some Notes on the Investigation of Heterogeneity in Interactions. N. L.
Jonnson, Case Institute of Technology.

Consider a cross-classification with model yi; = A+ Ri+C; + 25 (E =1, ---7r;
j=1,--¢), > Ri= Y C;=0, and 2z;’s independent N (0, ¢;) variables. To investi-
gate possible differences among the o;’s, criteria based on the statistics

r
S; = 2:1 Wsi — G- — §i + §--)*
=
may be used.
c r r (4
@ = 2 iy §oi = 17 Do gy G = (rO)T 20 D yii )
= i=1 i1 7=t

The distribution of the ratio S;/S;» is shown to be related to that of g = (3 j-wi;)/
(32%-1 wijyr) where the w’s are multi-normal units variables with correlation p between
wy; and wy; , all other correlations being zero. The distribution of g is shown to be a mixture

of F distributions with » 4 2k, » 4+ 2k degrees of freedom, in proportions given by terms
2\
=7 " 1= - . Some approximations to

the distribution of §;/8;+ are discussed and conjectural extensions to the joint distribu-
tion of Si1, Sz, -+, S are mentioned.. '

in the expansion of the negative binomial

25. On the Limiting Distribution of —2 log A in the Non-regular Case. DoNALD
A. Jongs, University of Michigan.

Consider a family, say F, of pdfs (Lebesgue) on E’ which ‘satisfies a set of regularity
conditions w.r.t. a real-valued parameter. A new family of pdfs, say G, can be constructed
from F by doubly truncating each member of F at unknown points, ¢ < b. Let x =
(x ,Z2, :** , Tm) be a random variable satisfying the following conditions:

(i) the real random variables z; , 22, -+ , & are independent and,

(ii) the distribution of z; hasa pdf in G,j = 1,2, --- , m.

Observe that the pdf of x belongs to a family indexed by a 3m-dim. parameter, say  with
range 2, where m of the dimensions are from F and 2m were introduced by truncation. Let
X1,X2, *** , Xn , be n random observations of x and denote their pdf, as a function of 6,
by F, . The limiting distribution of —2 log A(n — ), where

A= 1lub. [F,:0cw]/lub. [F,:0cQ]

and w C Q, is shown to be, for some special classes of w and assuming that 6 £ w obtains,
a chi-square distribution with 2b + d d.f. where b = (dim. @ — dim. w) w.r.t. the “trun-
cation parameters” and d = (dim. @ — dim. ) w.r.t. the ‘‘regular parameters’”. The
motivation is hypothesis testing by the likelihood ratio test and the methods of proof are
standard limit theorems.

26. Use of Some a priori Knowledge in the Estimation of Means from Double
Samples. S. K. Karri, Florida State University.

When there is no a priori knowledge available regarding the values of the mean p, the
overall sample mean # has many desirable properties as an estimate of u. The problem
considered here is one in which the statistician has a guessed estimate (guestimate) on p
either due to his past experience or due to his acquaintance with the behavior of the system.
It is found that if u, is the guestimate, the true value is close to uo, the variance ¢%is known
and if it is possible to take samples of size n, , and 7. in a succession, an estimate with an

expected mean square smaller than that of the overall mean # is obtained by using the
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mean of the first sample only, ignoring the second if this mean lies in the interval
(o — o/ (21 + n2)}, po + o/ (201 + n2)}) and by using the overall mean if it does not.
If the observations are independent, have a common normal distribution and x close to u, ,
this method gives an estimate with an expected mean square 3.2% smaller than that of %
when n1/n; = 0.33 and the sample size used to obtain this estimate is 74.9% of (n; + n2),
i.e., there is a saving of 25.1%,.

27. On the Expected Value and Variance of a Ratio Estimate. J. C. Koop,
North Carolina State College. (By title)

From the data of sample surveys various kinds of ratio estimates and their standard
errors are computed, often without questioning the validity of the underlying mathematical
procedures used in deriving the formulas. The limitations of the classical technique of
deriving the expected value and the variance of ratio estimates of finite populations by a
series expansion are briefly discussed in this paper. By a new device of expanding the ratio
or its powers as a truly convergent series, and then determining the expected values term
by term, expressions differing from the classical ones only by a constant multiplying factor
are obtained. This constant multiplier is an element of the inequality which shows what
minimum value it shall assume to insure that the series expansion is valid.

28. On the Higher Moments of Linear Estimates Based on Multistage Samples
from a Finite Population. J. C. Koop, North Carolina State College.

The theorem for the derivation of higher moments of linear estimates based on multi-
stage samples from a finite population is derived. An rth order moment of a random vari-
able about its mean or expected value is shown to be equal to the expected value (or the
first moment) of the conditional moment of the same order, plus the rth moment of the
conditional expected value, plus a series of product-moments of conditional expected
values of various orders (of course not exceeding r) each of them with appropriate binomial
coefficients. For the case when 7 = 2, we obtain the theorem given in the well-known text-
book of Hansen, Hurwitz and Madow. In the context of multistage (or multiphase) sam-
pling the net result of all moments of an estimate about its expected value of order lower
than 7 can be interpreted as increase due to extra steps in sampling beyond the first step
(stage or phase). The theorem is applied to obtain the third and fourth moments of linear
estimates based on multistage samples from a finite population with the following prob-
ability systems which are very general:

(@) first stage units are selected with equal probabilities and without replacement but
the probabilities for the selection of units in the subsequent stages are left undefined.

(ii) first stage units are selected with unequal probabilities and with replacement but

the probabilities for the subsequent stages are left undefined as above.
When the probabilities beyond the first stage and the structure of the sample (i.e., sample
design relevant to those steps in question) are defined, then the conditional moments can
all be evaluated in terms of the moments of the underlying variates. With these moments
the expressions for the classical coefficients of kurtosis and skewness of an estimate may be
obtained. For the above cases (and indeed for all multistage estimates) the approach to
approximate normal form is retarded because of the presence of the product moments.

29. On Simultaneous Tests in Nested Designs (Preliminary report). P. R.
KrisanaiaH, Remington Rand UNIVAC.
Consider the “fixed effects’’ model Zjxm = aiji + €sjim G = 1,2, -+ ,p;57=1,2,+++ , ¢;
k=1,2,--- ,7;m =1,2, --- ,s) where the errors e;;zm are distributed independently and
identically with zero means and variance o} ; ;i is the effect of kth level of C within jth
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level of B within ¢th level of 4 and D>, > > aijx = 0. Now consider the following
hypotheses

H;; : aijr = &j. forallk
H; : &j. = &.- for all §

H:a. = a.. for all ¢

where &;j. = 11 Y aiik ; @-- = 1 Y &ije } & = P71 > &.. . The present paper dis-
cusses testing pg hypotheses of the form H; , p hypotheses of the form H; and the hypoth-
esis H simultaneously by using (1) the Simultaneous ANOVA Test and (2) the Joint
(Overall F) Test. The lengths of the simultaneous confidence bounds associated with the
above tests are compared. These results are generalized to multivariate situations and to
higher order hierarchal classification.

30. A Multivariate Analogue of One-Sided Test (Preliminary report). AKro
Kupo, University of Michigan Medical School.

Consider a sample of size n from a k-variate normal population with unknown means
mi; i =1, -+, k) and a known variance matrix A. The likelihood ratio test of the null
hypothesis Hy; mi =0 (¢ =1, .-+ , k) against the alternative hypothesis H, ; m: = 0
(¢ =1, ---, k) where inequality is strict for at least one of the k will be considered. The
test is based on the statistic K2 = n[#’A~'% — min (£ — m)’A~1(Z — m)], where £ and m
are the sample and the population mean vectors and the minimum is over the region m; = 0
(=1, .- ,k). The computation of K2 will be discussed, and we shall prove

Pr(K*z Ki) = ), Pr(xnan 2 Ko)Pu(l — Pu),
¢§MSK

where the summation runs over all non-empty sets M included in or equal to the set K =
{1,2, -+, k}, n(M) is the number of elements in M, Py = Pr(z; 20,7 ¢ M), Py =
Pr(z; 20, 2M |z = 0,%7eM). Pyand Py- are probabilities under the null hypothesis,
and the latter is a conditional probability equal to zero when M = K.

31. Power of Mood’s and Massey’s Test Against Exponential and Rectangular
Alternatives. F. C. LeoNE, I. M. CHAKRAVARTI AND J. D. ALANEN, Case
Institute of Technology.

When sample observations are originally recorded in order of their magnitude, Mood’s
test, based on the median of the combined samples, and Massey’s extension of Mood’s
test based on fractiles, have much to commend themselves as quick tests. In Mood’s test
one need record observations only up to the median of the combined samples, and in-Mas-
sey’s test, up to the highest fractile included in the test. It is known (Mood, (1954) and
Andrews, (1954)) that the asymptotic relative efficiency of Mood’s test against normal
and rectangular alternatives is low. However, it was felt that there was enough gain in
Massey’s extension to justify this investigation. The objects of the present investigation
are:

(i) to derive the exact power functions of Mood’s and Massey’s tests for two samples
against parametric alternatives of exponential and rectangular populations;

(ii) to tabulate them for comparable sample sizes in order to get an idea about their re-
spective performances and also to evaluate if there is any resultant gain in the use of Mas-
sey’s test (which uses more than one fractile and hence is more elaborate) over Mood’s

tests.
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32. On some Properties of Compositions of an Integer and their Applicatlon to
Probability Theory. T. V. NaArAYANA AND S. G. MouANTY, University of
Alberta.

A partial order called ‘‘domination’’ has been defined on the r-compositions of n and the
r-compositions of » form a distributive lattice (1 £ r < n), (Narayana and Fulton, Canad.
Math. Bull., Vol. 1, No. 3). Using an obvious partial order, the distributive lattice formed
by the simple symmetric sampling plans of size 2n is shown to be isomorphic to the lattice
formed by the n-compositions of 3n dominated by the n-compositions (3, 3, -+ 8) or 3n.
A natural one-to-one correspondence between the simple symmetric sampling plans of
size 2n and simple sampling plans of size n induces the lattice on the simple sampling plans
of size n and as a consequence the number of such plans is found to be n~1 n3n 1) Since
it is easily seen that this distributive lattice is isomorphic to a distributive lattice formed
by the minimal lattice paths in a classical ballot problem ([1] Grossman, Scripta Mathe-
matica, Vol. 15, No. 1-2; [2] Dvoretzky and Motzkin, Duke Math. J., 1947), the solution tq
the problem is rederived and a further generalization of it is obtained. The authors hope to
extend the application of this unified approach to various other problems in probability
theory.

33. Fractional Factorial 2™ and 3" Designs with and without Blocks, Preserving
the Main Effects and the Two-Factor Interactions. M. S. PaTeL, Uni-
versity of North Carolina and Research Triangle Institute.

The object of this paper is to construct fractional factorial designs which have a number
of treatment combinations just sufficient to estimate the main effects, the two-factor inter-
actions, and the error, without requiring difficult computation. Starting with orthogonal
arrays of strength d as defined by Rao, fractional designs have been built up by combining
the treatment combinations belonging to these arrays, the number of arrays to be taken
depending upon their strength and the number of effects to be estimated. It has been shown,
for instance, that if the treatment combinations regarded as points satisfying the equations
@11+ Ga22 + -+ + GamZm = do (@ =1,2, -+ ,r) in GF(2) form an array (2», m, 2, 2),
then the totality of treatment combinations satisfying the (r 4 1) such arrays given by
the solutions of AXJ’ = D in GF (2) where A = ((@ai)), ¢ =1,2, -+ ,7;4 =1,2, --- , m;
X' = (@,%, ,2%m),D=(0,5)and JJ = (1,1, ---, (r + 1) times), are sufficient to
estimate the main effects and the two-factor interactions, assuming all higher factor inter-
actions to be absent. The same has been worked out with component arrays, each of strength
3. Finally, assigning the treatments belonging to » 4 1 component arrays to blocks, block
designs have been obtained. Following a slightly different procedure, fractional designs
for the 3~ series have also been obtained.

34. On the Performance of the Group-Screening Method. M. S. PateL, Re-
search Triangle Institute. (By title)

In this paper is discussed the efficiency of two-stage group-screening designs relative to
the corresponding single-stage designs. The criterion of efficiency is the expected number
of correct decisions that are made using the design. Only orthogonal designs are considered.
Let v be the size of the critical region used for decision making in a single-stage design and
a,Bn (n=1,2, .-+, g) be sizes of the critical regions in a two-stage design when » out of
g group-factors are declared effective. Under certain assumptions, sufficient conditions are
developed under which max..s, (expected number of correct decisions) exceeds max, (ex-
pected number of correct decisions) and vice-versa. Some other side results of interest are
also given.
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35. On the Distribution of First Significant Digits. Roger PinkuaM, Rutgers
University. (By title)

Consider an initial distribution on the positive real numbers. If these numbers are ex-
pressed base 10, a distribution of first significant digits is thereby induced. It is shown: (1)
The only distribution of significant digits which is invariant under scale change of the ini-
tial distribution is the logarithmiec, (2) A wide range of initial distributions result in the
logarithmic law to a high degree of approximation.

36. A posteriori Distributions in the Translation Parameter Case (Preliminary
report). MARTIN Fox aAND HERMAN RuBIN, Michigan State University.

Let (X, Y) have distribution function F(x — 6, y) with § unknown. Assume X and @
are restricted to the same linear set S of real numbers (such as the integers or the rationals)
while Y can take values in any space. Let the a prior: distribution of 6 be ‘‘uniform’’ on
(—», ©) n 8. Let £., be the a posterior: distribution function of 0 given X = 2z, Y = y.
Let ...« be the ath quantile of £, and let 8,., have distribution function £,., . Then, (i)
given 0, the (1 — «)th quantile of 0x,y.. is 8; (ii) if it exists, then

Ey(bgy —0)" = ’g (—=1)* (Z) [ux pns + cov(ur,y pni.v)]

where ur = Eo(X — 60)* and ux,y = Eo(X — 0)¥| Y = y]; and (iii) given 6, the distribution
of fx,y — 0is symmetric with absolute maximum at 0. The proofs of (i) and (ii) follow from
the observation that ¢,(E) = F(x — E) for any E C S. The proof of (iii) consists in show-
ing that 6z, — 8 = U — V where U and V are independent and identically distributed.
Statement (iii) can be extended to the case of distributions invariant under a locally com-
pact group transitive on the parameter space.

37. Asymptotic Relative Efficiency of Mood’s Test for Two-Way Classification.
Y. 8. Satug, University of North Carolina. (By title)

Let the distribution of z;;(z = 1, 2, -+-, r; j =1, 2, -+, ¢) be Fij(x) =
F(x + v + o + 8;). Then under the null hypothesis Hy, : as =0 (z = 1,2, -+, r), all
the observations in a given column have same distribution. Let Z; be the median of obser-
vations in the jth column and in the two way table, let z;; be replaced by 1 if it exceeds
Z; or by 0 if it does not. Let m; be the number of 1’s in the sth row. Then Mood and Brown
show that under the null hypothesis

2
XM = 'Y(T - ]-) < ; >
calr — a) & v/’
where @ = r/2 if r is even or @ = r — } if r is odd, has a limit x? distribution with r — 1
d.f. as ¢ — . In this paper, we show that under H, : a; = 8;/c* where > i1di = 0 but

not all &;’s are 0 and r odd, X%, has a limit noncentral x2 withr — 1 d.f. and noncentrality
parameter

= XG0 =D (=T "y e @]

aly — a)

where f(y) is the p.d.f. For r = 3, f(y) = 2ade ¥, X = (27/16x) 3 5% . For the usual
F-test, the corresponding noncentrality parameter is Y 53 . Thus a.r.e. of X3, compared
with F-test for r = 3 is 27/16x = .54.
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ABSTRACT WITHDRAWN IN PROOF

39. The Method of Parallel Tangents (PARTAN) for Finding an Optimum.
B. V. 8uag, R. J. BueHLER AND O. KEMPTHORNE, Iowa State University.

Let y be a quadratic function of n = 3 variables (or a monotone function thereof) hav-
ing a minimum; let P,P:P;P,PsPs be a polygonal line such that P; occurs at the minimum
value of y on the (extended) line P;_,P; ; let =; be the plane tangent to the contour of y
at P; . For any P, , P\P; may be any direction of decreasing y. P,P; may be any decreasing
direction parallel to x . P, is on the line P,P; beyond P; . P,Ps is parallel to both m; and
w2 . Then =, and =5 are parallel and the minimum of y will be at Ps which is on the line
P,P; beyond P; . The generalization to higher dimensions is to take Paj_4 , P2j—; and Py;
colinear. Then P;; is the minimum in the linear space spanned by the preceding points.
The proof is given for hyperspherical contours, and is extended to hyperellipsoidal con-
tours by a general affine transformation. The instructions are invariant under change of
units and, more generally, under any affine transformation by virtue of the exclusive use
of parallel, rather than normal, directions. In two dimensions P, is also the minimum for
a quite general class of contours all of which make the same angle with any given ray from
the minimum.

40. Selection of the Best Treatment in a Paired-Comparison Experiment. B. J.
Trawinskl AND H. A. Davip, Virginia Polytechnic Institute.

The results of a balanced paired-comparison experiment in which ties are not permitted
can be summarized in the scores (number of preferences) achieved by the treatments being
judged. Let =s; (2,5 = 1,2, -+ ,t;7 # j) denote the constant probability that the 7th
treatment 7'; is preferred to T'; in any one of n comparisons of the two. Then the best treat-
ment T’ is the one with the highest average probability ;. of success. Following the gen-
eral approach of Gupta and Sobel one can select a subset S of the T; by includingin S the
T; associated with the top score %) and with all other scores = k() — ». With proper
choice of » this decision rule has the property that T is included in S with at least a speci-
fied probability. Tables have been constructed giving » as a function of ¢ and n. Suppose
next that myj = # > 3 (j=1,2,---,t — 1) and m;; = } otherwise. For this case the
smallest number of replications n has been determined, for given ¢ and =, which ensures
that with at least a specified probability the highest score corresponds to T»(= T'.). The
formulation of the problem is that of Bechhofer but in the present case the procedure does
not have the usual conservative properties associated with Bechhofer’s approach.

41. A Plotting Procedure in MANOVA. M. B. WiLk AND R. GNANADESIKAN,
Bell Telephone Laboratories, Murray Hill. (Invited paper)

A procedure is presented for the generalization and extension, to multiresponse factorial
experiments, of the technique of half-normal plotting for uni-response factorials. Consider,
for definiteness, two-level factorial experiments wherein, for each treatment combination,
p responses are observed. For this multiresponse situation, the analogue of the uni-response
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single degree of freedom contrasts is a vector of p elements, each element being a single
degree of freedom contrast corresponding to one of the responses. A positive semidefinite
or definite quadratic form in the elements of each of these vectors is obtained (for example,
the squared length of the vector). This is interpretable as a distance function in a meaning-
ful space. The null distribution of the quadratic form is approximated as a gamma with
two parameters. Under reasonable experimental assumptions, the quadratic forms are
mutually independent. Using only the m smallest of the quadratic forms as a sample of the
first m order statistics from a sample of size k (where m = k = N, the total number of
contrasts) from a gamma distribution, maximum likelihood estimates are obtained for the
parameters of the gamma distribution. Using the estimates, a ‘“‘gamma plot’’ is made of
the ordered quadratic forms. Interpretations and uses of the plot are discussed, with ex-
amples.

42, On the Estimation of Error Variance and Number of Significant Effects in
Two-level Factorial Experiments. M. B. WiLK, R. GNANADESIKAN, AND

Miss A. R. EBNER, Bell Telephone Laboratories, Murray Hill. (Invited
paper)

This paper is concerned with the estimation of the error variance, ¢2, and the number
of “significant’’ contrasts, r, when a collection of NV contrasts, each based on one degree
of freedom, are analyzed. A typical situation giving rise to this is the set of N = 2» — 1
estimates of effects obtained from the responses in a 2* factorial experiment. Let 4} < y3 <

- < y% denote the ordered squared contrasts. Suppose that the m smallest (m specified)
are known to “belong to error’’, and that ¥ = N — r, the number of error contrasts, is known.
Tables are provided for determining at once the maximum likelihood estimate of o2 based
on the first m order statistics y;, -+ , y% . A summary of a Monte Carlo study of the
properties of this estimate is given. Though % will in general not be known, it is felt that
this procedure, based on a ‘‘guessed’’ k will be less biased than one based on either pre- or
post-experiment ‘‘assignment’’ of effects to error or of the ‘‘conservative’’ estimation of
error from all the contrasts in the collection. The procedure is buttressed by an informal
sequential inference scheme which is specifically directed toward the determination of %
from the data. Examples and results of some Monte Carlo studies are given.

43. Estimation of Parameters of the Gamma Distribution Using Order Statistics.
M. B. WiLk, R. GNANADESIKAN, AND Miss M. J. Huyert, Bell Telephone
Laboratories, Murray Hill. (Invited paper)

Using the m smallest observations in a random sample of size K from a gamma distribu-
tion whose density function is,

F;n, m) = IN/T(q)leoy™, y>0,A>0,7>0,
the problem of estimating N and 5 is considered. Let P and S denote, respectively, the
‘ratios of the geometric mean and the arithmetic mean of the m smallest observations to the
mth observation. Then, 0 < P < 8 = 1, and P and S are jointly sufficient for A and 7.
Tables are given, for various values of K/m, P and 8, from which the maximum likelihood
estimates of A and 5 are easily obtainable.

44. Probability Plots for the Gamma Distribution. M. B. WiLK, R. GNANADESI-
KAN, AND Miss M. J. Huyerr, Bell Telephone Laboratories, Murray
Hill.

If 1 £ y2 £ +++ = yn is an ordered random sample from the general gamma distribu-

tion with density
fy; e n 1) = N/T@)(y — )t e, a=y<w,
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where —o < a < ©, A > 0 and » > 0, then a plot of the y values against appropriate
quantiles of the standard gamma distribution (e = 0, A = 1) would be expected to yield
a straight line pattern with intercept « and slope 1/A. This paper describes a systematic
numerical method for calculating the quantiles of the standard gamma distribution cor-
responding to the fractions b; = (¢ — $)/n, 7 = 1,2, --- , n, for given values of 4. A table
of quantiles as a function of 4 is given, together with several samples of gamma, plots. Vari-
ous uses of such plots are discussed, with examples. The entire procedure, viz the calcula-
tion of quantiles and the actual plotting, has been programmed for a high-speed computer
and that procedure (with instructions for use) is described in an Appendix.

(Abstracts of papers to be presented at the Annual Meeting of the Institute, Seattle, Washington,
June 14-17, 1961. Additional abstracts will appear in the September, 1961 issue.)

1. An Optimal Sequential Accelerated Life Test. StuarT A. BEssLER, General
Telephone and Electronic Laboratories, HErMAN CHERNOFF, Stanford
University, AND ALBERT W. MarsHALL, Stanford University and Institute
for Defense Analyses, Princeton.

Suppose that the distribution of lifetime 7' of a device subjected to stress z is exponential
with failure rate (reciprocal of mean) equal to 6.z + 6,22 for 0 < z < z*. It is desired to
test Hi: 01%0 + 0220 = a versus Ha: 61, + 02102 > a. The cost of experimenting at stress
level z is assumed to be proportional to the mean lifetime (6,2 + 6:22)~1. An asymptotically
optimal sequential procedure, characterized by Chernoff, Albert, and Bessler, is derived.
After each observation it calls for selecting the next observation from one of two levels.
These levels correspond to the solution of two person zero sum game whose payoff function
is a Kullback-Leiber Information number divided by the cost of experimentation.

2. A Statistic Related to Kolmogorov’s. H. D. BRUNK, University of Missouri.

A distribution-free statistic is proposed for testing the hypothesis that a sample comes
from a population with prescribed distribution function F. It occupies a position inter-
mediate between Kolmogorov’s (Inst. Ital. Attuari, Giorn., Vol. 4 (1933), pp. 1-11) and
Sherman’s (Ann. Math. Stat., Vol. 21 (1950), pp. 339-361), and the corresponding test ap-
pears more powerful than Kolmogorov’s against certain alternatives (e.g., different scale
parameter, for a symmetric distribution) and less powerful against others (e.g., different
location parameter). If F, is the empiric distribution function of the sample, then the sta-
tistic, proposed by Dr. Harold Lischner and the author, is max, [F(z) — F.(z)] —
min; [F (x) — F.(x)]; more precisely, it bears the same relationship to that mentioned as
does Pyke’s (Ann. Math. Stat., Vol. 30 (1959), pp. 568-576) modification of Kolmogorov’s
to Kolmogorov’s itself. Asymptotic formulas due to Doob (Ann. Math. Stat., Vol. 20 (1949),
pp. 393-403) and Donsker (Ann. Math. Stat., Vol. 23 (1952), pp. 277-281) yield the asymp-
totic distribution. A theorem of Sparre Andersen (Skand. Aktuarietidskrift, Vol. 36 (1953),
pp. 123-138) makes possible an essential simplification of the problem of determining the
distribution for finite sample size. After this simplification, methods developed for Kolmo-
gorov’s statistic by Kolmogorov, Feller, Dempster and others can be used. Tables are in
preparation.

3. Evaluation and Design of Multiple Choice Questionnaires (Preliminary
report). H. CHERNOFF, Stanford University.

The evaluation of tests based on multiple choice questions is complicated by the fact
that subjects who do not know the answer have the opportunity to guess. If only % of the
subjects answer correctly a question with three choices, one may infer that very few sub- -
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jects knew the answer. The standard procedure of giving credit to those who answered this
question correctly serves no purpose but to introduce ‘noise’’ into the test score. In this
paper, a method is proposed to give scores which depend not only on the individual’s an-
swers but on those of the population. The score z is regarded as an estimate of a value v
attached to the subject’s knowledge. The method of scoring is to be selected so as to mini-
mize E(z — v)2. Applications to various models are given. The problem of optimal design
is discussed. The mathematics of the theory reduces to that of regression or conditional
expectation. For example, the best score given the subject’s response z is z(z) = E{v | 2}.
If, in the example described above, p is the proportion of students who answer a one-point
question correctly, all correct answers are given a score of (3p — 1)/2p and all incorrect
answers a score of zero.

4. Optimal Accelerated Life Designs for Estimation. H. Cuernorr, Stanford
University, (Invited paper).

It is desired to estimate the probability distribution of the lifetime of a device when
subjected to a standard environment. If this lifetime tends to be large, the time consumed
in testing a sample of devices will be exorbitant. A common approach is that of acceleration.
The sample of devices is subjected to environments of greater stress than that of the stand-
ard environment. To extrapolate these results a model relating distribution of lifetime to
environment is required. Once such a model is proposed the problem of optimal design
arises. At what level of stress should experiments be carried out? An answer to this ques-
tion involves the cost of experimenting at a certain stress level. Optimal designs are de-
rived for five examples. In each of these the distribution of lifetime is assumed to be ex-
ponential with failure rate (reciprocal of the mean) equal to a specified function of stress
and the cost of experimentation proportional to the mean lifetime at the stress level. Each
of the optimal designs consists of experimenting at two stress levels. The method reduces
to an application of a technique of Elfving derived for estimating the optimal designs for
the coefficients of a linear regression.

5. Minimum Risk Estimation: A Non-Parametric Case Involving Percentiles.
HerBerTr B. EsEnBErG AND Joun E. WansH, System Development
Corporation.

Minimum risk estimation of 100 p-percentile, 8, , is considered for any continuous uni-
variate population. Sample values are 1 < -+ < %y ;% = —©; ZToyy = ». Risk =
S rto LG, , 6% | < 6, S @i41)Pr(2 < 0, = :i41) and estimate is value 6, minimizing
this function; 6% in conditional loss function is representative value for 6, given that 6,
in (x , ;1] and can be randomly selected from a specified distribution over this interval.
Method is applicable when the minimizing 8, is unique. If conditional loss function is
n
7
method are examined. Explicit results are derived for special classes of loss functions.
Further nonparametric applications (univariate and multivariate) are being developed
through extension of percentile concept to that of general population coverage—specifi-
cally, to minimum risk estimation of regions with specified amounts of population coverage.
Method is also applicable to estimation of parameters for parametric populations (con-
tinuous or discrete and univariate or multivariate). In general, the confidence intervals
x; < 0, < ;41 are replaced by mutually exclusive confidence regions that include all the
possible values for the quantity estimated. For the continuous parametric case, size of all
but tail confidence regions ordinarily can be made arbitrarily small. Then, in the limit

risk function is usually expressible as an integral.

6o — 6512, minimizing 8, = Y i 6% )pf(l — p)*%. Conditions for applicability of
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6. Non-Parametric Sequential Tests for the Two-Sample and Several-Sample
Problems. R. R. M. GEOGHAGEN AND JoHN E. WaLsH, System Develop-
ment Corporation.

Null hypothesis asserts that % specified populations (k = 2) are equal. Populations can
be univariate or multivariate and arbitrary otherwise. Same number of sample values is
taken from given population at each sequential step; this number can be different for each
population. Each observation is converted to categorical form by subdivision (same for all
populations) of space of possible values. Categories are denoted by 1, --- , C and should
have nonzero null probabilities. At each sequential step, observed value is vector with
dimensionality equal to total number of observations per step and each coordinate is one
of 1, -+, C. A value with all coordinates equal is discarded. Disjoint classes are formed
from remaining possible vector values so that each class has a determined null probability
(many possible ways unless C' very small). In all cases, these classes have a multinomial
distribution. The completely determined null distribution can be tested against specified
alternative distributions by standard sequential analysis methods. Also some special se-
quential methods are presented. When C is not very small, alternatives of a broad class
can be emphasized by suitable choice of category subdivisions and suitable formation of
classes. Procedures for making suitable selections are outlined for-several univariate cases
and a multivariate case. Also methods for determining category subdivisions with nonzero
null probabilities are considered. '

7. Three-Quarter Replicates of 2" Designs. Perer W. M. Joun, California
Research Corporation and University of California, Berkeley.

Let a three-quarter replicate be formed by omitting the quarter defined by I = P =
Q = PQ, where P, Q, PQ are main effects or interactions. Let R be any other effect. Then
if one member, say PQR, of the alias coset B, PR, QR, PQR is negligible, a prior:, the least
squares estimates of the remaining members are obtained from half replicates confounded
only with PQR. If, in addition, QR is negligible, then the least squares estimates of R and
PR are obtained by averaging their estimates from two half replicates, and are confounded
only with @R and PQR. In the three-quarter replicate of 27 obtained by omitting = AB =
AC = BC, the alias cosets consist either of four effects with odd numbers of letters or else
of four effects with even numbers of letters. In each of the alias cosets containing ‘‘odd”’
effects, equate three of these to main effects, and we have a design of Type B (main effects
clear of two factor interactions) for 3.27~% factors with 3.27~2 points. Other designs ob-
tained include a three-eighths replicate, 48 points, of 27 of Type B’ (both main effects and
two factor interactions clear) and a six point first-order design for five factors.

8. Oddities in Estimating the Scale Parameter of the Weibull Distribution.
EuceNE H. Leaman, Jr., Purdue University. (Introduced by Irving W.
Burr.)

In a recent paper [Estimation of the Scale Parameter in the Weibull Distribution Using
Samples Censored by Time and by Number of Failures, Ph.D. Thesis, North Carolina State
College, Raleigh, (1961)] the author described a test procedure for estimating the scale
parameter o« in the Weibull distribution, F(t) = 1 — exp [— (t»/a)], t > 0. The test is:
place on test N tubes whose life spans follow the Weibull distribution with known scale
parameter M ; stop test when both R tubes have failed and T hours has elapsed. The maxi-
mum likelihood estimator & of « from this procedure possesses several mysterious idiosyn-
crasies. In the present paper some of these strange mannerisms are explained. For instance,
the variance, V, and mean square error, D, (if N and R are small) ¢ncrease with T for a
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short interval of small values of T, thus implying that a short test supplies more informa-
tion than a long one. The reason for this peculiarity is that if the actual number of failures,
r, exceeds by only a small integer the minimum R, then & is very biased and variant. If T
is small, the probability of using this particular form of & increases with 7' before it de-
creases, and thus V and D of & as a whole portray this same confusing oddity.

9. The Distribution of Probabilities in a Stochastic Learning Model (Preliminary
report). J. R. McGreGor AND T. V. NaravaNa, University of Alberta.
(By title)

Bush and Mosteller (1955) have developed a model to describe simple learning behavior
in the case of two subject-controlled events. They consider a learning experiment in which a
subject is presented, on repeated trials, with the same two alternatives 4; and A . Their
probabilistic model specifies the way in which the response probability (i.e., the probability
of choice of alternative 4;) is modified from trial to trial as a result of earlier responses and
outcomes. On the nth trial there will be 2* possible values of the response probability (called
p-values) the »th value being denoted by pm (v = 1,2, -+, 27). These p-values have a
probability distribution, say, Prob (p,») = P, . In a special case, the transition from trial
n to trial (n + 1) results in each old p-value p,. generating two new p-values given by
Q1P = 3Pwn , QP = 3 + 3P . It is the purpose of this note to show that in the special
case considered, the use of binary representations of integers or equivalently of the boolean
algebra formed by the subsets of a set yields interesting results about the exact asymptotic
distribution.

10. Some Properties of Compositions of an Integer and -their Application to
Probability and Statistics. T. V. NARAYANA AND S. G. MoHANTY, University
of Alberta. (By title)

The authors have developed a unified approach to various problems in probability and
statistics, through partial orders defined on compositions of an integer (abstract published
in Ann. Math. Stat., June, 1961). This approach yields a new proof of a theorem of Chung
and Feller: Let L., be the number of minimal lattice paths from the origin to (n, n) such
that 2k steps lie above the line z = y and 2n-2k steps below it (k = 0,1, --- , n); then

L = (n + 1)‘1(2:), independently of k. A feature of our (non-inductive) proof is the

explicit 1:1 correspondences which are provided by it, between any two of the n + 1 sets
of paths considered. Similar methods may be applied to the problem of setting an upper
bound to the number of non-isomorphic scores in a round robin tournament.

11. Some Tests for Outliers. C. P. QuESENBERRY, Montana State College,
AND H. A. Davip, Virginia Polytechnic Institute.

This paper is concerned with the problem of detecting outlying observations when in
addition to the normal sample 21 , %3, -+ , Z» at hand an independent mean-square esti-
mate s2 of the common variance is available. The maximum deviate from the sample mean
(max — &) divided by the pooled estimate of standard deviation S and the maximum
absolute deviation from the sample mean max; |z; — Z| divided by S are considered as test
statistics. These statistics are known to have optional power properties for testing against
alternatives of one outlier on one (specified) side of the sample and for one outlier on either
side of the sample, respectively. The distributions of the related statistics (z; — £)/S are
obtained and used in conjunction with the Bonferroni inequalities to obtain significance
points for the one- and two-sided test statistics. Tables of significance points of the test
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statistics for « = .01 and .05 are given for selected values of » (sample size) and » (the
degrees of freedom for the independent estimate of variance). Two examples are given to
illustrate use of the tables.

12. Estimation of Location and Scale Parameters by Optimally Selected Obser-
vations. CARL-ERrIk SArNDAL, University of North Carolina. (Introduced
by Bernard G. Greenberg.)

A large sample of n observations, distributed according to a function of type
Fl(z — a1)/az], is available. Those k& observations zwm; < 2y < *++ < 2(mp» Which con-
tain most information with respect to the unknown parameters @, and «. are to be selected
to form linear estimates af = Y griZ(n) » (r = 1, 2). Another question to be answered
is to what extent this censoring of the sample can be carried out in order to maintain the
quality of joint asymptotical efficiency. If A; = n;/(n + 1), it is found that, under certain
general conditions, the optimum spacings are of the formA; = Q[i/(k + 1)] + O(k + 1)™2,
where @ is a function, the inverse of which is expressible in terms of the density function
ts derivatives. Using this result, the joint asymptotical efficiency of af and «f is shown to
be of the form 1 — C'(k 4 1)72 + o(k + 1)~2, where C is a certain constant. In fact, joint
asymptotical efficiency is achieved by using only ¥ = k(n) observations, where k(n) — o«
with n in the weakest possible manner. It is to be expected that, also for rather small values
of k, satisfactory approximations to the optimum spacings can be obtained by taking A; =
Q[¢/(k 4+ 1)]. For the important case of the normal distribution, calculations show that
these ‘‘nearly optimum’’ spacings yield estimates of very high joint asymptotical efficiency
by utilizing only 10 observations.

13. On the Jifina Sequential Tolerance Limits Procedure. Sam C. SAUNDERS,
University of Wisconsin.

This paper contains a short exposition of the necessary assumptions that the Jifina
Sequential Tolerance Limits Procedure (Selected Trans. in Math. Stat. and Prob., IM.S. &
AM.S.,, Vol. 1, 1961, pp. 145-156) be generalized to spaces other than the real line. A method
of obtaining the confidence level for any parameter values is given. A table is computed
for small values and for large values it is shown that tables of the exponential integral can
be used. Formulae for the expectation and variance of the random sample size are derived.
That the random sample size, appropriately scaled by one of the parameters, has an asymp-
totic distribution as that parameter increases is proved and the La Place transform of this
distribution is found. Also formulae for the asymptotic mean and variance are found as
one parameter is increased.

14. Moments of the Radial Error. ErneEst M. ScHEUER, Space Technology
Laboratories.

Let z; and z: be normally distributed random variables with zero means, variances
on and a2 , respectively, and covariance oy, . Define the radial error R by R = (3 + x3)}.
Further, let o = 3{ (o1 + 022) + [(o11 — 022)? + 4o02]}}, 05 = 3{ (o1 + 022) — [(on1 — o22)? +
405}, and k2 = (o7 — 03) /03 . Then for the moments about the origin u;, of R, one obtains:

wp = {[@eD)?pl)/7Y) 200, (f)(—kz)”[I‘(v + $1/v! and popn = 1-3 -+ 2p + D[(x/2)}]

F(—%@2p + 1), 4, 1; k%) where F (a, b, c; 2z) is the hypergeometric function. Cf., the results
of Rice (in Wax, Ed., Selected Papers on Noise and Stochastic Processes, Dover, 1954, p.
238 et. seq.) who treats the case 012 = 0,011 = 092 , B (21) = P (generally not zero), E (z2) = 0.
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15. An Optimal Sequential Accelerated Life Test with Exponential Dependence
on Stress. GipeoN ScEWARTZ, Stanford University.

Bessler, Chernoff and Marshall present a game-theoretic method for obtaining optimal
sequential designs for experiments to test whether a device subjected to standard stress
has an expected lifetime exceeding a specified value. They solve explicitly the case in which
that function is the inverse of a quadratic. In the present paper, the same method is ap-
plied to the case where the dependence of the expected lifetime on the stress is exponential.

16. Tests for Regression Coefficients When a Continuous Sample is Available.
M. M. Sippiqui, Boulder Laboratories, National Bureau of Standards.

In continuation of previous studies (these Annals, Vol. 29 (1958), pp. 1251-56; Vol. 31.
(1960), pp. 929-938), tests for regression coefficients are developed when a continuous
sample is available and the error process is assumed to be stationary. Bivariate Gram-
Charlier series are used to approximate the joint distribution of the least-squares estimate
of a regression coefficient and the integral of squared residuals. Finally, approximate &
and F tests are suggested. The theory is applied to some cases of interest such as analysis
of variance for one way classification, and polynomial trend.

17. A Generalization of the Ballot Problem and Its Application in the Theory of
Queues (Preliminary report). Lajos TaxAcs, Columbia University.
(Invited paper)

In the case of single server queueing processes denote by G, (z) the probability that the
busy period consists of n services and its length is <z. The author determines G, (z) ex-
plicitly for types [M, E\ , 1] and [En , M, 1] by using the solution of the ballot problem and
for types [M, G, 1] and [G, M, 1] by using the following more general theorem: Suppose
that an urn contains n cards labeled with nonnegative integers whose sum is k¥ < n. All
the n cards are drawn without replacement from the urn. The probability that for r =
1,2, -+, n the sum of the first » numbers drawn is less than r is 1 — k/n.



